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Abstract

Barriers for LIFO IWSQ on Power, done rather properly. Includes first sight of T and U modalities for
universal stable assertions and the B and C operators for and CASable values.

This is an attempt to do the barriers for LIFO IWSQ systematically – i.e. with formal treatment of prop-
agation effects. The algorithm is in figure 1 with the authors’ ordering annotations, which are inadequate:
there’s an additional need for an lwsync before line 3 of put() (which can be made conditional, though it
doesn’t save very much in this algorithm). Note that sz is local to the owner since the stealer never reads it:
there needs to be a global auxiliary Sz which tracks it, to simplify the invariants, which is ugly, but at least
we don’t have to consider propagation issues with that variable. Note that Power doesn’t have two-word
indivisible reads and writes, let alone CASs, so Ac, which holds both a stack pointer t and a generation
number g has to be a single 64-bit value; this sounds rather impractical and makes the proof an academic
(in the sense of ‘footling and pointless’) exercise.

1 A program logic for Power

The PowerPC has two peculiarities: it reorganises execution of instructions, speculating where it can; and
it delays writes to memory whilst maintaining a global coherence order of writes that all readers must
observe (Sarkar et al., 2011). I began my investigation of the FIFO IWSQ algorithm by drawing depen-
dency graphs of procedures to describe constraints on out-of-order execution, and then putting RGSep-
style (Vafeiadis and Parkinson, 2007; Vafeiadis, 2007) assertions on their branches. This worked surpris-
ingly well, using the insight that global invariants must be a constraint on every thread’s view of shared data
(there is no shared memory in models of Power), so must be maintained locally at least.

Dependency graphs allowed me to abduce five out of the seven barriers needed for FIFO IWSQ (Michael
et al., 2009), one more than noted by the algorithm’s authors, but two of those had a memory propagation
effect (a side-effect of the local preservation of invariants), and there were two more barriers, not noticed
by those authors (who should be forgiven because they weren’t really thinking about Power’s memory
mechanisms), which were purely needed to deal with propagation effects. Mike Dodds helped me to see that
the notion of several views of shared data was a potential clarification of the problem, and we collaborated
on a semi-formal treatment of the FIFO IWSQ algorithm (Bornat and Dodds, 2012).

Now I realise that the semi-formal treatment, which reasons about inter-procedural effects in a handwavy
fashion, can be further formalised. The first step is to describe a semantics. In (Sarkar et al., 2011) there
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void put(Task tv) {
Order write in 3 before write in 4

1: ( t ,g) := Ac;
2: if ( t = sz) {expand(); goto 1;}
3: Ta[t ] := tv ;
4: Ac := ( t+1,g+1);
}

TaskInfo take() {
1: ( t ,g) := Ac;
2: if ( t=0) return EMPTY;
3: tv := Ta[t -1];
4: Ac := ( t -1,g);
5: return tv ;
}

TaskInfo steal () {
Order read in 1 before read in 3
Order read in 4 before CAS in 5

1: ( t ,g) := Ac;
2: if ( t=0) return EMPTY;
3: a := Ta;
4: tv := a[ t -1];
5: if !CAS(Ac,(t,g),( t -1,g)) goto 1;
6: return tv ;
}

void expand() {
Order writes in 2 before write in 3
Order write in 3 before write in put:4

1: a := new Tasks[2∗sz];
2: for i = 0:sz-1, a[ i ] := Ta[ i ];
3: Ta := a;
4: sz := 2∗sz;
}

Figure 1: LIFO IWSQ (from (Michael et al., 2009) with shortened names and lower case for local variables)
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Figure 2: Three views of shared data
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is no memory: reads are associated with the write which produced the value they read. There is a global
coherence order of committed writes to each individual location, and threads must read in coherence order:
not all from the same position, but two reads in a single thread can’t read in the reverse of coherence order.
It’s possible to say what a view of shared data is: it’s a set of positions on the coherence orders of the
locations that a thread is interested in. In figure 2 there are three views of the shared variables x, y and z.
View 1 (dotted) sees an earlier view of x than view 2 (solid line), but later views of y and z. View 3 (dashed)
is later than view 2 at every variable. Assertions on the arcs of a dependency graph are about the executing
thread’s view of shared data, which may be changed by the thread’s own assignment to a shared location –
necessarily later than any write in the coherence order until it becomes committed – or by writes later than
those in its view being propagated to it, moving its view of a location to a later view. An assertion about
shared data made on an arc of a dependency graph is stable only if it is true in the thread’s view and in every
possible move to a later view it remains true.

