
Natural Deduction Proof and Disproof in Jape

Richard Bornat (richard@bornat.me.uk)

February 21, 2017

2

Preface

This manual is a how-to for Jape and my Natural Deduction encoding. Earlier versions contained a good
deal of logic teaching. That’s been dropped, since now there’s a book (Logic for Programmers, OUP) which
says it all a good deal better. You will learn about logic by playing with Jape, so I suppose there’s still
teaching in there.

This document was written on a Mac, and the illustrations are all taken from the MacOS X version of Jape.
All Japes, on Linux, Solaris, Windows, MacOS X or whereever, run exactly the same code but the interfaces
can look slightly different. I haven’t produced different versions of the manual because I think — rather, I
hope — that those differences in fonts, in window controls, in the placing of menus and so on, don’t really
matter. If I’m wrong then I hope somebody will tell me.

Jape or NDJape?

This manual is really about how Jape, which is capable of working with many different logics, has been
made to deal with Natural Deduction as described in my book. Instead of talking about what ‘Jape’ does
when dealing with→ formulae, I should really talk about what ‘Jape loaded with the I2L encoding’ does.
But that’s such a mouthful that I just talk as if there is only one Jape, and all it does is Natural Deduction.

If you’re interested there’s a manual on the website (http://www.japeforall.org.uk) which tells you how to
roll your own logic encodings. Best of luck.

Differences from the book

• Jape writes its premises on a single line, separated by commas, instead of using a separate line for
each premise;

• Jape writes quantifications as ∀x.P (x) and ∃y.Q(y) — with a dot between bound variable and predi-
cate — instead of ∀x(P (x)) and ∃y(Q(y))

So far as I know, these are the only significant differences.

Any comments?

If Jape doesn’t work for you, it isn’t working, and if it isn’t working I’d like to hear about it.

Please send any comments, thoughts, complaints or whatever to me (see title page for email address). I’ll
do my best to reply quickly and if your message is of general interest I’ll put it up on the website (with your
permission, and hiding your email address from the spambots at least).

3

4

Acknowledgements

I designed and built Jape between 1991 and 2002 whilst I was at Queen Mary College, University of London,
working with Bernard Sufrin of the Bernard Sufrin of the Computer Laboratory, Oxford University. I’ve
continued to develop it at Middlesex University since. Bernard worked on the implementation with me for
the first four years or so. That doesn’t describe all he did: his design insights were crucial and without him
Jape wouldn’t exist or be half as good as it is. His program architecture, which he worked out in the first
few months of our collaboration, is still in place even though Jape has been rebuilt from the ground up more
than once. He still produces the Jape distributions and running the www.japeforall.org.uk website.

For the rest of it I’ve been strongly influenced by colleagues at Queen Mary, many of whom have made
seminal suggestions which have improved Jape. In alphabetical order I single out Jules Bean, John Bell,
Peter Burton, Keith Clarke, Adam Eppendahl, David Pym, Graem Ringwood, Mike Samuels, Paul Taylor
and Graham White.

Jape began as an experiment towards the end of an EPSRC research project on the use of symbolic calcula-
tors to teach formal reasoning, joint with Steve Reeves and Doug Goldson at Queen Mary, and Tim O’Shea
and Pat Fung at the Open University. A later project, with Pat Fung and James Aczel from the OU, looked
at students using Jape; James’s insightful summary of their difficulties led to a redesign of the treatment of
natural deduction, and directly to this version of the program.

Jape’s proof engine was originally written in SML and compiled by SMLNJ, with interfaces for different
operating systems written in C, tcl/tk, Python and I can’t remember what else. In 2002 I ported the engine
to OCaml and wrote a system-independent interface module in Java. I’m grateful to the implementers of
all those languages, especially for their decision to provide their software for free. Jape is free too, at
http:www.japeforall.org.uk.

