v

Middlesex
University

Concurrent programming in operating systems

Richard Bornat
Professor of Computer Programming
(scouting for talent)

4th February 2004

v

Slogans Unersiy

t-ﬁ!.; N

v

Slogans Unversiy

» Call me Richard.

-

v

Slogans Unversiy
» Call me Richard.
» Say “Slow down!”.
'53;’:%3‘:\?-

v

Slogans Unvereny

» Call me Richard.
» Say “Slow down!”.
» Try “Shut up and listen to me!”

T

v

Programming versus Operating Systems Yiddesex

il Qi

v

Programming versus Operating Systems Yiddesex

» Operating Systems are computer programs.

PR

v

Programming versus Operating Systems Yiddesex

» Operating Systems are computer programs.
» The job of an OS is Resource Management.

e

v

Programming versus Operating Systems Yiddesex

» Operating Systems are computer programs.
» The job of an OS is Resource Management.
» Safety and security are resource management problems.

T

v

v

v

v

Programming versus Operating Systems

Operating Systems are computer programs.

The job of an OS is Resource Management.

Safety and security are resource management problems.
So are fairness, liveness, sharing, race-conditions.

2

Middlesex
University

SR

v

v

v

v

v

2

Programming versus Operating Systems Yiddesex

Operating Systems are computer programs.

The job of an OS is Resource Management.

Safety and security are resource management problems.
So are fairness, liveness, sharing, race-conditions.

RM problems are also programming problems, even in everyday
programming with pointers.

R, RN
b oA Y

2

Programming versus Operating Systems Yiddesex

Operating Systems are computer programs.

The job of an OS is Resource Management.

Safety and security are resource management problems.
So are fairness, liveness, sharing, race-conditions.

RM problems are also programming problems, even in everyday
programming with pointers.

My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

e

v

A simple program Unversiy

t-ﬁ!.; N

v

A simple program Unvereny

» Here’s a fragment of a C/Java program:
X =0y =x
if (y==0) print("yes");
else print("no";

T

2

A simple program Unvereny

» Here’s a fragment of a C/Java program:
X =0y =x
if (y==0) print("yes");
else print("no";

» Could this prograneverprint “no”?

SR

2

A simple program Unerasy

» Here’s a fragment of a C/Java program:
X =0y =x
if (y==0) print("yes");
else print("no";

» Could this prograneverprint “no”?
» What could go wrong?

2

A simple program Unerasy

» Here’s a fragment of a C/Java program:
X =0y =x
if (y==0) print("yes");
else print("no";

» Could this prograneverprint “no”?

x
I
A

» What could go wrong?

v

v

v

v

2

A simple program Unerasy

Here's a fragment of a C/Java program:
X =0y =X

if (y==0) print("yes");

else print("no";

Could this prograneverprint “no”?

What could go wrong?

Whoops! processes/threads can hases(and sometimes your horse
loses).

e

v

An aside about caches e

t-ﬁ!.; N

v

An aside about caches e

» The word “cache” comes from French backwoodsmen in North
America.

2

An aside about caches Middlesex

University

» The word “cache” comes from French backwoodsmen in North
America.

» |In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

2

An aside about caches Middlesex

University

» The word “cache” comes from French backwoodsmen in North
America.

» |In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

» A cache translateskey k into avalue V, if possible without asking Y.

e

v

v

v

v

2

An aside about caches e

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.
Caches in programs avoid:

e

v

v

v

v

2

An aside about caches e

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.
Caches in programs avoid:

» computations (between call and procedure);

e

v

v

v

v

2

An aside about caches e

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.
Caches in programs avoid:

» computations (between call and procedure);
» memory accesses (between registers and memory);

e

v

v

v

v

2

An aside about caches i

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.
Caches in programs avoid:

» computations (between call and procedure);
» memory accesses (between registers and memory);
» disc accesses (between memory and disc);

e

v

v

v

v

2

An aside about caches i

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.
Caches in programs avoid:

» computations (between call and procedure);

» memory accesses (between registers and memory);
» disc accesses (between memory and disc);

» network accesses ...

e

v

v

v

v

2

An aside about caches i

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.