As usual instantaneous assertions must be relaxed to take account of interference, which is now just a move
to a later point in the coherence order, converting them into stable assertions, and as usual we describe
interference by giving the context in which a single-word write – an action – by another thread can take
place. But now there is an issue, because writes happen in stages rather than instantaneously and those
stages happen at different times in different threads. We need, therefore, to describe the context in which
a write is received in order to describe its effect. To do that we need universal stable assertions, of which
invariants are just an example. Then just as in a conventional memory treatment we can assume the stability
of invariants when calculating the effect of interference on a thread but must ensure that its actions preserve
that stability, so we can use the constraints on other threads’ actions, expressed as a shared-data context, and
we must ensure that each issued action is received in a suitable context.

It all sounds a bit difficult, and for certain there is no free lunch. Universal stability is a product of constraints
on interference, expressed as global invariants and contexts on actions. We can see that cumulative barriers
– sync and lwsync – cause a pause until other threads have seen at least the writes received by the barring
thread – i.e. moved to a view which is not earlier than the barring thread at any point – so that a locally-stable
assertion asserted before a cumulative barrier becomes a universal stable assertion after it. The way that this
interacts with the dependency graph needs careful treatment: sync provides the universal stable assertion to
reads and writes which follow it, but lwsync provides it only to writes (reads see the locally-stable version).
Given a universally stable assertion as precondition for a write to shared data we can prove that the write
will be received by any other thread in a view which satisfies that assertion.

The last claim requires some qualification: we can be sure that a write will be well-received provided that
the universally stable assertion which is its precondition persists until the write is committed and propagated
to the receiving thread. That means that the precondition must be invariant at least until the next cumula-
tive barrier in the writing thread, because that is the latest point at which the write can be committed and
propagated. As we said, no free lunch: stability and persistence are harsh requirements.

So there’s a new modality (?) U(P ) which asserts that every thread sees shared stable P (as usual with
concurrent proofs, would see P if it could take a snapshot of the data available to it). Universal assertions
are created from stable assertions by sync / lwsync, and can appear in pre and postconditions. They are mostly
useful to provide pre-conditions for actions (i.e. global writes).

The next problem is the interaction between CAS and sync/lwsync. Concurrent algorithms use sync/lwsync
to ensure that their writes have a universal effect before they proceed, and they use CAS to ensure that
there haven’t been any relevant universal effects before they make a change. CAS on Power has a peculiar
property: it ensures that it reads from the last write in the coherence order and puts a new write as the next
(and new last) element in the coherence order. So a location which is only accessed by CAS must have a
coherence order in which every step is a CAS-step. A location which receives conventional as well as CAS
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writes must have a coherence order which consists of conventional writes separated by CAS-chains starting
at those writes. sync/lwsync barriers can be used to force a thread’s writes into the coherence order and if, as
in IWSQ algorithms, other threads can only CAS, we can say quite a lot about the CAS-chains they are then
forced to construct.

So there’s a new operator C(location) which refers to the value at the end of the coherence order for
location . CAS alters it, and universal stability allows us to say things about it. In particular it allows me to
justify a condition lwsync barrier in put() , which I desperately wanted to do.

2 Invariants and actions

There’s an auxiliary task sequence Ts indexed 0..G−1. I can’t see any way to say which bits of it are in the
array more than to say that the tasks a thread can see don’t include those not yet added to Ts . I don’t want
to get into propagation effects with sz , so I made it a local variable, but there’s an auxiliary Sz which tracks
it so the main invariant (1) can describe the (apparently unused) part of the array that doesn’t contain visible
queue elements. (2) says that Ac1, the index value, is never negative and never above Sz ; (3) that Ac2, the
anti-ABA task-write count, only increases; (4) says that Sz increases.