Contents

1 Basics 7
1.1 Getting started . 7

1.2 Finishing a proof . 9

1.3 Saving and restoring your work . 9

1.4 Printing and Exporting . 9

1.5 Making Jape work for you . 9

1.5.1 Only reflect . 9

1.5.2 Be brave . 10

1.5.3 Never guess an assumption . 10

2 Gestures: mouse clicks, presses and drags 11
2.1 Formula selection . 11

2.1.1 Ambiguous formulae click both ways . 11

2.1.2 Greying-out . 12

2.2 Subformula selection . 12

2.3 Dragging . 13

3 Backward and forward steps 15
3.1 Making a forward step . 15

3.1.1 Selecting a target conclusion . 17

3.1.2 What can go wrong with a forward step? . 17

3.2 Making a backward step . 18

3.2.1 What can go wrong with a backward step? . 18

3.3 Steps which don’t need a selection . 19

4 Rules of thumb for proof search 21
4.1 Look at the shape of the formula . 22

5 The steps summarised 23
5.1 ∧ steps . 23

5.2 → steps . 23

5

6 CONTENTS

5.3 ∨ steps . 25

5.4 ¬ steps . 26

5.5 ⊥ (contradiction) steps . 28

5.6 > (truth) step . 28

5.7 ∀ steps . 28

5.8 ∃ steps . 30

6 Unknowns, hyp and Unify 31
6.1 Introducing an unknown . 31

6.2 Avoiding unknowns by subformula selection . 32

6.3 Eliminating an unknown with Unify . 33

6.4 Eliminating an unknown with hyp . 33

6.5 Provisos and the privacy condition . 34

7 Disproof 35
7.1 Getting started . 35

7.2 Alternative sequents . 36

7.2.1 Selecting a situation . 36

7.2.2 What’s forced ? — colouring, greying, underlining 37

7.3 Making diagrams . 37

7.3.1 Dragging worlds . 38

7.3.2 Dragging lines . 38

7.3.3 Dragging formulae . 38

7.4 Making individuals and predicate instances . 39

7.5 Exploring reasons . 39

7.6 Completing a disproof . 40

7.7 Printing disproofs . 40

8 Using theorems and stating conjectures 41
8.1 Using theorems . 41

8.2 Stating your own conjectures . 43

9 Troubleshooting 45
9.1 Problems getting started . 45

9.2 What if a proof step goes wrong? . 45

Chapter 1

Basics

1.1 Getting started

If you don’t already have Jape, download it from http://www.japeforall.org.uk. Install it, following the
instructions carefully.

You should have a directory containing the Jape application and a subdirectory called examples. Double-
click Jape, and you will see a window like figure 1.1.1

Using the Open New Theory command in the File menu, open examples/natural deduction/I2L.jt. You
should see several windows containing logical conjectures (claims to be proved), called panels in Jape. The
Conjectures panel should look something like figure 1.2 (you will probably have to resize the window to
make it look like this). Double-click any line to begin, or select a line and press the Prove button at the
bottom of the panel. You will see a proof window like figure 1.3, and off you go!

1 You may see minor differences. The illustrations in this manual are taken from MacOS X. On Windows and Linux you will see
a menu bar in the window and the window title will be Jape. But those differences don’t matter much, so I won’t refer to them
again.

Figure 1.1: The Jape splash screen

7

8 CHAPTER 1. BASICS

Figure 1.2: The Conjectures panel Figure 1.3: A proof window

Figure 1.4: A conjecture panel with a proved
conjecture

Figure 1.5: A conjecture panel with proved
and disproved conjectures

1.2. FINISHING A PROOF 9

1.2 Finishing a proof

When you have made a proof of a conjecture — no more lines of dots in the proof window — you can save
it: pull down the Edit menu and select Done. The proof window closes, and Jape records the fact that the
conjecture is proved, marking its entry in the conjectures panel with a tick in the margin, as illustrated in
figure 1.4. If you disprove a conjecture (see chapter 7) then you can record that too, and you get a cross in
the margin. Because classical proof and constructive disproof overlap, you can even get both marks against
the same conjecture, as illustrated in figure 1.5.

Proof of a conjecture makes it a theorem. You can use theorems in your proofs as if they were additional
Natural Deduction rules (select the theorem in the panel, press the Apply button), and you can review their
proofs using the Show Proof button. See chapter 8 for more information.

1.3 Saving and restoring your work

Jape offers to record your proofs — saved and unsaved — when you quit or when you choose “Save Proofs”
or “Save Proofs As ...” from the File menu. It will reload saved proofs using “Open ...”, also from the File
menu.

1.4 Printing and Exporting

You can print a proof using the Print Proof command on the Edit menu. If you have a disproof on the go (see
chapter 7) you can print it using the Print Disproof command, or proof and disproof together using Print.

To make a pdf or ps copy of a proof in a file, use Export Proof, Export Disproof or Export, all on the Edit
menu.

1.5 Making Jape work for you

1.5.1 Only reflect

Jape is designed to be easy to use, which means that the mouse and menu and window stuff don’t get in the
way of the logic. It’s so easy to use that you can have great fun clicking away, ‘solving’ lots of problems
without always knowing exactly what you’re doing. That’s ok, because you can learn while you’re having
fun, and you can do things for yourself without asking for help. But it’s obviously not the whole story.

Because Jape is easy to use it brings you quickly to a point where you can ask interesting and important
questions. The kind of question you are supposed to ask is “is the logic really supposed to work like that?”
If there are experts around you can ask them, but if you are on your own you can still ask yourself. That
isn’t a daft thing to do: educationalists call it reflection, and it’s one of the best ways to learn.

Some logical proofs are hard to believe at first. Some single logical steps are pretty surprising. I hope that
you will always read through finished Jape proofs to see if you can believe them. If there is a surprise, ask
yourself: where does the surprise come from? By undoing and redoing steps you can watch the surprise
emerge and explain to yourself why it’s necessary.

Jape’s a machine, and that has disadvantages as well as advantages. The big advantage is that a machine
can do formal calculation — proof and disproof — perfectly, without mistake. The big disadvantage is that
it can’t understand anything about what it’s doing. Jape doesn’t know the difference between a nice proof

10 CHAPTER 1. BASICS

and a nasty one. Sometimes reflection will show you that there is a shorter or prettier proof than the one you
have made. You can always undo your work and try again!

1.5.2 Be brave

We read proofs top-to-bottom most of the time. Novices, reasonably but mistakenly, imagine that proofs
are constructed top-to-bottom too: start at line 1 and work forwards. Well, sometimes it is done that way,
but at least as often it’s done the other way round, bottom-to-top, starting with the last line and working
backwards. Be brave and try it! If you stick to forward proof you make life very difficult for yourself, so
bravery pays dividends.

