
A rational reconstruction of Harris’s algorithm in RGSep

(work in progress)

Richard Bornat
School of Engineering and Information Sciences, Middlesex University, UK

October 20, 2008

Abstract

Harris’s algorithm so it doesn’t look like magic.

1 Introduction (not yet ready for publication)

Refinement (?) is a process of taking an abstract but obviously adequate version of an
algorithm and perturbing it, preserving its adequacy, towards a more implementable or
more efficient version. The aim is to reduce abstraction, non-determinism and atomicity.
‘Logical’ refinement, in which the starting point includes a specification of the properties
of a solution which is satisfied by the first and each of the refined versions, is frequently
contrasted with ‘ad-hoc’ programming by invention. Refinement produces programs which
are ‘correct by construction’; invention produces programs which must be verified, often
with great difficulty.
This claim doesn’t quite ring true. For many programmers (including me) the abstract
descriptions and specifications with which logical refinement starts are miracles of invention
quite beyond our reach. We may not program ‘logically’ in that sense, but we are not
irrational. It seems to me that our process is more dialectical than logical, embracing
contradictions exposed by our early attempts and incorporating them creatively so as to
advance towards a solution. In this our activity has echoes of the developments described
by Lakatos (1976), though it would be too much to claim that we follow such an elegant
path.
Dijkstra (1965) defined the first classic concurrency problem, that of two processes/threads
communicating through a single shared ‘buffer’ variable, one writing, the other reading.
The difficulty was and is that writing and reading aren’t instantaneous operations, and if
their executions overlap in time, the reader may extract a value from the buffer which is
made up of parts of two or more successively-written values. The solution that Dijkstra
put forward, synchronisation via semaphore instructions to ensure turn-taking, is nowadays
challenged by so-called non-blocking algorithms in which the processes do not synchronise
but somehow manage to avoid overlapping reads and writes.
In (Bornat and Amjad, 2008b) there is a development by logical refinement of a version of
Simpson’s four-slot non-blocking buffer algorithm (Simpson, 1990) by refinement, a non-
blocking wait-free (?) asynchronous buffer which doesn’t use any synchronisation mecha-
nism – no semaphores, no locks, no CAS instructions or the like. In (Bornat and Amjad,
2008a) there is a verification, not by refinement, of Harris’s three-slot buffer algorithm (Har-
ris, 2004), which is also wait-free and asynchronous. So far as I am aware, Harris’s algorithm

1

local b = null inâ
. . .
write(w) =̂ 〈b := w〉

. . .
read() =̂ local y in

〈y := b〉;
return y

ni

ì
Figure 1: A simple buffer, with angle-bracketed atomic buffer accesses

has had no other formal treatment. I cannot see how to develop that algorithm by refine-
ment. I present here a rational dialectical development.

2 The atomic single-slot algorithm

Following (Bornat and Amjad, 2008b), I begin with the idealised buffer algorithm in figure 1:
two processes in parallel, one with a write procedure, the other with a read, sharing a single
buffer variable b. The angle-bracketed buffer accesses execute atomically – instantaneously
in principle, but for instructions whose execution takes time, interleaving of execution will
suffice. In this algorithm writer and reader act independently: the writer may overwrite a
value which the reader hasn’t read and/or the reader may read the same value more than
once. This kind of buffer can be used to connect a simple data measuring device like a
thermometer to a data collector: the collector wants to know what the current temperature
is, and doesn’t mind inspecting the same reading more than once; if the temperature is
changing rapidly then the collector may miss some values. If we can find a straightforward
way to avoid the necessity for atomicity then such a connection can be very useful indeed.
Again following (Bornat and Amjad, 2008b) my treatment uses RGSep (Vafeiadis, 2007;
Vafeiadis and Parkinson, 2007). Assertions are a separated conjunction of an assertion
about local state and a (boxed) assertion about shared memory. The mechanism depends
on making assertions which are stable (invariant) under the actions of other threads: local
assertions describe local memory and are inaccessible to those other threads; shared-memory
assertions must in principle be stable no matter what the environment (those other threads)
might do. We list the actions of each thread – the instantaneous changes it can make to
shared memory by its atomic operations – in order to assess stability. As in the original
rely-guarantee formalism of ?, on which RGSep is partly based, there is a set R of actions
which the environment may at any instant undertake, and we may rely on the fact that
it will never do anything outside R, and a set G of actions which the current thread can
undertake, and we guarantee that we will never do anything to the shared memory which
isn’t in G.
The RGSep mechanism relies on a special treatment of atomic and non-atomic commands.
An atomic command may access and modify shared memory, and its instantaneous effect
must be summarised in some subset of G: since it can’t be interrupted or interfered with
we can consider all of the memory, both local and shared, described in its pre-condition
and affect any of the memory in its postcondition. For clarity in what follows I consider
the instantaneous effect of a single atomic command without necessarily writing stable pre
and post-conditions. But in a sequence of atomic commands this won’t do: intermediate
assertions must be stable under the effect of actions from the rely set R, because the
environment can intervene between the separate commands. This is so-called mid stability,
and it’s one choice among several, which I’ve taken just for the sake of clarity. I have
otherwise treated atomic commands relatively informally: the arguments below can be