U
(
∃T,G

(
Ac = (T,G) ∧~T−1

i=0

(
∃j(0 ≤ j < G ∧ Ta + i 7→ Tsj)

)
?~Sz−1

k=T (Ta + k 7→ _)
))

(1)

U
(
∀T
(
Ac = (T, _)⇒ 0 ≤ T < Sz

))
(2)

U
(
∀G
(
Ac = (_, G)⇒ �∀G′

(
Ac = (_, G′)⇒ G ≤ G′

)))
(3)

U
(
∀S
(
Sz = S ⇒ �∀S′

(
Sz = S′ ⇒ S ≤ S′

)))
(4)

(5) is local to the owner.

sz = Sz (5)

Any thread can reduce Ac1, but thieves do it with a CAS in (6) and the owner does it more slowly in (7). The
owner’s action can increase T when a take() overlaps with two or more steal ()s, and then we must be sure
that thieves could access the exposed elements ever since they were last visibly part of the queue.

T > 0 : C(Ac) = (T,G) C(Ac) = (T − 1, G) (6)0 ≤ k < T ∧

∃Vs
(
~T−1

i=0

(
U
(
Ta + i 7→ Vs i S
Ac = (T − 1, G)

))) : Ac = (T − k,G) Ac = (T − 1, G) (7)

To write into the array the owner must know that every thief agrees that the destination element is not part
of the queue. To alter the index it must know that thieves have received the new queue value (and, if it
increases by more than one, that any queue values it skips over have remained unchanged since they were
last part of the queue):

sz = S ∧ C(Ac)1 ≤ i < S : Ta + i 7→ V  Ta + i 7→ V ′ (8)
0 ≤ k ≤ T ∧ C(Ac)1 ≤ T ∧

U
(
Ta + T 7→ V

)
?

∃Vs
(
~T−1

i=0

(
U
(
Ta + i 7→ Vs i S

Ac = (T,G)

)))
 :

Ac = (T − k,G) ∧
Ts = TS

 
Ac = (T + 1, G+ 1) ∧
Ts = TS .V

(9)
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TaskInfo steal () {
1: <(t ,g) := Ac>;
2a: if t=0 then
2b: return EMPTY;
3: <a := Ta>;
4a: ae := a+t-1;
4b: <tv := [ae]>;
5a: <b := CAS(Ac,(t,g),( t -1,g)>);
5b: if ¬b then
5c: goto 1;
6: return tv ;
}

Figure 3: LIFO steal() with single-memory-access instructions

To switch arrays it must be the case that the new array is seen with the same queue values as the old.

Ac = (T, _) ∧ U
(
~T−1

i=0

(
∃V
(
A+ i 7→ V ? A′ + i 7→ V

)))
: Ta = A Ta = A′ (10)

Privately to the owner, to alter sz it must be the case that allocation of the new array elements has been seen
by thieves (properly this isn’t an action, but I put it here to jog my memory).

U
(
~2×S−1

j=S

(
Ta + j 7→ _

))
: sz = Sz = S  sz = Sz = 2× S (11)

3 Coherence orders

The array pointer Ta and the elements of the array it points to are all written only by the owner. It is
clear that each of these locations has a linear coherence order consisting of the owner’s writes in order, and
therefore unproblematic to claim that lwsync in the owner converts an assertion about the value of any of
these locations in the owner’s view into a universally stable assertion.

The anchor Ac is written by the owner and CASed by thieves who reduce its first projection (T in (T,G)) by
one. Since there is a single linear coherence order for Ac, we can be sure that it is a sequence of segments
each consisting of a mini-sequence of the owner’s writes followed by a chain of T -descending CAS writes
from the last of that mini-sequence. It is then unproblematic to claim that lwsync in the owner inserts any
uncommitted writes at the end of the coherence order and thieves must CAS, if they can, from the last
of those writes. If there are no uncommitted writes then the coherence order is unchanged, but the same
property applies: it ends with a (possibly empty) CAS chain starting from the last of the owner’s writes.

4 LIFO steal()

Figure 3 shows steal () and figure 4 its implied dependencies. From experience I guess that we shall need

• an r/r barrier between lines 1 and 3, so that we read from a stack which might contain an item ad-
dressed by t;

• an r/w barrier between lines 4b and 5a, so that we read [ae] in the interval between line 1 and line 5a,
before the check that Ac=(t,g).
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1: <(t,g) := Ac> 3: <a := Ta>

2a: if t=0 (then) (else)

2b: return EMPTY

4b: <tv := [a+t-1]>

5a: <b := CAS(Ac,(t,g),(t-1,g)

5b: if ¬b (then) (else)

5c: goto 1 6: return tv

4a: ae := a+t-1

d d

d

d

cpo

d

po po
d

d

Figure 4: Dependencies in LIFO steal()