Bravery is needed, too, when learning how proof steps work. It’s reasonable when playing with an interactive
program to first try only steps that make small changes, but eventually you have to try everything. It’s just
like riding a bike: once you’ve plucked up courage you can’t remember what it felt like to be scared of ∨
elim or ∧ intro or whatever. Just do it!

1.5.3 Never guess an assumption

A proof is really a structure of deductions, not a sequence of lines, and its assumption boxes show that
structure. Reading a proof from top to bottom, every assumption that is introduced must also be discharged
by the use of a rule which makes use of the box. Jape guarantees correct use of assumptions by combining
introduction and discharge into a single step. Assumptions are introduced (and discharged) by using rules,
and the rules that do it — some forward, some backward — are labelled in the menus. Jape helps you, in
every case, by calculating the assumption that you need: there is never a need to guess an assumption.

Chapter 2

Gestures: mouse clicks, presses and drags

Like every other interactive program, Jape accepts instructions through the mouse and the keyboard. Mostly
you will use the mouse to select a formula or a subformula in the proof window and then to command what
to do with your selection by choosing a command from a menu. The ways that Jape uses the mouse are
pretty standard.

2.1 Formula selection

Formula selection is made with a single click (left-click on a multi-button mouse). You click on a formula
— a hypothesis above the line of dots or a conclusion below the dots — and Jape highlights your selection
with an enclosing red box. If you click on a hypothesis you get a downward-facing box as in figure 2.1(a); if
you click on a conclusion you get an upward-facing box as in figure 2.1(b). You can select both a hypothesis
and a conclusion, as in figure 2.1(c).

Clicking on the background — a white part of the proof window — cancels all your selections.

Simple clicks will let you select one conclusion and one hypothesis at a time. Normally a second hypothesis
click cancels the first, but if you hold down the Shift key while you click you can select more than one
hypothesis, as shown in figure 2.1(d). And then, also using the Shift key whilst clicking, you can cancel
individual formula selections.

There is no way of selecting more than one conclusion at a time.

2.1.1 Ambiguous formulae click both ways

In figure 2.2(a) there are open conclusions on lines 3 and 4, each preceded by a line of dots to show that
there’s work to be done. Lines 1 and 2 aren’t conclusions, and can only be used as hypotheses to prove lines

2:

. . .

E→G

1: E→F, F→G premises

(a) hypothesis selection

2:

. . .

E→G

1: E→F, F→G premises

(b) conclusion selection

2:

. . .

E→G

1: E→F, F→G premises

(c) hypothesis and
conclusion

2:

. . .

E→G

1: E→F, F→G premises

(d) multi-hypothesis
selection

Figure 2.1: Formula selection by mouse click

11

12 CHAPTER 2. GESTURES: MOUSE CLICKS, PRESSES AND DRAGS

5: (E∧F)→G → intro 2-4

4:

. . .

G

3:

. . .

F→G

2: E∧F assumption

1: E→(F→G) premise

(a) Proof attempt with intermediate
hypothesis/conclusion formula

5: (E∧F)→G → intro 2-4

4:

. . .

G

3:

. . .

F→G

2: E∧F assumption

1: E→(F→G) premise

(b) top-half click selects as
conclusion

5: (E∧F)→G → intro 2-4

4:

. . .

G

3:

. . .

F→G

2: E∧F assumption

1: E→(F→G) premise

(c) bottom-half click selects as
hypothesis

Figure 2.2: Ambiguous conclusion/hypothesis selection

2:

. . .

E→(F∧G)

1: (E→F)∧(E→G) premise

(a) subformula selection

2:

. . .

E→(F∧G)

1: (E→F)∧(E→G) premise

(b) multiple-subformula selection

Figure 2.3: Subformula selection by option/alt/middle-press-and-drag

3 and 4. Line 5 can’t be used at all: it’s a proved conclusion. Line 4 can only be a conclusion and not a
hypothesis, because there’s nothing below it in the box. But line 3 is ambiguous: it has to be proved as a
conclusion, perhaps using lines 1 and 2, and it can be used as a hypothesis to prove line 4.

Ambiguous formulae like F → G on line 3 of figure 2.2(a) can be selected in two ways. If you click on
the top half of the formula you get a box open at the top — i.e. a conclusion selection — with a dotted
line across the bottom, as shown in figure 2.2(b). If you click on the bottom half you get a box open at the
bottom — i.e. a hypothesis selection — with a dotted line across the top, as shown in figure 2.2(c).

2.1.2 Greying-out

When you select a hypothesis you can only make a step towards conclusions below you and in the same box
as the hypothesis you clicked. When you select a conclusion you can only make a backward step towards
hypotheses above you and in the same box or enclosing boxes. Jape greys out all the formulae you can’t
use, to help you see what’s going on, as shown by line 5 in figures 2.2(b) and 2.2(c).

If you click on a greyed-out formula Jape cancels your current selection(s). If you click on a conclusion
that’s already been used up (one which isn’t immediately below a line of dots) then Jape greys it out and
cancels all your selections.1

2.2 Subformula selection

Occasionally you need to tell Jape to focus on part of a formula. You do this by a press-and-drag gesture:

• with a three-button mouse, middle-press-and-drag;

• otherwise by holding the Alt shift (sometimes labelled ’option’) during a press-and-drag.