2

formalised, but I’m concerned first with clarity of presentation.
Non-atomic commands for the most part don’t affect shared memory, and we can use normal
Hoare logic on the local parts of their pre- and post-conditions. When they do affect shared
memory, as in the final version of the developed algorithm below, we have to use special
rules to deal with them.
When the writer’s atomic buffer access from figure 1 is augmented with an update to an
auxiliary variable ws which records the sequence written, the command〈b := w; ws := ws.w〉
has the effect ¶

w = W ? b = B ∧ ws = WS
©µ

{w = W ∧ b = B ∧ ws = WS}
b := w
{w = W ∧ b = W ∧ ws = WS}
ws := ws.w
{w = W ∧ b = W ∧ ws = WS .w}

ø
¶
w = W ? b = W ∧ ws = WS .W

© (1)

(note that in calculating the effect we first combine local and shared assertions and separate
them afterwards) which produces the action

b = B ∧ ws = WS b = B′ ∧ ws = WS .B′ (2)

When the reader’s buffer access is similarly augmented to become 〈y := b; rs := rs.y〉 the
action is

b = B ∧ rs = RS b = B ∧ rs = RS .B (3)

An invariant chosen to show the relationship between ws and rs is then

brsc 4 ws ∧ wsΩ = b (4)

– rs ‘destuttered’ (with repetitions removed) is a subsequence of ws, and the value in the
buffer b is the last element of ws. This is invariant under (2) (adding the value in b to ws
maintains wsΩ = b and doesn’t change brsc 4 ws), and it’s invariant under (3) (adding the
last element of ws to rs may cause stuttering, but otherwise maintains brsc 4 ws).
Because the actions which manipulate shared memory are all atomic it’s clear that we have
what Simpson calls ‘coherence’ (the reader always gets a complete value from the buffer,
never a value which is a composite of parts of more than one written value). It’s clear
also from (3) and (4) that we have what Simpson calls ‘freshness’: the value added to rs is
always the last element written up to that instant.

3 An attempted refinement to two slots

In (Bornat and Amjad, 2008b) one possible refinement of figure 1 is figure 2. Buffer variable
b is refined by the two-slot buffer array c[2] and the variable l; the C notation !l is used,
for conciseness, rather than 1 − l, to invert the value in the single-bit variable l so as to
alternate writing between the two slots of c. The writer acts so that the latest value written
is always in c[l] and the reader reads from c[l]. With augmentation the writer’s action is

l = L ∧ ws = WS ? c[!L] = B l = !L ∧ ws = WS .B′ ? c[!L] = B′ (5)

3

local c[2] = (null , null), l = 0 in

. . .
write(w) =
〈l := !l; c[l] := w〉

. . .
read() =

local y in
〈y := c[l]〉;
return y

ni

Figure 2: Data refinement to two slots

local c[2] = (null , null), l = 0 in

. . .
write(w) =

local wt in
〈〈wt := !l〉〉;
〈c[wt] := w〉;
〈〈l := wt〉〉

ni

. . .
read() =

local y, rt in
〈〈rt := l〉〉; 〈y := c[rt]〉;
return y

ni

Figure 3: Two-slot algorithm after attempted atomicity refinement

and the reader’s is

l = L ∧ rs = RS ? c[L] = B l = L ∧ rs = RS .B ? c[L] = B (6)

each of which preserves the refined invariant

brsc 4 ws ∧ wsΩ = c[l] (7)

The algorithm of figure 2 still depends on atomicity, so it might seem that little has been
gained in moving from one buffer slot to two. The desired gain is that the two processes
can operate in different slots. If initially l = L then the writer changes c[!L] and the reader
reads from c[L].
The next step is to attempt an atomicity refinement, to give figure 3. The writer changes l
atomically after it has written to c[!l], in order not to disturb the invariant (7); the reader
first takes a snapshot of the value of l and then uses it to access the buffer. Accesses to
the shared single-bit index variable l are performed in double-angle-bracketed instructions
which are ‘naturally atomic’ because each makes a single read or write access to l which we
can expect would automatically be serialised by a computer store.1 That means that we
don’t need any special hardware to make 〈〈wt := !l〉〉 and 〈〈l := wt〉〉 interleave with 〈〈rt := l〉〉.
For the time being we still have to rely on atomicity to interleave the presumably much
larger accesses to the slots of c: as shown in figure 4, both processes can attempt to access
the same slot at the same time.
Such ‘collisions’ are a problem, but they aren’t the worst of this algorithm’s difficulties. The
major problem is that the invariant (7) isn’t preserved. The reader can read out-of-sequence
as illustrated in figure 5, seeing W ′ and then W , even though the writer writes W and then
W ′. So in figure 3 we no longer have brsc 4 ws.

1 This isn’t an unusual requirement: all non-blocking algorithms, so far as I am aware, depend upon a
similar property, often for ‘word-sized’ values of 16, 32 or 64 bits. I have adhered in this discussion to
Simpson’s ascetic restriction only to depend on single-bit atomicity.