TaskInfo steal () {
1: <(t ,g) := Ac>;
2a: if t=0 then
2b: return EMPTY;
2c: -- line 1 / any rw barrier ( line 2a+isync) --
3: <a := Ta>;
4a: ae := a+t-1;
4b: <tv := [ae]>;
4c: -- line 4b / any rw barrier ( ctrl +isync) --
5a: <b := CAS(Ac,(t,g),( t -1,g)>);
5b: if ¬b then
5c: goto 1;
6: return tv ;
}

Figure 5: LIFO steal() with barriers
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∃T,G, J
(
Ac = (T,G) ∧ (T > 0⇒ Ta + T − 1 7→ TsJ)

)
<(t,g) := Ac>

∃T,G, J

t = T ∧ g = G ∧ Ac = (T,G) ∧ (T > 0⇒ Ta + T − 1 7→ TsJ)

⇒ (stability)

t = T ∧ g = G ∧ ∃V
(
T > 0⇒ (Ta + T − 1 7→ V ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ)))

)
if t=0

(then)
emp

(else)

t = T ∧ g = G ∧ ∃V
(
Ta + T − 1 7→ V ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ))

)
return EMPTY isync

<a := Ta>

∃A

t = T ∧ g = G ∧ a = A ∧ ∃V
(
Ta = A ∧A+ T − 1 7→ V ∧

(C(Ac) = (T,G)⇒ �∼(V = TsJ))

)
⇒ (stability)

t = T ∧ g = G ∧ a = A ∧ ∃V
(
A+ T − 1 7→ V ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ))

)
ae:=a+t-1

t = T ∧ g = G ∧ ae = A+ T − 1 ∧ ∃V
(
A+ T − 1 ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ)) 7→ V

)
<tv := [ae]>

∃V

t = T ∧ g = G ∧ tv = V ∧ A+ T − 1 7→ V ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ))

⇒ (stability)
t = T ∧ g = G ∧ tv = V ∧ A+ T − 1 7→ _ ∧ (C(Ac) = (T,G)⇒ �∼(V = TsJ))

ctrl+isync

<b := CAS(Ac,(t,g),(t-1,g)>)

(b⇒ tv = TsJ) ∧ A+ T − 1 7→ _

if !b

(then)

A+ T − 1 7→ _
(else)
tv = TsJ

goto 1 return tv

Figure 6: Formal proof of LIFO steal()
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void put(Task tv) {
1: <(t ,g) := Ac>;
2a: if t=sz {
2b: expand();
2c: goto 1

};
3a: <ta := Ta>;
3b: <[ta+t ] := tv>;
4: <Ac := ( t+1,g+1)>;
5: return
}

Figure 7: LIFO put() with single-memory-access instructions

1: <(t,g) := Ac>2a: <s := Sz>

2b: if t=s (then) (else)

2b: expand()

2c: goto 1

3a: <ta := Ta>

3b: <[ta+t] := tv>

4: <Ac := (t+1,g+1)>

5: return

ddd d

popo

cc

po

d

Figure 8: TIoSE dependencies in LIFO put()

We don’t seem to need anything else. Barriered code in figure 5, ribbon proof in figure 6. I don’t like the
game I’ve played with ∃ and �∼1, but the implication from C(Ac) is valid: it holds instantaneously after
<(t ,g) := Ac> and then it’s stable because the owner only writes at a index higher than C(Ac)1 in (8) and
then is committed to (9) as its next action affecting Ac; so subsequent interference can only be via (6). But
it’s clunky: I hope to discover an invariant which makes it obvious.

5 LIFO put()

Figure 7 shows put() with single-memory-access instructions and figure 8 the implied dependencies. Before
the write on line 3b we need to know that

C(Ac)1 ≤ t (12)

– i.e. we are not writing where any thief will productively think there is a queue element. That needs at
least an lwsync somewhere before line 3b to provide universality. We obviously need another lwsync between
lines 3b and 4 (message passing idiom: make the actions (8) and (9) happen in order). The first lwsync is
only necessary when there has been a take() since the previous put() . To make this work logically, I’ve made
put() and take() use a local variable ws (for ‘writesafe’) and have as pre and postcondition

ws ⇒ C(Ac)1 ≤ Ac1 (13)

1 ‘Always since start’: has held since the procedure began executing. Ok, ok.
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void put(Task tv) {
1: <(t ,g) := Ac>;
2a: if t=sz {
2b: expand();
2c: goto 1

};
3a: <ta := Ta>;
3b: if ¬ws then
3c: -- rw/w barrier (lwsync) --;
3d: <[ta+t ] := tv>;
4a: -- rw/w barrier (lwsync) --
4b: ws := true;
4c: <Ac := ( t+1,g+1)>;
5: return
}

Figure 9: LIFO put() with barriers

(i.e. an intra-procedural invariant). Code in figure 9, proof in figure 10. Note that lwsync, together with
the fact that the only interference is (6) from thieves, turns stable Ac1 ≤ T into U(C(Ac)1 ≤ Ac1 ≤ T ).
Useful, that: I shall use it in expand().

