
Concurrent programming in operating systems

Richard Bornat
Professor of Computer Programming

(scouting for talent)

4th February 2004

1



Slogans

I Call me Richard.

I Say “Slow down!”.

I Try “Shut up and listen to me!”

2



Slogans

I Call me Richard.

I Say “Slow down!”.

I Try “Shut up and listen to me!”

2



Slogans

I Call me Richard.

I Say “Slow down!”.

I Try “Shut up and listen to me!”

2



Slogans

I Call me Richard.

I Say “Slow down!”.

I Try “Shut up and listen to me!”

2



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



Programming versus Operating Systems

I Operating Systems are computer programs.

I The job of an OS is Resource Management.

I Safety and security are resource management problems.

I So are fairness, liveness, sharing, race-conditions.

I RM problems are also programming problems, even in everyday
programming with pointers.

I My research (and one day, perhaps yours too) is in resource logics
applied to programming problems.

3



A simple program

I Here’s a fragment of a C/Java program:

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



A simple program

I Here’s a fragment of a C/Java program:

x = 0; y = x;
if (y==0) print("yes");
else print("no");

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



A simple program

I Here’s a fragment of a C/Java program:

x = 0; y = x;
if (y==0) print("yes");
else print("no");

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



A simple program

I Here’s a fragment of a C/Java program:

x = 0; y = x;
if (y==0) print("yes");
else print("no");

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



A simple program

I Here’s a fragment of a C/Java program:

x = 0; y = x;
if (y==0) print("yes");
else print("no");

x = 3; y = 7;

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



A simple program

I Here’s a fragment of a C/Java program:

x = 0; y = x;
if (y==0) print("yes");
else print("no");

x = 3; y = 7;

I Could this programeverprint “no”?

I What could go wrong?

I Whoops! processes/threads can haveraces(and sometimes your horse
loses).

4



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);

I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);

I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);

I network accesses ...
I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...

I etc., etc., etc.

5



An aside about caches

I The word “cache” comes from French backwoodsmen in North
America.

I In computing a “cache” goes between small, fast, expensive X and
large, slow, cheap Y.

I A cache translates akey k into avalueV, if possible without asking Y.

I Caches in programs avoid:

I computations (between call and procedure);
I memory accesses (between registers and memory);
I disc accesses (between memory and disc);
I network accesses ...
I etc., etc., etc.

5



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



Anatomy of a cache

I All caches have the same parts.

I A collection ofbuffers which hold previously-discovered key/value
pairs.

I A fast lookup table which takesk and points to a buffer containing
k/V, if there is one.

I (Slow lookup is ok if the cache is very, very small – less than 6 items.)

I ptr = cache lookup(k);
if (ptr==NULL) {

ptr = getbuffer(); cache forget(ptr.key);
ptr.key = k; ptr.value = Y(k);
cache remember(k, ptr);

}
return ptr.value;

6



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



A Deadlock horror story

I 1977; Early Unix; multitasking; small machine; max∼ 6 users; max
∼ 50 processes.

I Small block cache (∼ 10 buffers), used by disc.

I – also used by block-addressable magnetic tape.

I Under heavy use, when mag tape was in use, machine “froze” quite
often.

I After a while, we guessed the problem was in the block cache.

I Luckily, we had the Unix source ...

7



Some background

I This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {
ptr = find buffer(dev, b);
if (ptr==NULL) {

ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);
}

I If there are no free (lock==0) buffers, getbuffer waits.

8



Some background

I This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {
ptr = find buffer(dev, b);
if (ptr==NULL) {

ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);
}

I If there are no free (lock==0) buffers, getbuffer waits.

8



Some background

I This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {
ptr = find buffer(dev, b);
if (ptr==NULL) {

ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);
}

I If there are no free (lock==0) buffers, getbuffer waits.