4

l = L
〈〈wt := !l〉〉
{wt = !L}
〈c[wt] := w〉

〈rt := l〉
{rt = L}

〈〈l := wt〉〉
l = !L

. . .
〈〈wt := !l〉〉
{wt = L}

〈c[wt] := w〉 〈y := c[rt]〉

Figure 4: Collisions in refined two-slot algorithm

write(W)
{

l = L ? c[L] = ? c[!L] =
}

read()
〈〈wt := !l〉〉 〈〈rt := l〉〉
{wt = !L} {rt = L}
〈c[wt] := w〉

{
l = L ? c[L] = ? c[!L] = W

}
〈〈l := wt〉〉

{
l = !L ? c[L] = ? c[!L] = W

}
...

write(W ′)
〈〈wt := !l〉〉
{wt = L}

〈c[wt] := w〉
{

l = !L ? c[L] = W ′ ? c[!L] = W
}
〈y := c[rt]〉
{y = W ′}
...

read()
〈〈rt := l〉〉
{rt = !L}
〈y := c[rt]〉
{y = W}

Figure 5: Reader sees values out of sequence

5

4 Identifying the problem

It’s worth analysing the problem that has been exposed in figure 5. To do so we need to
look precisely at the actions of either side. The augmented writer has the effect{

w = W ? l = L ∧ ws = WS ? c[!L] = B
}

〈〈wt := !l〉〉{
w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = B

}
〈c[wt] := w〉{

w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = W
}

〈〈l := wt ; ws := ws.w〉〉{
w = W ∧ wt = !L ? l = !L ∧ ws = WS .W ? c[!L] = W

}
(8)

(all of the shared assertions are stable under the reader’s actions, because the reader never
alters l or ws or c or the slots of c). The first command doesn’t affect shared memory, so
has the identity action; the other two generate the actions

l = L ? c[!L] = B l = L ? c[!L] = B′ (9)
l = L ∧ ws = WS ? c[!L] = B l = !L ∧ ws = WS .B ? c[!L] = B (10)

Action (9) has no effect on the invariant (7); action (10), by altering l and modifying ws
accordingly, preserves the invariant. That half of the atomicity refinement has had the
desired effect.
The modified reader has the effect{

l = L ∧ rs = RS ? c[L] = B
}

〈〈rt := l〉〉;{
rt = L ? l = L ∧ rs = RS ? c[L] = B

}
⇒ (stability){

rt = L ? ∃L′, B′(l = L′ ∧ rs = RS ? c[L] = B′)
}

〈y := c[rt]; rs := rs.y〉{
∃B′

(
rt = L ∧ y = B′ ? ∃L′(l = L′ ∧ rs = RS .B′ ? c[L] = B′)

)}
(11)

After 〈〈rt := l〉〉 we have, instantaneously rt = L = l ?c[L] = B, but l = L isn’t stable under
(10), and c[L] = B isn’t stable under (9), so to deal with the subsequent atomic buffer
access we have to weaken that assertion, breaking the connection between rt and l. That
makes it clear that the buffer access doesn’t necessarily read c[l], and the horrible mixup of
figure 5 is now possible. After the last instruction we have instantaneously y = c[rt] = rsΩ,
and that’s not stable under (9) either, but because I’m working with mid stability I can
show the instantaneous effect. That instruction does generate a coherent action

rs = RS ? c[L] = B rs = RS .B ? c[L] = B (12)

but it’s clear that this need not preserve the invariant (7) because we don’t necessarily have
l = L and therefore we can’t claim that c[L] is in ws, the cause of the problem in figure 5.
But this is still only a symptom of the problem: the source lies deeper. In the stability-by-
weakening step in (11) we lose the link between l and rt because the writer may carry out
action (10). If we look carefully at the possible actions of the writer after 〈〈rt := l〉〉 we can
see that they form a little state machine:

�� ��
�� ��l = L

(9)
//
�� ��
�� ��l = L

(10)
//
�� ��
�� ��l = !L

(9)
//
�� ��
�� ��l = !L

(10)

bb
(13)

6

local c[2] = (null , null), l = 0, ok in

. . .
write(w) =

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt〉〉;
〈〈ok := false〉〉

ni

. . .
read() =

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt := ok〉〉;
return(rt , y)

ni

Figure 6: A tentative two-slot algorithm with non-atomic buffer accesses

The leftmost action (9), when l = L = rt , affects only c[!L] and thus not c[rt]. The next
action (10), when l = L = rt , breaks the link between l and rt but it also updates ws to
preserve the invariant. Action (9), when l = !L = !rt , is the nasty one: it affects c[L] which
is c[rt], putting there a value which is not yet in ws and allowing the reader to read out of
sequence.
State machines like (13) are an informal tool of description. They are easily formalised by
adding an auxiliary variable or two to the mix. I stick with the informal because my aim is
to clarify, not to demonstrate my formal skills.

5 Fixing the problem

In conventional refinement terms we’ve hit a brick wall: our attempt to produce an algorithm
that exhibits coherence and freshness and communicates according to invariant (7) has
failed. Thinking dialectically, on the other hand, we may have an opportunity: the thesis
that this algorithm solves our problem in the way we anticipated is contradicted by the
antithesis of figure 5, but an analysis of the way the writer interferes with the reader
suggests a surprising synthesis. If we allow the possibility that incoherent transfers may
occur, we can perhaps detect when they do occur, or if that’s impossible, when they might
occur.
Suppose there’s a shared variable ok which the reader sets true when it starts, just before
〈〈rt := l〉〉. Then if that variable were to be set false by the writer during action (9), when
l = !L = !rt , we would detect the writer’s dangerous action. But the writer can’t do that:
it can’t see rt so it can’t tell when action (9) is dangerous and when it’s not. It could,
though, mark action (10), the one which must precede (9): if that action doesn’t happen
then all is well; if it does happen then things might get nasty.
In fact that same communication does much more. If the reader were to find that it had
finished 〈y := c[rt]〉 and ok was still true, then the writer couldn’t have altered c[rt],
because it couldn’t have passed the second action in the state machine of (13) and therefore
couldn’t have reached the third, dangerous, action. That means that there was no collision,
and the buffer access didn’t need to be atomic. That argument leads to the modified two-
slot algorithm of figure 6, in which the reader returns a pair: if the first element of the pair
is true then the second element is a valid reading.
To make use of this synthesis we have to modify the invariant. The sequence of values rs
returned from calls of read is now a sequence of pairs. If ‹rs is rs restricted to those pairs
whose first component is true and then with the first component discarded, we might hope