6 LIFO expand()

Code in figure 11, in which the for loop and the copying assignment have been unpicked to a low-level
single-memory-access instruction program and the necessary barrier is included – an lwsync before line 3, so
that all the assignments of line 1b and lines 2f-2h have been universalised before the new array is publicised.
I’ve also assigned ws := true after the barrier. Proof in figure 12: I haven’t been too fussy about following the
dependency structure of lines 1a to 2j, because it all executes without interference and under TIoSE (The
Illusion of Sequential Execution). so that it arrives at the lwsync with a stable local view of the new array.
Note the precondition ∃T (Ac1 ≤ T ), which is stable because interference is only from (6). Note that the
assignment to Ta performs the action of moving the new array from local to global space (a standard RGSep
trick), and causes an obvious space leak.2 Note how the assignment to ws avoids an lwsync in the enclosing
put() .

7 LIFO take()

Michael et al. say no barriers in take, which seems fair. Single-memory-access code in figure 13, which
also includes an assignment ws := false after Ac := ( t -1,g), which may falsify (13). Ribbon proof in figure
14. There’s a strangeness in the proof: tv :=[ae] reads from the task array, but would generate an exception
if t = 0 – i.e. it’s an instruction which can have an effect, so you might think it should respect the control
dependency from the ‘else’ side of t !=0. But when t 6= 0 the read doesn’t have an effect, so the control
dependency doesn’t matter. I’ve chosen to show this by making the postcondition of tv :=[ae] conditional, to
show that in TIoSE it can safely be speculated.

2 The space leak is not very costly: the new array takes one more cell than the leaked space taken up by all its predecessors.
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∃S,A, V

sz = S ∧ tv = V ∧ ∃T ≥ 0, G ≥ 0
(
Ac = (T,G) ∧ U

(
Ta = A ∧ (T < S ⇒ A+ T 7→ _)

))
⇒ (loop invariant – see expand())

sz = S ∧ tv = V ∧ ∃T ≥ 0, G ≥ 0
(
Ac = (T,G) ∧ Ta = A ∧ U(T < S ⇒ A+ T 7→ _)

)

w
s
⇒W
s
⇒

C
(A

c
)
1
≤

A
c
1

<(t,g):=Ac> <ta:=Ta>

∃T ≥ 0, G ≥ 0 ta
=

A
∧

T
a
=

A

sz = S ∧ tv = V ∧ t = T ∧ g = G ∧ Ac = (T,G) ∧ U(T < S ⇒ A+ T 7→ _)
⇒ (stability)

sz = S ∧ tv = V ∧ t = T ∧ g = G ∧ Ac1 ≤ T ∧Ac2 = G ∧ U(T < S ⇒ A+ T 7→ _)

if t=sz

(then)
emp

(else)
sz = S ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧

Ac1 ≤ T ∧Ac2 = G ∧ U(A+ T 7→ _)expand()

goto 1

if ws

(then)
sz = S ∧ ta = A ∧ tv = V ∧
t = T ∧ g = G ∧ T < S ∧

C(Ac)1 ≤ Ac1 ≤ T ∧Ac2 = G ∧
U(A+ T 7→ _)

(else)
sz = S ∧ ta = A ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧

Ac1 ≤ T ∧Ac2 = G ∧ Ta = A ∧ U(A+ T 7→ _)

lwsync

sz = S ∧ ta = A ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧
C(Ac)1 ≤ Ac1 ≤ T ∧Ac2 = G ∧ U(Ta = A ∧A+ T ) 7→ _

sz = S ∧ ta = A ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧ Ta = A ∧ C(Ac)1 ≤ Ac1 ≤ T ∧Ac2 = G ∧ U(A+ T 7→ _)