8



Some background

I This is a block cache in a multi-process, multi-device system (no
lookup table, for simplicity):

while (true) {
ptr = find buffer(dev, b);
if (ptr==NULL) {

ptr = getbuffer();
ptr.device = dev; ptr.block = b;
start read(dev, ptr, b);

} else if (ptr.lock==0)
return ptr;

wait(ptr);
}

I If there are no free (lock==0) buffers, getbuffer waits.

8



A block cache with pre-fetch

while (true) {
ptr = find buffer(dev, b);
if (ptr==NULL) {

ptr = getbuffer(); ...
start read(dev, ptr, b);
if (find buffer(dev,b+1)==NULL) {

ptr2 = getbuffer(); ...
start read(dev, ptr2, b+1);

}
} else if (ptr.lock==0)

return ptr;
wait(ptr);

}

9



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



Abstraction makes things easier to see!

I A table ...

I Five chairs ...

I A big bowl of spaghetti ...

I Five forks ...

I Five hungry people!

I The spaghetti is slippery; you need two forks to eat it.

I Everybody sits down together;

I everybody reaches for a fork;

I and then for a second fork;

I ... deadlock! Starvation!

I But if just one person hangs back ...

10



The standard “race condition”

17x y

[x] = [x]+1 [y] = 0

I With atomicactions, the outcome is either 1 or 0.

I With interleavedactions (but atomic read/write), the outcome is either
0, 1 or 18 (a lost message).

I If read and write can be subdivided – chaos.

11



The standard “race condition”

17x y

[x] = [x]+1 [y] = 0

I With atomicactions, the outcome is either 1 or 0.

I With interleavedactions (but atomic read/write), the outcome is either
0, 1 or 18 (a lost message).

I If read and write can be subdivided – chaos.

11



The standard “race condition”

17x y

[x] = [x]+1
(read, inc, write)

[y] = 0
(write)

I With atomicactions, the outcome is either 1 or 0.

I With interleavedactions (but atomic read/write), the outcome is either
0, 1 or 18 (a lost message).

I If read and write can be subdivided – chaos.

11



The standard “race condition”

17x y

[x] = [x]+1
(read, inc, write)

[y] = 0
(write)

I With atomicactions, the outcome is either 1 or 0.

I With interleavedactions (but atomic read/write), the outcome is either
0, 1 or 18 (a lost message).

I If read and write can be subdivided – chaos.

11



The standard “race condition”

17x y

[x] = [x]+1
(read, inc, write)

[y] = 0
(write)

I With atomicactions, the outcome is either 1 or 0.

I With interleavedactions (but atomic read/write), the outcome is either
0, 1 or 18 (a lost message).

I If read and write can be subdivided – chaos.
11



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



Dijkstra’s solution: block signalling

I Semaphores are like railway signals.

I “Critical sections” are like sections of track:
P(m); .. critical ..; V(m).

I Atomic P and V required special hardware, now universally used.

I Critical sections with the same semaphore are mutually exclusive,
effectively atomic.

I But semaphores caused waiting, queuing,stopping.

I New problems: deadlock, livelock, unfairness, starvation, ...

12



An early speedup

I Many readers at once, only one writer (and then no readers).

I New problems: fairness between readers and writers.

I But still ... (Courtois, Heymans, Parnas; 1971):

P(read);
count+ = 1;
if (count == 1) P(write);
V(read);

... reading happens here ...;

P(read);
count− = 1;
if (count == 0) V(write);
V(read)

P(write);

... writing happens here ...

V(write)

13



An early speedup

I Many readers at once, only one writer (and then no readers).

I New problems: fairness between readers and writers.

I But still ... (Courtois, Heymans, Parnas; 1971):

P(read);
count+ = 1;
if (count == 1) P(write);
V(read);

... reading happens here ...;

P(read);
count− = 1;
if (count == 0) V(write);
V(read)

P(write);

... writing happens here ...

V(write)

13



An early speedup

I Many readers at once, only one writer (and then no readers).

I New problems: fairness between readers and writers.