Caches in programs avoid:

vV vy vy VvYyYy

computations (between call and procedure);
memory accesses (between registers and memory);
disc accesses (between memory and disc);

network accesses ...

etc., etc., etc.

R, RN
b oA Y

v

Anatomy of a cache Unversiy

t-ﬁ!.; N

v

Anatomy of a cache Unvereny

» All caches have the same parts.

s S

2

Anatomy of a cache Unvereny

» All caches have the same patrts.

» A collection ofbuffers which hold previously-discovered key/value
pairs.

et N

2

Anatomy of a cache Middlesex

University

» All caches have the same patrts.

» A collection ofbuffers which hold previously-discovered key/value
pairs.

» A fastlookup table which takes and points to a buffer containing
k/V, if there is one.

-

v

v

v

v

2

Anatomy of a cache Middlesex

University

All caches have the same parts.

A collection ofbuffers which hold previously-discovered key/value
pairs.

A fastlookup table which takesk and points to a buffer containing
k/V, if there is one.

(Slow lookup is ok if the cache is very, very small — less than 6 items

e

2

Anatomy of a cache Middlesex

University

All caches have the same parts.

A collection ofbuffers which hold previously-discovered key/value
pairs.

A fastlookup table which takesk and points to a buffer containing
k/V, if there is one.

(Slow lookup is ok if the cache is very, very small — less than 6 items
ptr = cache _lookup(Kk);
if (ptr==NULL) {

ptr = getbuffer(); cache _forget(ptr.key);

ptr.key = k; ptr.value = Y(k);

cache _remember(k, ptr);

}

return ptr.value;

e s

v

A Deadlock horror story Unersiy

t-ﬁ!.; N

v

A Deadlock horror story e

» 1977, Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

e oY

2

A Deadlock horror story e

» 1977, Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

» Small block cache~{ 10 buffers), used by disc.

BN

2

A Deadlock horror story e

» 1977, Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

» Small block cache~{ 10 buffers), used by disc.
» —also used by block-addressable magnetic tape.

ey

v

v

v

v

2

A Deadlock horror story e

1977; Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

Small block cache~ 10 buffers), used by disc.
— also used by block-addressable magnetic tape.

Under heavy use, when mag tape was in use, machine “froze” quite
often.

e

2

A Deadlock horror story e

1977; Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

Small block cache~ 10 buffers), used by disc.
— also used by block-addressable magnetic tape.

Under heavy use, when mag tape was in use, machine “froze” quite
often.

After a while, we guessed the problem was in the block cache.

e

2

A Deadlock horror story e

1977; Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

Small block cache~ 10 buffers), used by disc.
— also used by block-addressable magnetic tape.

Under heavy use, when mag tape was in use, machine “froze” quite
often.

After a while, we guessed the problem was in the block cache.
Luckily, we had the Unix source ...

e

v

Some background Unvereny

t-ﬁ!.; N

v

Some background Unerasy

» This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

T

2

Middlesex

Some background Univeraity

» This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {

ptr = find _buffer(dev, b);

if (ptr==NULL) {
ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start _read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);

}

e

2

Middlesex

Some background Univeraity

» This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {

ptr = find _buffer(dev, b);

if (ptr==NULL) {
ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start _read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);

}

» If there are no free (lock==0) buffers, getbuffer waits.

f23

A block cache with pre-fetch

while (true) {
ptr = find _buffer(dev, b);
if (ptr==NULL) {
ptr = getbuffer(); ...
start _read(dev, ptr, b);
if (find _buffer(dev,b+1)==NULL) {
ptr2 = getbuffer(); ...
start _read(dev, ptr2, b+1);
}
} else if (ptr.lock==0)
return ptr;
wait(ptr);

}

2

Middlesex
University

SN
b oA Y

v

Abstraction makes things easier to see! Jiddesex

il Qi

10

v

Abstraction makes things easier to see! Jiddesex

» Atable ...

e

v

Abstraction makes things easier to see! Jiddesex

» Atable ...
» Five chairs ...

