Saving space: a circular shift algorithm.

Consider the problem of shifting the elements of a large array ‘circularly’ by some significant distance.

I emphasise size and distance, because this is fundamentally a problem about space, and it becomes interesting only when we have a large problem.
I presume that we have some position p at which the array should be divided:

\[
\begin{array}{|c|c|}
\hline
0 & p \\
\hline
& \text{section 1} & \text{section 2} \\
& \hline
& n \\
\hline
\end{array}
\]

The predicate calculus specification is straightforward:

\[\forall i \left(\left(0 \leq i \leq p \rightarrow A'[n - p + i] = A[i] \right) \land \left(p \leq i < n \rightarrow A'[i - p] = A[i] \right) \right)\]

This is not at all a mysterious program to write, if we have a spare array to hand:

\[
\text{type}\[]\ B = \text{new type}(A.\text{length});
\]

\[
\text{for (i=0; i<p; i++) B[A.\text{length-p+i}]=A[i];}
\]

\[
\text{for (i=p; i<n; i++) B[i-p]=A[i];}
\]

\[
\text{for (i=0; i<A.\text{length}; i++) A[i]=B[i];}
\]

This program is $O(N)$ in time and $O(N)$ in space.

But we may not always have that much space.
The space problems can be reduced a little:

```java
    type[] B = new type(p);
    for (i=0; i<p; i++) B[i]=A[i];
    for (i=p; i<n; i++) A[i-p]=A[i];
    for (i=0; i<p; i++) A[A.length-p+i]=B[i];
```

Now it’s $O(p)$ in space, and a little quicker in execution (less copying). We have a better bound on the time: it’s $O(N + p)$.

But we still have a program which uses too much space: in the worst case p can be close to N.

We might reduce the worst case space usage to $N/2$, but this program will always have a space problem.

There is a better way.
Trading speed for space.

I shall abandon, for a while, the search for a faster solution.

We can save space by moving things around more often.

Suppose that $p \leq n - p$: that is, the left section is the smaller.

Then we might begin by swapping $A_{0..p-1}$ with $A_{n-p..n-1}$:

We can do that work using only one extra variable (to implement the swap operation):

for (i=0; i<p; i++) A[i]<->A[n-p+i];
Now of course if section 2 is the smaller, it won’t work because of overlap: but then we can do something very similar to swap section 2 into place:

```
for (i=0; i<n-p; i++) A[i]<->A[p+i];
```

In either case we have reduced the problem to that of reordering the left and right parts of section 2 (first case) or section 1 (second case) – clearly a case for repetition.

Here’s the whole program. Amazingly enough the end-limits m and n vary, but the boundary p always stays in the same place!

```c
for (m=0, n=A.length; m!=p && n!=p; ) {
    if (p-m<=n-p) { // shift section 1
        for (i=0; i<p-m; i++) A[i+m]<->A[n-p+i];
        n=n-(p-m); // section 1 is in place
    } else { // shift section 2
        for (i=0; i<n-p; i++) A[i+m]<->A[p+i];
        m=m+(n-p); // section 2 is in place
    }
}
```
This program doesn’t use much space – $O(1)$, because of the variables i, m, n and p, plus the variable needed for the swaps – but it does a lot too much work.

Each swap takes three assignments; each time we shift a section into place we put a similarly-sized section in the wrong place (unless p divides the interval $m..n$ exactly in half).

We can do better ...
A perfect circular shift.

What should move into \(A_0 \)? Why, \(A_p \). And what should move into \(A_p \)? Why, \(A_{2p} \) ... and so on, till we fall off the end of the array because \(j \times p > n \).

We don’t have to stop there. \(A_i \) should be replaced by \(A_{i+p} \), if that’s within the array, or else by \(A_{i+p-n} \) – because it is a circular shift! And so on, till we get back to \(A_0 \) again.

In a complicated multi-way exchange you only need one temporary variable! Here’s a bit of program which does the job:

```c
type t=A[0];
for (i=0, j=p;
    j!=0;
    j = j+p<n ? j+p : j+p-n)
   A[i]=A[j];
A[i]=t;
```

This program moves quite a bit of the array around, and it only uses variables \(i, j \) and \(t \).
But if p divides n exactly this program won’t do the whole problem: if $p = n \div 2$ it only exchanges A_0 and A_p; if $p = n \div 3$ it only rotates A_0, A_p and A_{2p}; and so on.

And if p and n have factors in common this program won’t solve the whole problem. In fact if the greatest common divisor of p and n is q then this program will move exactly $n \div q$ things. But then the nice thing is that we can use the same idea, starting again with A_1 ...

Here’s the complete program:

```c
for (m=0, count=0; count!=n; m++) {
    type t=A[m];
    for (i=m, j=m+p;
         j!=m;
         i=j, j = j+p<n ? j+p : j+p-n, count++)
        A[i]=A[j];
    A[i]=t; count++;
}
```
That program only uses variables i, j and t; it does $O(n)$ assignments; it does the ‘extra’ assignment $t = A[m]$ only $\gcd(n, p)$ times.

If $p = n \div 2$ then it has no advantage over the earlier segment-swapping program, but in all other cases it does a lot less work.

A proof that it works is remarkably difficult ...