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Slogans Unvereny

» Call me Richard.
» Say “Slow down!”.
» Try “Shut up and listen to me!”
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Programming versus Operating Systems  Yiddesex

Operating Systems are computer programs.

The job of an OS is Resource Management.

Safety and security are resource management problems.
So are fairness, liveness, sharing, race-conditions.

RM problems are also programming problems, even in everyday
programming with pointers.

My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.
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A simple program Unerasy

Here's a fragment of a C/Java program:
X =0y =X

if (y==0) print("yes");

else print("no";

Could this prograneverprint “no”?

What could go wrong?

Whoops! processes/threads can hases(and sometimes your horse
loses).
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An aside about caches i

The word “cache” comes from French backwoodsmen in North
America.

In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

A cache translatesley k into avalue V, if possible without asking Y.

Caches in programs avoid:

vV vy vy VvYyYy

computations (between call and procedure);
memory accesses (between registers and memory);
disc accesses (between memory and disc);

network accesses ...

etc., etc., etc.
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» A collection ofbuffers which hold previously-discovered key/value
pairs.

» A fastlookup table which takes and points to a buffer containing
k/V, if there is one.
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All caches have the same parts.
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Anatomy of a cache Middlesex

University

All caches have the same parts.

A collection ofbuffers which hold previously-discovered key/value
pairs.

A fastlookup table which takesk and points to a buffer containing
k/V, if there is one.

(Slow lookup is ok if the cache is very, very small — less than 6 items
ptr = cache _lookup(Kk);
if (ptr==NULL) {

ptr = getbuffer(); cache _forget(ptr.key);

ptr.key = k; ptr.value = Y(k);

cache _remember(k, ptr);

}

return ptr.value;

e s
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A Deadlock horror story e

1977; Early Unix; multitasking; small machine; max6 users; max
~ 50 processes.

Small block cache~ 10 buffers), used by disc.
— also used by block-addressable magnetic tape.

Under heavy use, when mag tape was in use, machine “froze” quite
often.

After a while, we guessed the problem was in the block cache.
Luckily, we had the Unix source ...
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» This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {

ptr = find _buffer(dev, b);

if (ptr==NULL) {
ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start _read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);

}
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Some background Univeraity

» This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {

ptr = find _buffer(dev, b);

if (ptr==NULL) {
ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start _read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);

}

» If there are no free (lock==0) buffers, getbuffer waits.

f23



A block cache with pre-fetch

while (true) {
ptr = find _buffer(dev, b);
if (ptr==NULL) {
ptr = getbuffer(); ...
start _read(dev, ptr, b);
if (find _buffer(dev,b+1)==NULL) {
ptr2 = getbuffer(); ...
start _read(dev, ptr2, b+1);
}
} else if (ptr.lock==0)
return ptr;
wait(ptr);

}
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Abstraction makes things easier to see!  Jiddesex

Atable ...

Five chairs ...

A big bowl of spaghetti ...

Five forks ...

Five hungry people!

The spaghetti is slippery; you need two forks to eat it.
Everybody sits down together;
everybody reaches for a fork;

and then for a second fork;

... deadlock! Starvation!

But if just one person hangs back ...
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[x] = [x]+1 [y1=0

(read, inc, write) (write)

» With atomicactions, the outcome is either 1 or 0.
» With interleavedactions (but atomic read/write), the outcome is eithel
0, 1 or 18 (a lost message).
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The standard “race condition” e
[x] = [x]+1 [y]=0

(read, inc, write) (write)

» With atomicactions, the outcome is either 1 or O.

» With interleavedactions (but atomic read/write), the outcome is eithel
0, 1 or 18 (a lost message).

» If read and write can be subdivided — chaos.

- e
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Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

But semaphores caused waiting, queusigpping
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Dijkstra’s solution: block signalling Middlesex

University

Semaphores are like railway signals.

“Critical sections” are like sections of track:
P(m); .. critical .; V(m).

Atomic P and V required special hardware, now universally used.

Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

But semaphores caused waiting, queusigpping
New problems: deadlock, livelock, unfairness, starvation, ...

'_ygg’:&%_:_
19 T
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An early speedup Unersioy

» Many readers at once, only one writer (and then no readers).

» New problems: fairness between readers and writers.

» But still ... (Courtois, Heymans, Parnas; 1971):

P(read);

count+ = 1;

if (count == 1) P(write);
V(read);

... reading happens here ...

P(read);

count— = 1;

if (count == 0) V(write);
V(read)

13

P(write);
... Writing happens here ...

V(write)
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Hoare logic Unversity

Moder compuing arose from a collision between mathematical logic
and mechanical calculators during WW?2.

Every programming language is a mathematioahal system- that
is, alogic.

Every computer program is a sketch of a formal proof.

The task of computer science is to exploit the links between formal
logic and practical programming.

The best attempt so far is Hoare log{gre} command{post.
Example{y +1=z}x =y + 1{x = z}.

This derives from aule: {RE}x = E{R}.

There are rules for every program structure.

-
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» Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.
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Progress is slow University

Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

But it is difficult to scale up ...

The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

— a few thousand lines, amb bugd

Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

... but we've found a wayk — 17 says thak contains a pointer to a
location that contains 17 ...

... andx — E xy — E’ says that there are two separate heap cells,
which we can reason about separately..

... how we can prove lots of pointer programs.
ey
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» The readers-and-writers program obviously works ...
» ... and at last we can prove some things about it!

» O’Hearn has inverted semaphores, making them safes which lock a
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}
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Thirty years later ... Unversity

The readers-and-writers program obviously works ...
... and at last we can prove some things about it!

O’Hearn has inverted semaphores, making them safes which lock av
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

Calcagno and | invented read permissions) @nd counting
permissionsH{’, where onlyg can write).

X E = x ™ML Exxis E

':‘Xi}ﬁ%;\‘—
16 o



A proof

write : 2+% _

read : if count = 0 then emp else z -2, _

{emp}

P(read);

{if count = O then emp else z 524", }
count+ := 1,

{if count — 1 = 0 then emp else z ~<2=L, 1

if count = 1 then {emp} P(write) {z+> _}
else {Z count—1 7};
{Z count—1 7}
{Z count %7 7}
V(read);
{z— -}

17
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But only a part of a proof ... Dnecse

» There are problems far worse than race conditions.
» Starvation, as in “dining philosophers”, is a result of lack of progress.
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There are problems far worse than race conditions.
Starvation, as in “dining philosophers”, is a result of lack of progress.

{emp} P(m) {I,} is “partial correctness” i you get through then
you collect a prize, but you may never get through.

We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

Reasoning about progress still needs to be global.
This is still beyond us in practice.
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Right here in Mdx U, world-class research is going on.
You have a chance to join in.

It will stretch you.

But isn’t that why you came here?
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