10

v

Abstraction makes things easier to see! Jiddesex

» Atable ...
» Five chairs ...
» A big bowl of spaghetti ...

PR

10

v

v

v

v

Abstraction makes things easier to see!

Atable ...

Five chairs ...

A big bowl of spaghetti ...
Five forks ...

10

v

Middlesex
University

s S

v

v

v

v

v

Abstraction makes things easier to see!

Atable ...

Five chairs ...

A big bowl of spaghetti ...
Five forks ...

Five hungry people!

10

v

Middlesex
University

v

v

v

v

v

v

Abstraction makes things easier to see!

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.

10

v

Middlesex
University

T

v

Abstraction makes things easier to see! Jiddesex

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;

T

10

2

Abstraction makes things easier to see! Jiddesex

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;

everybody reaches for a fork;

SR

10

2

Abstraction makes things easier to see! Jiddesex

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;

everybody reaches for a fork;

and then for a second fork;

- i

10

v

Abstraction makes things easier to see!

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;

everybody reaches for a fork;

and then for a second fork;

... deadlock! Starvation!

10

2

Middlesex
University

2

Abstraction makes things easier to see! Jiddesex

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;
everybody reaches for a fork;

and then for a second fork;

... deadlock! Starvation!

But if just one person hangs back ...

SN
b oA Y

10

v

The standard “race condition” e
[x] = [x]+1 [y1=0

11

v

The standard “race condition” e
[x] = [x]+1 [y1=0

» With atomicactions, the outcome is either 1 or O.

T

11

v

The standard “race condition” e

[x] = [x]+1 [y1=0

(read, inc, write) (write)

» With atomicactions, the outcome is either 1 or O.

T

11

2

The standard “race condition” e

[x] = [x]+1 [y1=0

(read, inc, write) (write)

» With atomicactions, the outcome is either 1 or 0.
» With interleavedactions (but atomic read/write), the outcome is eithel
0, 1 or 18 (a lost message).

11

2

The standard “race condition” e
[x] = [x]+1 [y]=0

(read, inc, write) (write)

» With atomicactions, the outcome is either 1 or O.

» With interleavedactions (but atomic read/write), the outcome is eithel
0, 1 or 18 (a lost message).

» If read and write can be subdivided — chaos.

- e
11 T

v

Dijkstra’s solution: block signalling Unerstr

taﬁ.; N

12

v

Dijkstra’s solution: block signalling Middiesex

» Semaphores are like railway signals.

PR

12

v

Dijkstra’s solution: block signalling Middiesex

» Semaphores are like railway signals.

» “Critical sections” are like sections of track:
P(m); .. critical .; V(m).

e

12

v

Dijkstra’s solution: block signalling Middiesex

» Semaphores are like railway signals.

» “Critical sections” are like sections of track:
P(m); .. critical .; V(m).

» Atomic P and V required special hardware, now universally used.

T

12

2

Dijkstra’s solution: block signalling Middiesex

Semaphores are like railway signals.

“Critical sections” are like sections of track:
P(m); .. critical .; V(m).

Atomic P and V required special hardware, now universally used.

Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

12

2

Dijkstra’s solution: block signalling Middlesex

University

Semaphores are like railway signals.

“Critical sections” are like sections of track:
P(m); .. critical .; V(m).

Atomic P and V required special hardware, now universally used.

Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

But semaphores caused waiting, queusigpping

e
19 T

2

Dijkstra’s solution: block signalling Middlesex

University

Semaphores are like railway signals.

“Critical sections” are like sections of track:
P(m); .. critical .; V(m).