7

that
b‹rsc 4 ws ∧ wsΩ = c[l] (14)

To show that the writer preserves this invariant is straightforward once we introduce rules
to deal with non-atomic commands that access shared memory. The assignment c[wt] := w
writes to the heap because it is shorthand for [c + wt] := w, so we must use the non-atomic
heap write rule

P ? kE 7→ X stable under R P ? kE 7→ X P ? kE 7→ X ′ ⊆ G¶
E = kE ∧ F = kF ? P ? kE 7→

©
[E] := F

¶
E = kE ∧ F = kF ? P ? kE 7→ kF

© non-atomic heap write
(15)

In considering the effect of [E] := F the formulae E and F should be stable under the rely
R, and they can in principle be made up of a mixture of shared and local variables. For
simplicity in defining the rule I’ve supposed that E and F mention only local variables,
which makes them automatically stable. Then E has to point to a heap cell; shared P has
to guarantee that the value of that cell isn’t changed by the environment; and the action of
changing the value of the cell – which might take place in several steps – has to be declared
as part of the writer’s guarantee.
In our example [c + wt] := w the variable c isn’t local but it’s effectively constant, so we’re
safe there: {

w = W ? l = L ∧ ws = WS ? c[!L] = B
}

〈〈wt := !l〉〉{
w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = B

}
—
®

c[wt] = B stable under R
c[wt] = B c[wt] = B′ ⊆ G

´
c[wt] := w{

w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = W
}

〈〈l := wt ; ws := ws.w〉〉{
w = W ∧ wt = !L ? l = !L ∧ ws = WS .W ? c[!L] = W

}
〈〈ok := false〉〉{

w = W ∧ wt = !L ? ¬ok ∧ l = !L ∧ ws = WS .W ? c[!L] = W
}

(16)

This generates actions (9) and (10) as before, plus

ok ¬ok (17)

(the final instruction may generate either the identity action, if ¬ok already, or this action).
Clearly these three actions maintain the invariant (14): extending ws doesn’t invalidate the
subsequence relation, and ws is updated at the same instant as l is changed to preserve
wsΩ = c[l]. The final value of ok is instantaneous, and we shall see that the reader may
change it, but I can use it because I’m dealing in mid stability and I can overall give
instantaneous pre and post conditions.
To deal with the reader we have to use a conditional heap read rule:

P ? kE 7→ , P ? (C ⇒ kE 7→ kF), ¬C stable under RÜ¶
y = ∧ E = kE ? P ? kE 7→ kF

©
y := [E]{
∃kF ′, kF ′′

(
y = kF ′ ∧ E = kE ? P ? kE 7→ kF ′′ ∧ C ⇒ kF = kF ′

)}
ê non-atomic heap read

(18)

E = kE has to be stable (local will do for simplicity); it has to address a heap cell with
contents kF initially; that heap cell has to exist throughout the read; there has to be some

8

C which guarantees that that cell contains kF ; if C becomes false then it stays false. In
the worst case the value kF ′ which is read into y is neither the original nor the final value
in the heap cell, but if C still holds at the end of the read we can guarantee that y has the
value kF . In our case C is just the formula ok .
The reader’s first instruction is 〈〈ok := true〉〉. The writer’s actions after ok has been set
can be described by a simple finite state machine:

�� ��
�� ��ok

(10)
//

(9)

�� �� ��
�� ��ok

(17)
//
�� ��
�� ��¬ok

(9)

��

(10)

JJ
(19)

Because of the way that stores work, non-atomic reads and writes are in practice imple-
mented by a sequence of atomic reads and writes, so action (9) may need to happen several
times to produce a complete buffer write. Once ¬ok is set by (17), it stays set until the
reader intervenes. In reasoning about the reader we don’t care what happens as a result of
the writer’s actions after it has set ¬ok .
When I first drew the machine of (19) I labelled the first two boxes ok ∧ l = L, where L
is the instantaneous value of l at 〈〈ok := true〉〉, and the third ok ∧ l = !L, thinking that it
would be reached by the writer’s action (10). But that was a mistake, as I found when I
tried a verification. The finite state machine, when we take into account the value of l, has
to be

�� ��
�� ��ok ∧ l = L

(10)
//

(9)

�� �� ��
�� ��ok ∧ l = !L

(17)

%%LLLLLLLLLL

�� ��
�� ��¬ok

(9)

��

(10)

JJ

�� ��
�� ��ok ∧ l = L

(17)
99rrrrrrrrrr

(20)

– the writer can start in any of the states labelled ok∧l = L, and make any of the transitions
shown. Before the reader executes its second instruction 〈〈rt := l〉〉 the writer could have
made any number of transitions. If ok ∧ l = L still holds, we will have rt = L, and the
reader will try to read the cell which was c[l] when it started; if ok ∧ l = !L it will try
to read the cell which is c[l] after action (10); either way, provided the read is completed
before ¬ok is set, it will get a value which is a valid extension of ‹rs.
That informal argument is just what is captured by a more laboured semi-formal (formal

9

apart from the treatment of stability) verification:{
l = L ∧ rs = RS ∧ b‹rs.Bc 4 ws ? c[L] = B ? c[!L] =