1 This was once a bug. Now it’s become a feature, because I rather like it.

2.3. DRAGGING 13

Jape highlights the subformula you’ve selected by changing the background colour to yellow, as shown in
figure 2.3(a).

If you hold down the add-a-selection key (ctrl on Windows and Linux, command on MacOS X) you can
make more than one subformula selection, as shown in figure 2.3(b). Using the same key combination, you
can cancel and/or modify subformula selections you’ve already made.

Jape restricts subformula selections to well-formed subformulae, as you can discover by experiment. That
means that if you option/alt/middle-click on a connective or a quantifier, a whole subformula is highlighted.
If you option/alt/middle-click on a name, only that name is highlighted.

Option/alt/middle-clicking or pressing on a new subformula cancels all other subformula selections, unless
you hold down the add-a-selection key (Command on MacOS, Ctrl on other systems). Option/alt/middle-
clicking on the background — a white part of the proof window — cancels all your subformula selections.

Formula and subformula selections are independent: you can have one without the other, or both, or neither.
Cancelling one kind of selection doesn’t cancel the other.

2.3 Dragging

In the disproof pane — see chapter 7 — you can drag formulae, tiles, worlds and lines around to make a
diagram. You do it by press-and-drag. See chapter 7 for details.

14 CHAPTER 2. GESTURES: MOUSE CLICKS, PRESSES AND DRAGS

Chapter 3

Backward and forward steps

Because we read proofs forward, top-to-bottom, forward steps are easiest to understand and most proof
novices prefer working forwards. But lots of proofs are difficult working forwards, and some are almost
impossibly difficult. To make proofs in Jape you need to be able to make backward steps as well, and I’ve
gone to some trouble to force you to recognise the fact. In the Backward menu, shown in figure 3.1, the
first group of steps above the line work best backwards and the group below that line can be made to work
backward if you try hard. The Forward menu, in figure 3.2, similarly shows steps that work well forward
before ones that work forward only with difficulty. ‘hyp’ is hard to classify, so it appears in both menus.

To make a step you select one or more formulae and choose a step from the Backward or Forward menu.
The selections you need to make depend on the step you choose, and are detailed in the descriptions of the
steps in later chapters, but in general for a forward step you must choose a hypothesis and for a backward
step an open (unproved) conclusion.

3.1 Making a forward step

Before you make a forward step you must always select a hypothesis formula. Depending on the kind of
step, you may have to select more than one hypothesis: for details, see the description of the step later in
this manual — or just try it and see what happens!

Figure 3.1: Backward menu Figure 3.2: Forward menu

15

16 CHAPTER 3. BACKWARD AND FORWARD STEPS

6: (E→F)→(E→G) → intro 2-5

5: E→G → intro 3-4

4:

. . .

G

3: E assumption

2: E→F assumption

1: E→F→G premise

(a) before

7: (E→F)→(E→G) → intro 2-6

6: E→G → intro 3-5

5:

. . .

G

4: F→G → elim 1,3

3: E assumption

2: E→F assumption

1: E→F→G premise

(b) after

Figure 3.3: A sample forward step

4: E→(F∧G) → intro 2-3

3:

. . .

F∧G

2: E assumption

1: (E→F)∧(E→G) premise

(a) hypothesis only selected

5: E→(F∧G) → intro 3-4

4:

. . .

F∧G

3: E assumption

2: E→F ∧ elim 1

1: (E→F)∧(E→G) premise

(b) consequent below hypothesis

Figure 3.4: A forward step without a target conclusion

You can also select a conclusion as well, if you want to. Some steps require a conclusion selection: you can
look up the step in this manual or you can try it out and see what happens.

Once you have made your selection(s), choose your step from the Forward menu.

Jape writes the result of the step — the consequent deduced from the antecedent(s) you selected — just
below your selection(s). For example, figure 3.3 shows an → elim step with two hypothesis selections.
The consequent is line 4 in the ‘after’ picture. Notice that the justification of the step is written against the
consequent.

4: E→(F∧G) → intro 2-3

3:

. . .

F∧G

2: E assumption

1: (E→F)∧(E→G) premise

(a) hypothesis and conclusion selected

5: E→(F∧G) → intro 2-4

4:

. . .

F∧G

3: E→F ∧ elim 1

2: E assumption

1: (E→F)∧(E→G) premise

(b) consequent above conclusion

Figure 3.5: A forward step with a target conclusion

3.1. MAKING A FORWARD STEP 17

8: E∨(F∧G) ∨ elim 2,4-5,6-7

7:

. . .

E∨(F∧G)

6: F assumption

5: E∨(F∧G) ∨ intro 4

4: E assumption

3: E∨G ∧ elim 1

2: E∨F ∧ elim 1

1: (E∨F)∧(E∨G) premise

(a) before: hypothesis and conclusion selected

12: E∨(F∧G) ∨ elim 2,4-5,6-11

11: E∨(F∧G) ∨ elim 3,7-8,9-10

10:

. . .

E∨(F∧G)

9: G assumption

8:

. . .