Atomic P and V required special hardware, now universally used.

Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

But semaphores caused waiting, queusigpping
New problems: deadlock, livelock, unfairness, starvation, ...

'_ygg’:&%_:_
19 T

v

An early speedup Unersioy

» Many readers at once, only one writer (and then no readers).

e

13

2

An early speedup Unerasy

» Many readers at once, only one writer (and then no readers).
» New problems: fairness between readers and writers.

SR

13

2

An early speedup Unvereny

» Many readers at once, only one writer (and then no readers).
» New problems: fairness between readers and writers.
» But still ... (Courtois, Heymans, Parnas; 1971):

SN
b oA Y

13

v

An early speedup Unersioy

» Many readers at once, only one writer (and then no readers).

» New problems: fairness between readers and writers.

» But still ... (Courtois, Heymans, Parnas; 1971):

P(read);

count+ = 1;

if (count == 1) P(write);
V(read);

... reading happens here ...

P(read);

count— = 1;

if (count == 0) V(write);
V(read)

13

P(write);
... Writing happens here ...

V(write)

v

Hoare logic Unvereny

t-ﬁ!.; N

14

2

Hoare logic Unerasy

» Moder compuhg arose from a collision between mathematical logic
and mechanical calculators during WW?2.

R IR
AR A
~‘3 Wi

14

2

Hoare logic Unerasy

» Moder compuhg arose from a collision between mathematical logic
and mechanical calculators during WW?2.

» Every programming language is a mathematioainal system- that
is, alogic.

B NN
b oA Y

14

2

Hoare logic Unversity

» Moder compuhg arose from a collision between mathematical logic
and mechanical calculators during WW?2.

» Every programming language is a mathematioainal system- that
is, alogic.

» Every computer program is a sketch of a formal proof.

et S
14 S

2

Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that
is, alogic.
Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

o, R%T_
14 o

2

Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that

is, alogic.

Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

The best attempt so far is Hoare log{gre} command{post.

o, R%T_
14 o

2

Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that

is, alogic.

Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

The best attempt so far is Hoare log{gre} command{post.
Example{y +1=z}x =y + 1{x = z}.

o, R%T_
14 o

2

Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that
is, alogic.

Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

The best attempt so far is Hoare log{gre} command{post.
Example{y +1=z}x =y + 1{x = z}.
This derives from aule: {RE}x = E{R}.

-

2

Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that
is, alogic.

Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

The best attempt so far is Hoare log{gre} command{post.
Example{y +1=z}x =y + 1{x = z}.

This derives from aule: {RE}x = E{R}.

There are rules for every program structure.

-

v

Progress is slow Unversiy

t-ﬁ!.; N

15

2

Progress is slow Unvereny

» Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

SR

15

Progress is slow

2

Middlesex
University

» Twenty-five years ago, some of us thought that Hoare’s “formal

methods” would sweep the board.

» But it is difficult to scale up ...

15

2

Progress is slow Middlesex

University

» Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

» But it is difficult to scale up ...

» The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

e

15

2

Progress is slow Middicsex
Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

et S
15 S

2

Progress is slow Middlesex

University

Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

'yg\ﬁ%T_
15 o

2

Progress is slow University

Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

... but we've found a wayk — 17 says thak contains a pointer to a
location that contains 17 ...

'gg\ﬁ%T_
15 o

2

Progress is slow University

Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

... but we've found a wayk — 17 says thak contains a pointer to a
location that contains 17 ...

... andx — E xy — E’ says that there are two separate heap cells,
which we can reason about separately..

-

2

Progress is slow University

Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

... but we've found a wayk — 17 says thak contains a pointer to a
location that contains 17 ...

... andx — E xy — E’ says that there are two separate heap cells,
which we can reason about separately..

... how we can prove lots of pointer programs.
ey
. 28

v

Thirty years later ... Unversiy

» The readers-and-writers program obviously works ...

e

16

2

Thirty years later ... Unersioy

» The readers-and-writers program obviously works ...
» ... and at last we can prove some things about it!