I But still ... (Courtois, Heymans, Parnas; 1971):

P(read);
count+ = 1;
if (count == 1) P(write);
V(read);

... reading happens here ...;

P(read);
count− = 1;
if (count == 0) V(write);
V(read)

P(write);

... writing happens here ...

V(write)

13



An early speedup

I Many readers at once, only one writer (and then no readers).

I New problems: fairness between readers and writers.

I But still ... (Courtois, Heymans, Parnas; 1971):

P(read);
count+ = 1;
if (count == 1) P(write);
V(read);

... reading happens here ...;

P(read);
count− = 1;
if (count == 0) V(write);
V(read)

P(write);

... writing happens here ...

V(write)

13



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.

I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.

I This derives from arule: {RE
x}x = E{R}.

I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.

I There are rules for every program structure.

14



Hoare logic

I Moder computing arose from a collision between mathematical logic
and mechanical calculators during WW2.

I Every programming language is a mathematicalformal system– that
is, alogic.

I Every computer program is a sketch of a formal proof.

I The task of computer science is to exploit the links between formal
logic and practical programming.

I The best attempt so far is Hoare logic:{pre} command{post}.
I Example:{y + 1 = z}x = y + 1{x = z}.
I This derives from arule: {RE

x}x = E{R}.
I There are rules for every program structure.

14



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Progress is slow

I Twenty-five years ago, some of us thought that Hoare’s “formal
methods” would sweep the board.

I But it is difficult to scale up ...

I The best that has been done so far is a program that runs the safety
software on a driverless train line in Paris.

I – a few thousand lines, andno bugs!

I Until recently, pointers (aka Java “references”) were thought to be
beyond the scope of Hoare logic ...

I ... but we’ve found a way!x 7→ 17 says thatx contains a pointer to a
location that contains 17 ...

I ... andx 7→ E ? y 7→ E′ says that there are two separate heap cells,
which we can reason about separately...

I ... now we can prove lots of pointer programs.

15



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



Thirty years later ...

I The readers-and-writers program obviously works ...

I ... and at last we can prove some things about it!

I O’Hearn has inverted semaphores, making them safes which lock away
resources, opened by P and locked by V:

{emp} P(m) {Im}
{Im} V(m) {emp}

I Calcagno and I invented read permissions (7→) and counting
permissions (n7−→, where only 07−→ can write).

x n7−→ E ⇐⇒ x n+17−−−−→ E ? x 7→ E

16



A proof

write : z 07−→
read : if count = 0 then emp else z count7−−−−−→

{emp}
P(read);
{if count = 0 then emp else z count7−−−−−→ }
count+ := 1;
{if count − 1 = 0 then emp else z count−17−−−−−−−→ }
if count = 1 then {emp} P(write) {z 07−→ }

else {z count−17−−−−−−−→ };
{z count−17−−−−−−−→ }
{z count7−−−−−→ ? z 7→ }
V(read);
{z 7→ }

17



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



But only a part of a proof ...

I There are problems far worse than race conditions.

I Starvation, as in “dining philosophers”, is a result of lack of progress.

I {emp} P(m) {Im} is “partial correctness” -if you get through then
you collect a prize, but you may never get through.

I We can reason about resource ownership, resource leaks, resource
safety ... all at the local level.

I Reasoning about progress still needs to be global.

I This is still beyond us in practice.

18



Summary

I Right here in Mdx U, world-class research is going on.

I You have a chance to join in.

I It will stretch you.

I But isn’t that why you came here?

19



Summary

I Right here in Mdx U, world-class research is going on.

I You have a chance to join in.

I It will stretch you.

I But isn’t that why you came here?

19



Summary

I Right here in Mdx U, world-class research is going on.

I You have a chance to join in.

I It will stretch you.

I But isn’t that why you came here?

19



Summary

I Right here in Mdx U, world-class research is going on.

I You have a chance to join in.

I It will stretch you.

I But isn’t that why you came here?

19



Summary

I Right here in Mdx U, world-class research is going on.

I You have a chance to join in.

I It will stretch you.

I But isn’t that why you came here?

19