E∨(F∧G)

7: E assumption

6: F assumption

5: E∨(F∧G) ∨ intro 4

4: E assumption

3: E∨G ∧ elim 1

2: E∨F ∧ elim 1

1: (E∨F)∧(E∨G) premise

(b) after: argument by cases outlined

Figure 3.6: ∨ elim needs a target conclusion

3.1.1 Selecting a target conclusion

Normally Jape writes the result of a forward step just after the hypothesis selection. Sometimes that may
not be convenient, and it may be tidier to write it lower down the proof, just above a conclusion you are
working towards.

In figure 3.4(a) only the hypothesis on line 1 is selected. A forward step — in this case “∧ elim (ignoring
right)” — puts its consequent just below the selected hypothesis, as shown in figure 3.4(b).

If you select a target conclusion as well, as in figure 3.5(a), the same step will put its consequent before the
line of dots above the selected conclusion, as shown in figure 3.5(b).

3.1.2 What can go wrong with a forward step?

When Jape can’t make a forward step it’s for one of the following reasons. In all cases you’ll get an error
message which explains the problem.

1. No selected hypothesis.
If you don’t select a hypothesis formula, you can’t make a forward step.

2. Not enough selections.
Some steps need more than a single hypothesis selection.

3. Wrong hypothesis shape.
Most forward steps apply to a particular shape of hypothesis formula. If you select the wrong shape,
you can’t make the step.

4. No target conclusion.
Two forward steps — ∨ elim, ∃ elim — need a conclusion selection as well as a hypothesis, because

18 CHAPTER 3. BACKWARD AND FORWARD STEPS

2:

. . .

E∧(F∧G)

1: (E∧F)∧G premise

(a) conclusion selected

4: E∧(F∧G) ∧ intro 2,3

3:

. . .

F∧G

2:

. . .

E

1: (E∧F)∧G premise

(b) two new conclusion antecedents

Figure 3.7: A sample backward step

6:

. . .

E∧(F∧G)

5: G ∧ elim 1

4: F ∧ elim 2

3: E ∧ elim 2

2: E∧F ∧ elim 1

1: (E∧F)∧G premise

(a) conclusion selected

7: E∧(F∧G) ∧ intro 3,6

6:

. . .

F∧G

5: G ∧ elim 1

4: F ∧ elim 2

3: E ∧ elim 2

2: E∧F ∧ elim 1

1: (E∧F)∧G premise

(b) one hypothesis, one conclusion antecedent

Figure 3.8: A sample backward step with a relevant hypothesis

the consequent can’t be calculated from the antecedents. Jape writes the result of the step just above
the target conclusion, and writes the justification next to the selected consequent. For example, see
the ∨ elim step in figure 3.6. The result of the step (there’s quite a lot of it!) is written above line 7 of
the ‘before’ state, to form lines 7 to 10 of the ‘after’ state.

3.2 Making a backward step

Backward steps work on an open conclusion — a line without a justification, written just below a line of three
dots. They may prove it completely, if Jape can find hypotheses to match the antecedents, or the antecedents
may become unproved conclusions. For example, figure 3.7(a) shows an open conclusion selection, and
figure 3.7(b) shows the effect of a backward ∧ intro step, where each antecedent has become a new open
conclusion. Figure 3.8(a) shows the same conclusion selected when there are more hypothesis formulae
available, and in figure 3.8(b) only one open conclusion is generated because line 3 matches the antecedent
of the ∧ intro step.

In every case the justification of the step is written next to the selected conclusion, the consequent of the
step.

3.2.1 What can go wrong with a backward step?

1. Wrong conclusion shape.

3.3. STEPS WHICH DON’T NEED A SELECTION 19

4: E∧(F∨G) ∧ intro 2,3

3:

. . .

F∨G

2:

. . .

E

1: (E∧F)∨(E∧G) premise

(a) E is the consequent

4: E∧(F∨G) ∧ intro 2,3

3:

. . .

F∨G

2:

. . .

E

1: (E∧F)∨(E∧G) premise

(b) F ∨G is the consequent

Figure 3.9: Conclusion selection to tell Jape where to work

Each backward step, except for contra, applies to a particular shape of consequent formula. If you
select the wrong shape, you can’t make the step.

2. No selected consequent.
If there is more than one unproved conclusion, Jape doesn’t try to choose between them. In figure
3.7(b), for example, Jape wouldn’t know where to apply a backward step. Selecting an unproved con-
clusion, as in figure 3.9, resolves the ambiguity. (Notice in figure 3.9(a) that line 2 is an ambiguous
hypothesis/conclusion formula, selected as a conclusion by clicking on it’s top half.)

3. Hypothesis selected.
Backward steps (except for ∃ intro) don’t need and can’t make use of a selected hypothesis formula.

3.3 Steps which don’t need a selection

If there is only one formula in the proof that can be selected as a hypothesis, it would be annoying to be
told to select it before you can make a forward step. If there’s only one unproved conclusion in the proof, it
would be annoying to be told to select that to make a backward step. If the only possible target conclusion
is on the next line to the hypothesis, it would be annoying to be told to select it when a step needs a target.
So in all those cases Jape lets you get away without selection, and does the obvious thing.

20 CHAPTER 3. BACKWARD AND FORWARD STEPS

Chapter 4

Rules of thumb for proof search

Rules of thumb1 are guesswork, approximate guides that don’t always work. Proof search is much easier if
you recognise some simple principles.