}
〈〈ok := true〉〉{
ok ∧ l = L ∧ rs = RS ∧ b‹rs.Bc 4 ws ? c[L] = B ? c[!L] =

}
⇒ (stability)∃C, C ′

Ü
rs = RS ∧ b‹rs.Bc 4 ws ∧

ok ⇒ (B = C ∧ l = !L⇒ b‹rs.B.C ′c 4 ws) ?
c[L] = C ? c[!L] = C ′

ê
〈〈rt := l〉〉∃C, C ′, L′

à
rt = L′ ?

l = L′ ∧ rs = RS ∧ b‹rs.Bc 4 ws ∧
ok ⇒ (B = C ∧ l = !L⇒ b‹rs.B.C ′c 4 ws) ?

c[L] = C ? c[!L] = C ′

í ⇒ (stability)

∃C, C ′, L′

Ü
rt = L′ ?

rs = RS ∧ b‹rs.Bc 4 ws ∧
ok ⇒ (B = C ∧ L′ = !L⇒ b‹rs.B.C ′c 4 ws) ?

c[L] = C ? c[!L] = C ′

ê
(21)

To begin we have, instantaneously, some values in l, rs and the slots of c, and we know from
the invariant (14) that c[L] is a valid extension to ‹rs. The instantaneous postcondition of
〈〈ok := true〉〉 isn’t stable under the writer’s action, but we can see from (20) that so long as
ok stays true, c[L] won’t be overwritten and if l changes value then c[!L] will have become
a valid extension to ‹rs. Next 〈〈rt := l〉〉 reads the value of l, which of course need not be
the value we started with, and stability weakening loses the connection between rt and l.
All of this generates only a single non-identity action:

¬ok ok (22)

To deal with the rest of the reader it’s simplest to use the specification-disjunction rule of
Floyd-Hoare logic and deal separately with the two cases L′ = L and L′ = !L. First with
L′ = L:{

∃C
(

rt = L ? rs = RS ∧ b‹rs.Bc 4 ws ∧ ok ⇒ B = C ? c[L] = C ? c[!L] =
)}

— {c[L] = , ok ⇒ c[L] = C,¬ok all stable under R}
y := c[rt]∃C, D, D′

Ü
rt = L ∧ y = D ?

rs = RS ∧ b‹rs.Bc 4 ws ∧
ok ⇒ B = C = D = D′ ? c[L] = D′ ? c[!L] =

ê ⇒∃D
Ñ

rt = L ∧ y = D ?
rs = RS ∧ b‹rs.Bc 4 ws ∧

ok ⇒ B = D ? c 7→ ,

é
〈〈rt := ok ; rs := rs.(rt , y)〉〉∃D
Ñ

rt = ok ∧ y = D ?
rs = RS .(ok , D) ∧ b‹rs.Bc 4 ws ∧

ok ⇒ B = D ? c 7→ ,

é
(23)

The side-condition c[L] = stable under R holds because the writer never deallocates a
heap cell; ¬ok is stable under R because writer action (17) sets ¬ok and no other action

10

touches ok ; ok ⇒ c[L] = C is stable under R because when ok the writer’s only action
which writes to a slot of c is (9) with l = L, which affects c[!L]. Weakening throws away
lots of confusion. Finally we extend rs with a pair which is either (true, B), where B was
the value in c[l] when we started, or (false, D), where D may not even be a coherent value
or an extension to ‹rs. We’ve achieved coherence and freshness, provided that the first of
the pair is true. This actually generates two actions

rs = RS ∧ b‹rs.Bc 4 ws rs = RS .(true, B) (24)
rs = RS rs = RS .(false, B) (25)

each of which clearly preserves the invariant In the other case when L′ = !L:{
∃C ′

(
rt = !L ? rs = RS ∧ ok ⇒ b‹rs.B.C ′c 4 ws ? c[L] = ? c[!L] = C ′

)}
— {c[!L] = , ok ⇒ c[!L] = C ′,¬ok all stable under R}

y := c[rt]∃C ′, D, D′

Ü
rt = !L ∧ y = D ?

rs = RS ∧ ok ⇒ (C ′ = D = D′ ∧ b‹rs.B.C ′c 4 ws) ?
c[L] = ? c[!L] = D′

ê ⇒{
∃D

(
rt = !L ∧ y = D ?

rs = RS ∧ ok ⇒ b‹rs.Dc 4 ws ? c 7→ ,

)}
〈〈rt := ok ; rs := rs.(rt , y)〉〉{
∃D

(
rt = L ∧ y = D ?

rs = RS .(ok , D) ∧ ok ⇒ b‹rs.Dc 4 ws ? c 7→ ,

)}

(26)

This generates exactly the same actions as (23). We have freshness – note that b‹rs.B.C ′c 4
ws guarantees that if we don’t get the value B that was in c[l] when we started, we will get
C ′ which is later in the sequence and therefore even fresher – we have coherence, we have
the invariant (14).