[ta+t]:=tv ws:=true

sz = S ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧ Ta = A ∧Ac2 = G ∧A+ T 7→ V

w
s
∧

C
(A

c
)
1
≤

A
c
1
≤

T

lwsync

sz = S ∧ tv = V ∧ t = T ∧ g = G ∧ T < S ∧ U Ac2 = G ∧ Ta = A ∧A+ T 7→ V

<Ac := (t+1,g+1)>

tv = V ∧ Ac = (T + 1, G+ 1) ∧ U(Ta = A ∧A+ T 7→ V )

⇒ (stability)
tv = V ∧ Ac1 ≤ T + 1 ∧Ac2 = G+ 1 ∧ U(Ta = A ∧A+ T 7→ V )

ws ∧ C(Ac)1 ≤ Ac1

return

Figure 10: Formal proof of LIFO put()
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void expand() {
1: a := new Tasks[2∗sz];
2a: i := 0;
2b: <ta := Ta>;
2c: if i=sz then // for i : 0 .. sz-1 do
2d: goto 3a;
2e: ae := ta+i ;
2f : tv := [ae]; // tv := Ta[ i ]
2g: ae := a+i;
2h: [ae] := tv ; // a[ i ] := tv
2i : i := i+1;
2j : goto 2c; // od
3a: -- rw/w barrier (lwsync) --
3b: ws := true;
3c: <Ta := a>;
4: sz := 2∗sz;
}

Figure 11: LIFO expand() with single-access memory instructions and barrier

8 Persistence

The assignment [ta + t] := tv in put() is immediately followed by a barrier. Its precondition is therefore
persistent until the write is committed.

To make the assignment <Ac:=(t+1,g+1) at the end of put() with t = T , we need three conditions to persist.

• C(Ac)1 ≤ T : persists until the assignment is committed.

• U(Ta + T 7→ V ): persists until possibly overwritten by [ ta+t ]:= tv in the next put() . If the assignment
remains uncommitted at that point then either (a) there has been no other write to Ac in the owner and
[Ta + T ] will not be overwritten or (b) there has been an intervening write to Ac by an intervening
take() and the potential overwrite will be preceded by an lwsync.

• fixed values for [Ta + i]T−1i=0 since the last time Ac1 = T : same argument as above – if they were
fixed before the assignment (not yet shown in my proof, but watch this space) then they are fixed
afterwards.

To make <Ta:=a> at the end of expand() we need fixed universal values of [Ta+ i]Ac1−1i=0 . We begin with fixed
universal values for [Ta + i]Sz−1i=0 and then overwrite only [Ta + T ] in a context where U(Ac1 ≤ T ). We
have persistence.

To make <Ac:=(t-1,g) with t = T ∧ Ta = A at the end of take() we need fixed values for [A + i]T−1i=0 until
the next barrier. Because of the assignment ws := false there will be a barrier either after the initialisation
in expand(), which does not touch the array pointed to by A, or before the assignment to [A+ _] in put() . We
have persistence.

I’d love to make treatment of persistence more formal. Intraprocedural invariants might do it.

9 Coda

Wow! Didn’t think I could do all that.
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∃T,TA, S,TVs

sz = S ∧ U Ta = TA ∧~S−1
l=0 (Ta + l 7→ TVs l) Ac1 ≤ T

a := new Tasks[2*sz]

∃A

sz = S ∧ a = A ∧~2×S−1
k=0 (A+ k 7→ _) ? U Ta = TA ∧~S−1

l=0 (TA+ l 7→ TVs l)

a
=

A
∧
U

T
a
=

T
A

sz = S ∧~2×S−1
k=0 (A+ k 7→ _) ? U ~S−1

l=0 (TA+ l 7→ TVs l)

i := 0; <ta := Ta>

sz = S ∧~i−1
j=0(A+ j 7→ TVsj) ?~

2×S−1
k=l (A+ k 7→ _) ? U ~S−1

l=0 (TA+ l 7→ TVs l)

2c: if i=sz then goto 3a

(then) sz
=

S
∧
~

S
−
1

j=
0
(A

+
j
7→

T
V
s
j )

?

~
2×

S
−
1

k
=
S

(A
+
k
7→

_
)
?

U
~

S
−
1

l=
0
(T

A
+
l7→

T
V
s
l )

(else)
sz = S ∧ i < S ∧~i−1

j=0(A+ j 7→ TVsj) ?~
2×S−1
k=l (A+ k 7→ _) ?