1. Almost all the rules work on the shape of a hypothesis or consequent formula. Use the shape as a
guide to help you choose a rule.

2. Use rules that introduce assumptions into the proof as early as possible. Those rules are:

• → intro backwards (for the assumption);

• ∨ elim forwards (for the assumptions);

• ¬ intro backwards (for the assumption);

• ∀ intro backwards (for the variable);

• ∃ elim forwards (for the variable and the assumption).

3. ∨ intro works backwards better than it does forwards; but since it throws away half the conclusion
you apply it to, use it very carefully and as late as possible.

4. ¬ elim works better forwards than it does backwards, once the contradictory formulae have been
revealed.

5. If you use ¬ elim backwards, look for a hypothesis to unify with the unproved conclusion ¬ B (a
negated unknown).

6. Classical contra — ‘proof by contradiction’ — can be used as a last resort in any situation. It intro-
duces an assumption, and doesn’t mind what shape the consequent is. (Constructive contra is just as
applicable, but since it doesn’t introduce an assumption, it isn’t usually much help.)

1 An inch was originally defined as the width of an adult male thumb, so a ‘rule of thumb’ is an approximate measure, then (by
punning ‘rule’=measurer) an approximate guide.
There is a Greek word ‘heuristic’ for rule-of-thumb, but I prefer the old English.
Some people object to the English phrase because there was once a folk tradition in England that a man could legally beat his
wife with a stick no thicker than his thumb, and it was popularly called rule of thumb. (There’s a reference, for example, in E.P.
Thompson’s Customs in Common.) The tradition was repulsive and mistaken, but (a) it’s been forgotten, except by historians,
and (b) the ‘approximate guide’ reading predates it.

21

22 CHAPTER 4. RULES OF THUMB FOR PROOF SEARCH

7. If Jape won’t let you make the proof, you’re doing it wrong. There aren’t any bugs in Jape’s treatment
of Natural Deduction, and all the proofs in the Conjectures and Classical conjectures panels are possi-
ble — I’ve done them all. Similarly, all the ones in the Invalid conjectures panel are impossible (they
are included so that you can disprove them — see chapter 7).

8. Don’t be afraid to Undo and Redo to search alternative routes to proof. Jape permits multiple Undos
and corresponding Redos.

4.1 Look at the shape of the formula

There is a general principle: logical steps in Natural Deduction almost always simplify a formula, removing
a connective (→, ∧, ∨ or ¬) or a quantifier (∀ or ∃) and breaking the formula into its constituent parts.
Persuasion (intro) rules do that working backwards, and use (elim) rules do it forwards. To choose a rule,
look for the main connective (or the quantifier) in an unproved conclusion or a hypothesis, and use the rule
which works on that connective (or quantifier).

The way that rules match formulae is so nearly mechanical that I could have set Jape up to choose the relevant
rule when you merely double-click on a formula. Because I want you to learn about Natural Deduction and
not just the use of the mouse, I’ve been grandad-ish and set it up so that you have to choose the rules for
yourself.

Chapter 5

The steps summarised

5.1 ∧ steps

You use ∧ intro backwards by selecting an A ∧ B conclusion and choosing “∧ intro” from the Backward
menu. It generates new conclusion lines from the antecedents of the rule, as shown in figures 3.7 and 3.8 on
page 18. I strongly recommend using ∧ intro backwards rather than forwards.

You use ∧ elim forwards by selecting an A → B hypothesis and choosing one of the two versions of the
step from the Forward menu: “∧ elim (preserving left)” deduces A, and “∧ elim (preserving left)” deduces
B. The effect is illustrated in figures 3.4 and 3.5 on page 16.

∧ intro forward is also possible: select two hypothesis formulae to be the antecedents and use “→ intro”
from the Forward menu. But it’s easier backwards, really it is. The problem in figure 5.1, for example,
is easy if the first step is ∧ intro backwards — you have two things to prove and you have to prove them
separately — and impossible almost any other way.

∧ elim backwards is possible, but for some reason or other I didn’t include it (and I’m sure I had a good
reason, so I’m not going to add it now).

5.2 → steps

You use→ intro backward by selecting a A → B conclusion and then choosing “→ intro” from the Back-
ward menu. See figure 5.2, for example. Notice that the step introduces a new assumption and therefore a
new box (and that’s why it should be used early).

You can use→ elim forward by selecting a A hypothesis and a A → B hypothesis, as shown by the trivial
example in figure 5.3. (Shift-click to select the second hypothesis: if you select the wrong thing either cancel
it with a shift-click or click on the background to cancel all your selections, and start again.)

You can also use → elim half-forward, half-backward if you select a A → B hypothesis and a target
conclusion and apply “→ elim” from the Forward menu. Jape writes a new conclusion A followed by a

2:

. . .

(E→F)∧(E→G)

1: E→(F∧G) premise

Figure 5.1: ∧ intro backwards needed

23

24 CHAPTER 5. THE STEPS SUMMARISED

2:

. . .

E→(F→G)

1: (E→F)→G premise

(a) E → (F → G) selected

4: E→(F→G) → intro 2-3

3:

. . .

F→G

2: E assumption

1: (E→F)→G premise

(b) hypothetical argument outlined

Figure 5.2: → intro backward

2:

. . .