5.1 Is the problem really fixed?

I was confronted with a problem – sometimes the buffer might communicate values out of
sequence – and a minor annoyance – despite using two buffer slots I couldn’t use non-atomic
reads and writes. Both problems were resolved by changing the specification of the reader so
that it signals the possibility of incoherence and/or out-of-sequence values. Technically I’ve
barred an exception to produce a synthesis of the original attempt and the contradictory
problems. The algorithm I produced is wait-free: read and write operations are guaranteed
to terminate in finite time no matter what the interference.
But all this is missing a rather large elephant in the room. A sequence of values all decorated
with false is no use at all to the process which is trying to read from the buffer, and yet that
is what might be generated if the writer works so fast that it trips up each read operation
by setting ¬ok before the reader has finished. And in any case, what could the process
which invokes the reader do with a pair (false, B) except to ignore it and try again? Any

11

local c[2] = (null , null), d , l = 0, ok , ws = singleton(null), rs = empty in

. . .
write(w) =

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt ; ws := ws.w〉〉;
〈d := w〉;
〈〈ok := false〉〉

ni

. . .
read() =

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt := ok〉〉;
if ¬rt then〈y := d〉 else skip fi;
〈〈rs := rs.y〉〉;
return y

ni

Figure 7: A two-slot algorithm with an atomically-accessed side channel

programmer would surely rather write a reader which keeps trying until it gets an answer:

read() =
local y, rt in

do
〈〈ok := true〉〉; 〈〈rt := l〉〉; y := c[rt]; 〈〈rt := ok〉〉

while¬rt ;
〈〈rs := rs.y〉〉;
return y

ni

(27)

– it doesn’t necessarily terminate, so it too won’t necessarily ever deliver a result, so it has
no operational advantage over figure 6, but it does feel more honest.
The problem isn’t fixed – or rather, it isn’t fixed very well. The synthesis has produced an
algorithm and a specification which are only weakly useful. Time to think again.

6 Another attempt to fix the problem

In fixing the problem with a single-bit signalling variable ok I wasn’t ambitious enough.
The writer can do more than simply signal that nasty things might happen: it can first
transmit the value it has just written in a side buffer and then signal; the signal would
mean that the buffer can’t be relied upon but the side-buffer can. Wary of collisions, I at
first use atomic instructions for the side transmission, as in figure 7. (You might wonder
why a one-slot side buffer will work if we need two slots for the main buffer: we shall see,
eventually, that there is an answer to that question; for the moment I press on.)
It does also seem to work. If the reader executes 〈y := d〉 then it picks up a value that cannot
be earlier than the c[L] which it was guaranteed at the instant it executed 〈〈ok := true〉〉.
That’s because it doesn’t read from d unless ¬ok .
But there would be some difficulty proving that, because the writer repeatedly writes to
d . In fact the reader is only interested in the first value that it writes, just before setting
¬ok . For once my instincts as a prover and as a programmer are in complete alignment: to
save itself work the writer ought to write to d only if ok , just as the reader only reads from
d if ¬ok . And then, surely, those accesses can be non-atomic, because they surely don’t
overlap. The result is figure 8, in which I have restrained my programming instincts and

12

local c[2] = (null , null), d , l = 0, ok , ws = singleton(null), rs = empty in

. . .
write(w) =

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt ; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉 else skip fi

ni

. . .
read() =

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt := ok〉〉;
if ¬rt then y := d else skip fi;
〈〈rs := rs.y〉〉;
return y

ni

Figure 8: Almost Harris’s three-slot algorithm

not saved the writer work by setting ¬ok after the reader has finished: that introduces a
complication which we will confront later.
In programming terms the writer now writes d only when the reader seems to be asking for
it – i.e. when ok . Verification of the writer is straightforward, and the first part is identical

13

to what has gone before:{
w = W ? l = L ∧ ws = WS ? c[!L] = B

}
〈〈wt := !l〉〉{

w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = B
}

—
®

c[wt] = B stable under R
c[wt] = B c[wt] = B′ ⊆ G

´
c[wt] := w{

w = W ∧ wt = !L ? l = L ∧ ws = WS ? c[!L] = W
}

〈〈l := wt ; ws := ws.w〉〉{
w = W ∧ wt = !L ? l = !L ∧ ws = WS .W ? c[!L] = W

}
〈〈wt := ok〉〉{
w = W ∧ wt = OK ?

ok = OK ∧ l = !L ∧ ws = WS .W ? c[!L] = W

}
⇒ (stability)

{
w = W ∧ wt = OK ? OK ⇒ ok ∧ l = !L ∧ ws = WS .W ? c[!L] = W

}
if wt then{

w = W ∧ wt ? ok ∧ l = !L ∧ ws = WS .W ? c[!L] = W
}

—
®

d = D stable under R
ok ∧ d = D ok ∧ d = D′ ⊆ G

´
d := w;{

w = W ∧ wt ? d = W ∧ ok ∧ l = !L ∧ ws = WS .W ? c[!L] = W
}

〈〈ok := false〉〉{
w = W ∧ wt ? d = W ∧ ¬ok ∧ l = !L ∧ ws = WS .W ? c[!L] = W

}
else{

w = W ∧ ¬wt ? l = !L ∧ ws = WS .W ? c[!L] = W
}

skip{
w = W ∧ ¬wt ? l = !L ∧ ws = WS .W ? c[!L] = W

}
fi{
w = W ∧ wt ? l = !L ∧ ws = WS .W ? c[!L] = W

}

(28)

The actions of the writer are now

l = L ? c[!L] = B l = L ? c[!L] = B′ (29)
l = L ∧ ws = WS ? c[!L] = B l = !L ∧ ws = WS .B ? c[!L] = B (30)

ok ∧ d = D ok ∧ d = D′ (31)
ok ∧ l = L ? c[l] = d = B ¬ok ∧ l = L ? c[l] = d = B (32)