SR

16

2

Thirty years later ... Unersioy

» The readers-and-writers program obviously works ...
» ... and at last we can prove some things about it!

» O’Hearn has inverted semaphores, making them safes which lock a
resources, opened by P and locked by V:

'_ygg’:&%_:_
16 T

2

Thirty years later ... Unersioy

» The readers-and-writers program obviously works ...
» ... and at last we can prove some things about it!

» O’Hearn has inverted semaphores, making them safes which lock a
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

'_ygg’:&%_:_
16 T

v

v

v

v

2

Thirty years later ... Unversity

The readers-and-writers program obviously works ...
... and at last we can prove some things about it!

O’Hearn has inverted semaphores, making them safes which lock av
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

Calcagno and | invented read permissions) @nd counting
permissionsH{’, where onlyg can write).

':‘Xi}ﬁ%;\‘—
16 o

v

v

v

v

2

Thirty years later ... Unversity

The readers-and-writers program obviously works ...
... and at last we can prove some things about it!

O’Hearn has inverted semaphores, making them safes which lock av
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

Calcagno and | invented read permissions) @nd counting
permissionsH{’, where onlyg can write).

X E = x ™ML Exxis E

':‘Xi}ﬁ%;\‘—
16 o

A proof

write : 2+% _

read : if count = 0 then emp else z -2, _

{emp}

P(read);

{if count = O then emp else z 524", }
count+ := 1,

{if count — 1 = 0 then emp else z ~<2=L, 1

if count = 1 then {emp} P(write) {z+> _}
else {Z count—1 7};
{Z count—1 7}
{Z count %7 7}
V(read);
{z— -}

17

v

Middlesex
University

ey

v

But only a part of a proof ... Unersioy

taﬁ.; N

18

v

But only a part of a proof ... Unocsor

» There are problems far worse than race conditions.

18

2

But only a part of a proof ... Unocsor

» There are problems far worse than race conditions.
» Starvation, as in “dining philosophers”, is a result of lack of progress.

SR
18 o

2

But only a part of a proof ... Dnecse

» There are problems far worse than race conditions.
» Starvation, as in “dining philosophers”, is a result of lack of progress.

» {emp} P(m) {I} is “partial correctness” i you get through then
you collect a prize, but you may never get through.

SN
b oA Y

18

v

v

v

v

2

But only a part of a proof ... Dnecse

There are problems far worse than race conditions.
Starvation, as in “dining philosophers”, is a result of lack of progress.

{emp} P(m) {I,} is “partial correctness” i you get through then
you collect a prize, but you may never get through.

We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

et S
18 S

v

v

v

v

v

2

But only a part of a proof ... Dnecse

There are problems far worse than race conditions.
Starvation, as in “dining philosophers”, is a result of lack of progress.

{emp} P(m) {I,} is “partial correctness” i you get through then
you collect a prize, but you may never get through.

We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

Reasoning about progress still needs to be global.

et S
18 S

2

But only a part of a proof ... Dnecse

There are problems far worse than race conditions.
Starvation, as in “dining philosophers”, is a result of lack of progress.

{emp} P(m) {I,} is “partial correctness” i you get through then
you collect a prize, but you may never get through.

We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

Reasoning about progress still needs to be global.
This is still beyond us in practice.

et S
18 S

v

Summary Unieraty

10

v

Summary Unersiy

» Right here in Mdx U, world-class research is going on.

T

19

2

Summary Middlesex

» Right here in Mdx U, world-class research is going on.
» You have a chance to join in.

SR

19

2

Summary Middlesex

» Right here in Mdx U, world-class research is going on.
» You have a chance to join in.
» It will stretch you.

- i

19

v

v

v

v

Summary

Right here in Mdx U, world-class research is going on.
You have a chance to join in.

It will stretch you.

But isn’t that why you came here?

19

2

Middlesex
University

e