G

1: E→F, F→G, E premises

(a) E and E → F selected

3:

. . .

G

2: F → elim 1.1,1.3

1: E→F, F→G, E premises

(b) consequent F deduced

Figure 5.3: → elim forward

4: (E∨F)→(E∨G) → intro 2-3

3:

. . .

E∨G

2: E∨F assumption

1: F→G premise

(a) F → G and target conclusion selected

6: (E∨F)→(E∨G) → intro 2-5

5:

. . .

E∨G

4: G → elim 1,3

3:

. . .

F

2: E∨F assumption

1: F→G premise

(b) consequent G deduced from new open conclusion F

Figure 5.4: → elim half backward, half forward

5.3. ∨ STEPS 25

7: E∧F ∧ intro 5,6

6:

. . .

F

5: E contra (classical) 2-4

4: ⊥ ¬ elim 3,1

3:

. . .

¬E∨¬F

2: ¬E assumption

1: ¬(¬E∨¬F) premise

(a) before: conclusion selected

7: E∧F ∧ intro 5,6

6:

. . .

F

5: E contra (classical) 2-4

4: ⊥ ¬ elim 3,1

3: ¬E∨¬F ∨ intro 2

2: ¬E assumption

1: ¬(¬E∨¬F) premise

(b) after: uncertainty resolved

Figure 5.5: ∨ intro backwards is easy

6: E∧F ∧ intro 4,5

5:

. . .

F

4: E contra (classical) 2-3

3:

. . .

⊥

2: ¬E assumption

1: ¬(¬E∨¬F) premise

(a) before: hypothesis selected

7: E∧F ∧ intro 5,6

6:

. . .

F

5: E contra (classical) 2-4

4:

. . .

⊥

3: ¬E∨_B1 ∨ intro 2

2: ¬E assumption

1: ¬(¬E∨¬F) premise

(b) after: ‘unknown’ formula introduced

Figure 5.6: ∨ intro forwards generates an unknown

consequent B, as shown in figure 5.4. It’s a half-backward step because it introduces a new conclusion.

→ intro forward is just daft, and Jape won’t attempt it. → elim backward is possible, but it introduces
unknowns and there’s no real advantage, so I don’t let Jape try.

5.3 ∨ steps

Because ∨ elim forwards implements argument by cases, and because the consequent C can’t be deduced
from the A∨B antecedent, it generates big proof changes from a small gesture. That frightens novices, but
be brave, because ∨ elim is one of the rules that generates assumptions, so you have to use it as early as
possible in a proof.

∨ intro backwards is destructive — it throws away half a conclusion — so you use it as late as possible,
even though it’s very easy to use.

You use ∨ elim forwards by selecting a hypothesis which fits A ∨ B, an open conclusion C (if there’s only
one available conclusion, and if its on the line below the hypothesis, Jape will let you off the conclusion
selection) and “∨ elim” from the Forward menu. See figure 3.6 on page 17, for example. Note that the
boxes representing the A leads to C and B leads to C arguments (lines 7-8 and 9-10 in figure 3.6(a), for
example) are written just above the selected conclusion C, and the justification is (of course) written against

26 CHAPTER 5. THE STEPS SUMMARISED

6: ¬E∧¬F ∧ intro 4,5

5:

. . .

¬F

4: ¬E ¬ intro 2-3

3:

. . .

⊥

2: E assumption

1: ¬(E∨F) premise

(a) before: hypothesis ¬(E ∨ F) and target conclusion
selected

7: ¬E∧¬F ∧ intro 5,6

6:

. . .

¬F

5: ¬E ¬ intro 2-4

4: ⊥ ¬ elim 3,1

3:

. . .

E∨F

2: E assumption

1: ¬(E∨F) premise

(b) after: conclusion E ∨ F generated

Figure 5.7: ¬ elim forwards is easy

4: ¬E∧¬F ∧ intro 2,3

3:

. . .

¬F

2:

. . .

¬E

1: ¬(E∨F) premise

(a) before: conclusion ¬F selected

6: ¬E∧¬F ∧ intro 2,5

5: ¬F ¬ intro 3-4

4:

. . .

⊥

3: F assumption

2:

. . .

¬E

1: ¬(E∨F) premise

(b) after: contradiction argument outlined

Figure 5.8: ¬ intro backwards is very easy

the selected conclusion.

∨ intro is easy to use backwards: select an open conclusion, decide which half to keep and which to throw
away, and apply the corresponding step (“∨ intro (preserving left)” or “∨ intro (preserving right)”) from the
Backward menu. See figure 5.5, for example.

For some reason that I’ve forgotten, I was persuaded to allow ∨ intro forward. I rather regret it, because this
isn’t a step for novices to use. But, if you must: you select a hypothesis, decide which half of the consequent
it has to be, and apply the corresponding step (“∨ intro (inventing left)” or “∨ intro (inventing right)”) from
the Forward menu. The step always invents an unknown, as illustrated in figure 5.6 by an “inventing right”
step, and you have to deal with the unknown somehow (see chapter 6 for suggestions).

If unknowns frighten you, don’t use ∨ intro forwards (the easy way to solve the proof problem in figure 5.6,
for example, is ¬ elim forwards from line 1 with target conclusion line 4, producing figure 5.5(a); then ∨
intro backwards preserving left produces figure 5.5(b)).