The first two of these we have seen before: they are (9) and (10). The third is new, recording
the fact that the writer can write to d . The last is an expanded version of (17), noting that
when the writer sets ¬ok the value in d is the latest value written to the two-slot buffer
and thus, by the invariant (7), the last element of ws.
From the point of view of the reader following 〈〈ok := true〉〉 the writer’s finite-state machine

14

is now

�� ��
�� ��ok ∧ l = L

(30)
//

(29)

�� �� ��
�� ��ok ∧ l = !L

(32)

%%LLLLLLLLLL

(31)

��

�� ��
�� ��¬ok

(29)

��

(30)

JJ

�� ��
�� ��ok ∧ l = L

(32)
99rrrrrrrrrr

(31)

JJ

(33)

– the only way to set ¬ok is via action (32), and after it has set ¬ok the writer doesn’t
execute action (31) and so doesn’t touch d .
Verification of the reader reveals that after 〈〈ok := true〉〉 c[L] is a valid extension to rs so
long as ok holds, and when it stops holding, d is a valid extension instead.{

l = L ∧ rs = RS ∧ brs.Bc 4 ws ? c[L] = B ? c[!L] =
}

〈〈ok := true〉〉{
ok ∧ l = L ∧ rs = RS ∧ brs.Bc 4 ws ? c[L] = B ? c[!L] =

}
⇒ (stability)∃C, C ′

Ü
rs = RS ∧ brs.Bc 4 ws ∧ ¬ok ⇒ brs.B.dc 4 ws ∧

ok ⇒ (B = C ∧ l = !L⇒ brs.B.C ′c 4 ws) ?
c[L] = C ? c[!L] = C ′

ê
〈〈rt := l〉〉
∃C, C ′, L′

rt = L′ ?

l = L′ ∧ rs = RS ∧ brs.Bc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ∧
ok ⇒ (B = C ∧ l = !L⇒ brs.B.C ′c 4 ws) ?

c[L] = C ? c[!L] = C ′

⇒ (stability)

∃C, C ′, L′

Ü
rt = L′ ?

rs = RS ∧ brs.Bc 4 ws ∧ ¬ok ⇒ brs.B.dc 4 ws ∧
ok ⇒ (B = C ∧ L′ = !L⇒ brs.B.C ′c 4 ws) ?

c[L] = C ? c[!L] = C ′

ê
(34)

As before I analyse the non-atomic read in two cases, one where L = L′ and one where

15

!L = L′. First L = L′:∃C
Ñ

rt = L ?
rs = RS ∧ brs.Bc 4 ws ∧ ok ⇒ B = C ∧
¬ok ⇒ brs.B.dc 4 ws ? c[L] = C ? c[!L] =

é
— {c[L] = , ok ⇒ c[L] = C,¬ok all stable under R}

y := c[rt]∃C, D, D′

à
rt = L ∧ y = D ?

rs = RS ∧ brs.Bc 4 ws ∧
ok ⇒ B = C = D = D′ ∧
¬ok ⇒ brs.B.dc 4 ws ? c[L] = D′ ? c[!L] =

í ⇒∃D
Ü

rt = L ∧ y = D ?

rs = RS ∧ ok ⇒ brs.Dc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c 7→ ,

ê

(35)

Second !L = L′:∃C ′

Ñ
rt = !L ?

rs = RS ∧ ok ⇒ brs.B.C ′c 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c[L] = ? c[!L] = C ′

é
— {c[!L] = , ok ⇒ c[!L] = C ′,¬ok all stable under R}

y := c[rt]∃C ′, D, D′

Ü
rt = !L ∧ y = D ?

rs = RS ∧ ok ⇒ (C ′ = D = D′ ∧ brs.B.C ′c 4 ws) ∧
¬ok ⇒ brs.B.dc 4 ws ? c[L] = ? c[!L] = D′

ê ⇒∃D
Ü

rt = !L ∧ y = D ?

rs = RS ∧ ok ⇒ brs.Dc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c 7→ ,

ê

(36)

16

These two come together for the final part, reading from d if necessary:∃D
Ü

rt = !L ∧ y = D ?

rs = RS ∧ ok ⇒ brs.Dc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c 7→ ,

ê
〈〈rt := ok〉〉∃D
Ü

rt = OK ∧ y = D ?

ok = OK ∧ rs = RS ∧ ok ⇒ brs.Dc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c 7→ ,

ê ⇒ (stability)

∃D
Ü

rt = OK ∧ y = D ?

¬OK ⇒ ¬ok ∧ rs = RS ∧ ok ⇒ brs.Dc 4 ws ∧
¬ok ⇒ brs.B.dc 4 ws ? c 7→ ,

ê
if ¬rt then{
∃D,E

(
y = D ? ¬ok ∧ rs = RS ∧ d = E ∧ brs.dc 4 ws ? c 7→ ,

)}
— {¬ok ∧ d = E stable under R}

y := d{
∃E

(
y = E ? ¬ok ∧ rs = RS ∧ d = E ∧ brs.dc 4 ws ? c 7→ ,

)}
else{
∃D

(
y = D ? brs.Dc 4 ws ? c 7→ ,

)}
skip

{
∃D

(
y = D ? rs = RS ∧ brs.Dc 4 ws ? c 7→ ,

)}
fi{
∃F

(
y = F ? rs = RS ∧ brs.F c 4 ws ? c 7→ ,

)}
〈〈rs := rs.y〉〉;¶
∃F
Ä
y = F ? rs = RS .F ? c 7→ ,

ä©

(37)

The buffer read y := d makes use of the simple non-atomic variable read rule

P ? y = Y stable under R¶
x = ? P ? y = Y

©
x := y

¶
x = Y ? P ? y = Y

© non-atomic variable read
(38)

The reader’s actions are

¬ok ok (39)
rs = RS ∧ brs.Bc 4 ws rs = RS .B (40)

The first of these is (22) and the second is very similar to (24). The verification shows
that the second is indeed an action of the reader, that after y := d we do indeed have
brs.yc 4 ws.