U ~S−1
l=0 (TA+ l 7→ TVs l)

ae := ta+i; tv := [ae]; ae := a+i; [ae] := tv

sz = S ∧ i < S ∧~l
j=0(A+ j 7→ TVsj) ?~

2×S−1
k=i+1 (A+ k 7→ _) ?

U ~S−1
l=0 (TA+ l 7→ TVs l)

i := i+1

sz = S ∧ i < S ∧~i−1
j=0(A+ j 7→ TVsj) ?~

2×S−1
k=l (A+ k 7→ _) ?

U ~S−1
l=0 (TA+ l 7→ TVs l)

goto 2c

a = A ∧ sz = S ∧~S−1
j=0 (A+ j 7→ TVsj) ?~

2×S−1
k=S (A+ k 7→ _) ?

U Ta = TA ∧~S−1
l=0 (TA+ l 7→ TVs l)

lwsync

a = A ∧ sz = S ∧ U ~S−1
j=0 (A+ j 7→ TVsj) ?~

2×S−1
k=S (A+ k 7→ _) ∧

Ta = TA ∧~S−1
l=0 (TA+ l 7→ TVs l)

C(Ac)1 ≤ Ac1

sz:=2*sz <Ta:=a> ws:=true

sz = 2× S
Ta = A ∧ U

(
~S−1

j=0 (A+ j 7→ TVsj) ?~
2×S−1
k=S (A+ k 7→ _)

) ws ∧
C(Ac)1 ≤ Ac1

return

Figure 12: Formal proof of LIFO expand()
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TaskInfo take() {
1: <(t ,g) := Ac>;
2a: if t=0 then
2b: return EMPTY;
3a: <ta := Ta>;
3b: ae := ta+t-1;
3c: tv := [ae];
4a: <Ac := ( t -1,g)>;
4b: ws := false ;
5: return tv ;
}

Figure 13: LIFO take() with single-memory-access instructions – no barriers needed

∃T,G,TA, J
(
Ac = (T,G) ∧ U(Ta = TA ∧ TA 7→ TVs)

)
ws ⇒
C(Ac)1 ≤ Ac1

<(t,g) := Ac> ta:=A

∃T,G,TA,Ws

t = T ∧ g = G ∧ ws = Ws ∧ Ac = (T,G) ∧ (Ws ⇒ C(Ac)1 ≤ T )

⇒ (stability)
t = T ∧ g = G ∧ ws = Ws ∧ Ac1 ≤ T ∧Ac2 = G ∧ (Ws ⇒ C(Ac)1 ≤ T )

ta = TA ∧ U(Ta = TA ∧ TA 7→ TVs)

t = T t = T ∧ g = G ∧ ws = Ws ∧
Ac1 ≤ T ∧Ac2 = G ∧ (Ws ⇒ C(Ac)1 ≤ T )

if t=0

ae := ta+t-1(then) (else)
T > 0 t = T ∧ g = G ∧ ws = Ws ∧ ae = TA+ T − 1 ∧

Ac1 ≤ T ∧Ac2 = G ∧ (Ws ⇒ C(Ac)1 ≤ T ) ∧ U(Ta = TA ∧ TA 7→ TVs)
return EMPTY

tv:=[ae](
T > 0 ∧ t = T ∧ g = G ∧ ws = Ws ∧ tv = TVsTA+T−1 ∧

Ac1 ≤ T ∧Ac2 = G ∧ (Ws ⇒ C(Ac)1 ≤ T ) ∧ U(Ta = TA ∧ TA 7→ TVs)

)
∨

(T = 0 ∧ DIVERGE)

<Ac := (t-1,g)>

t = T ∧ g = G ∧ tv = TVsTA+T−1 ∧
Ac1 = T − 1 ∧Ac2 = G ∧ (Ws ⇒ C(Ac)1 ≤ T ) ∧ U(Ta = TA ∧ TA 7→ TVs)

⇒ (stability)
t = T ∧ g = G ∧ tv = TVsTA+T−1 ∧

Ac1 = T − 1 ∧Ac2 = G ∧ (false⇒ C(Ac)1 ≤ Ac1) ∧ U(Ta = TA ∧ TA 7→ TVs)

ws:=false

ws ⇒
C(Ac)1 ≤ Ac1

return tv

Figure 14: Formal proof of LIFO take()
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