6.1 One last thing

In this development I was led to guard the assignment d := w in the writer because I was
looking for a way of making accesses to d non-atomic. Writing when ok , reading when ¬ok
does the job because the writer and reader don’t set those values arbitrarily: the reader
sets ok and the writer sets ¬ok .
But I would have done the same thing even without that consideration: the writer doesn’t
always have to write to d ; it should only do so if the reader is currently active, i.e. if it has

17

local c[2] = (null , null), d , l = 0, ok , ws = singleton(null), rs = empty in

. . .
write(w) =

local wt in
〈〈wt := !l〉〉;
c[wt] := w;
〈〈l := wt ; ws := ws.w〉〉;
〈〈wt := ok〉〉;
if wt then d := w; 〈〈ok := false〉〉 else skip fi

ni

. . .
read() =

local y, rt in
〈〈ok := true〉〉;
〈〈rt := l〉〉;
y := c[rt];
〈〈rt := ok〉〉;
if ¬rt then y := d else〈〈ok := false〉〉 fi;
〈〈rs := rs.y〉〉;
return y

ni

Figure 9: A version of Harris’s three-slot algorithm

set ok . For the same reason, I want to make the reader set ¬ok if it manages to successfully
read from the two-slot buffer as in figure 9. To a programmer, that’s obviously the right
thing to do. But it breaks my proof, because it’s no longer true that the writer writes to d
only when ok : now the reader can set ¬ok after the writer has decided to write and before
it has finished. It would seem that we have to modify the writer’s action (31) simply to
read d = D ok ∧ d = D′, which says that the writer can write to d at any time.
But surely, from the point of view of a passive reader at any point after 〈〈ok := true〉〉 the
writer still behaves like the finite-state machine (33). Once the writer has set ¬ok it won’t
write to d because to start writing to d it needs ok and while the reader is passive that
won’t happen.
To show the same thing formally needs, unfortunately, an auxiliary variable. Suppose the
reader sets a variable ra (for reader active) when it sets ok and sets ¬ra when it sets ¬ok .
Then the writer writes d when ok ∨ ¬ra. The rest is tedious detail, which is omitted.
Figure 9 is not exactly Harris’s original. His algorithm writes d , if necessary, and sets ¬ok
at the beginning of the write procedure rather than at the end, which has the same effect
since from the reader’s point of view the writer endlessly cycles through its actions. It’s
unlikely that either version has an advantage: at least I can’t see one.

7 Conclusion

Harris’s algorithm is simple and surprising and for most people difficult at first to un-
derstand. A formal proof doesn’t seem to illuminate much: indeed, by wrapping all the
intricacies in a couple of implications and a lot of RGSep tedium it only seems to add to
the difficulty. By showing a rational development I hope to have explained it to some more.
I would have developed it by conventional refinement techniques, but I couldn’t see how.
By making a dialectical development, by producing and fixing bugs, I hope to have cor-
rected the misconception that that kind of programming is necessarily an irrational busi-
ness.

References

Richard Bornat and Hasan Amjad. Inter-process Buffers in Separation Logic with Rely-
Guarantee. Submitted to FAC, 2008a. URL www.cs.mdx.ac.uk/staffpages/r_bornat/
papers/rgsl1facs.pdf. 1

18

www.cs.mdx.ac.uk/staffpages/r_bornat/papers/rgsl1facs.pdf
www.cs.mdx.ac.uk/staffpages/r_bornat/papers/rgsl1facs.pdf

Richard Bornat and Hasan Amjad. Simpson’s algorithm by atomicity refinement. 2008b.
URL www.cs.mdx.ac.uk/staffpages/r_bornat/papers/4slotrefinement.pdf. 1, 2,
3

P. Brinch Hansen, editor. The Origin of Concurrent Programming. Springer-Verlag, 2002.
19

Edsger W. Dijkstra. Cooperating Sequential Processes. Technical Report EWD-123, Tech-
nical University, Eindhoven, 1965. Reprinted in Genuys (1968) and Brinch Hansen (2002).
1

F. Genuys, editor. Programming Languages. Academic Press, 1968. 19

Tim Harris. A non-blocking three-slot buffer. Private communication, 2004. 1

Imre Lakatos. Proofs and Refutations: the logic of mathematical discovery. Cambridge
University Press, 1976. 1

H.R. Simpson. Four-Slot Fully Asynchronous Communication Mechanism. IEE Proceedings,
137(1):17–30, January 1990. 1

Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2007. 2

Viktor Vafeiadis and Matthew J. Parkinson. A Marriage of Rely/Guarantee and Separation
Logic. In CONCUR 2007 – Concurrency Theory, volume 4037 of LNCS, pages 256–271,
August 2007. 2

19

www.cs.mdx.ac.uk/staffpages/r_bornat/papers/4slotrefinement.pdf

	Introduction (not yet ready for publication)
	The atomic single-slot algorithm
	An attempted refinement to two slots
	Identifying the problem
	Fixing the problem
	Is the problem really fixed?

	Another attempt to fix the problem
	One last thing

	Conclusion