∨ elim backwards would be possible, but not for novices, so I didn’t allow it.

5.4 ¬ steps

¬ elim works best forwards, ¬ intro backwards.

5.4. ¬ STEPS 27

6: ¬E∧¬F ∧ intro 4,5

5:

. . .

¬F

4: ¬E ¬ intro 2-3

3:

. . .

⊥

2: E assumption

1: ¬(E∨F) premise

(a) before: conclusion ⊥ selected

8: ¬E∧¬F ∧ intro 6,7

7:

. . .

¬F

6: ¬E ¬ intro 2-5

5: ⊥ ¬ elim 3,4

4:

. . .

¬_B1

3:

. . .

_B1

2: E assumption

1: ¬(E∨F) premise

(b) after: unknown B1 invented, and two conclusions
generated

Figure 5.9: ¬ elim backwards is harder

1:

. . .

E∨¬E

(a) before: conclusion E ∨ ¬E selected

3: E∨¬E contra (classical) 1-2

2:

. . .

⊥

1: ¬(E∨¬E) assumption

(b) after: contradiction argument outlined

Figure 5.10: A sample classical contradiction step

To use ¬ elim forwards, select a hypothesis ¬A, or two hypotheses ¬A and A, and choose “¬ elim” from
the Forward menu. You can select a target conclusion too, if you like. The step generates a consequent ⊥,
(plus a conclusion A if you only select one hypothesis). See figure 5.7, for example.

To use ¬ intro backwards, select an open conclusion ¬B and “¬ intro” from the Backward menu. See figure
5.8, for example.

It’s possible to use ¬ elim backwards, if you select an open conclusion ⊥. It generates an unknown B and
two new open conclusions ¬ B and ¬ B, as illustrated in figure 5.9. It’s usually easier to do it forwards,
though.

¬ intro forwards doesn’t make much sense, so I didn’t allow it.

5:

. . .

F

4: ⊥ ¬ elim 3,2

3:

. . .

E

2: ¬E ∧ elim 1

1: E∧¬E premise

(a) before: hypothesis ⊥ and target conclusion selected

5: F contra (constructive) 4

4: ⊥ ¬ elim 3,2

3:

. . .

E

2: ¬E ∧ elim 1

1: E∧¬E premise

(b) after: conclusion ‘proved’

Figure 5.11: A sample constructive contradiction step

28 CHAPTER 5. THE STEPS SUMMARISED

5: ∃y.R(y) contra (classical) 2-4

4: ⊥ ¬ elim 3,1

3:

. . .

∀x.¬R(x)

2: ¬∃y.R(y) assumption

1: ¬∀x.¬R(x) premise

(a) before: ∀x.¬R(x) conclusion selected

7: ∃y.R(y) contra (classical) 2-6

6: ⊥ ¬ elim 5,1

5: ∀x.¬R(x) ∀ intro 3-4

4:

. . .

¬R(i)

3: actual i assumption

2: ¬∃y.R(y) assumption

1: ¬∀x.¬R(x) premise

(b) after: generalised proof outline introduced, with
private variable i

Figure 5.12: A ∀ intro step backwards

5.5 ⊥ (contradiction) steps

Classical contra is a hard rule to use (there ought to be a blues song about that), but you know you are going
to have to use it for some problems. It only works backwards. Constructive contra is easier if you use it
forwards.

To use classical contra, select an open conclusion A and choose “contra (classical)” from the Backward
menu. It creates a hypothetical contradiction argument with assumption ¬A, as shown in figure 5.10.

To use constructive contra forwards, select a ⊥ hypothesis and an open conclusion, and choose “contra
(constructive)” from the Forward menu. See figure 5.11, for example.

Constructive contra backwards is destructive: it throws away whatever conclusion it is applied to. But you
can do it if you want to. Classical contra forwards would be absurd.

5.6 > (truth) step

You can always prove > as an open conclusion: select it and apply “truth” from the Backward menu. And
that’s all you can do with >: no forward step is possible.

5.7 ∀ steps

∀ intro works backwards, ∀ elim forwards. ∀ intro is worth using early, because it introduces a variable. The
privacy condition on the ∀ intro step won’t usually bother you, because Jape always invents a new variable
(i, i1 , i2 , and so on).

To use ∀ intro backwards, select an open conclusion ∀x.P (x) and choose “∀ intro” from the Backward
menu. Jape builds the outline of the generalised proof, as illustrated in figure 5.12.

To use ∀ elim forwards, you must select a hypothesis ∀x.P (x) and also actual j, then choose “∀ elim” from
the Forward menu. The effect is illustrated in figure 5.13.

5.7. ∀ STEPS 29

8: ∀y.R(y)∧∀z.S(z) ∧ intro 4,7

7: ∀z.S(z) ∀ intro 5-6

6:

. . .

S(i)

5: actual i assumption

4: ∀y.R(y) ∀ intro 2-3

3:

. . .

R(i1)

2: actual i1 assumption

1: ∀x.(R(x)∧S(x)) premise

(a) before: ∀x.(R(x) ∧ S(x)) and actual i hypotheses
selected

9: ∀y.R(y)∧∀z.S(z) ∧ intro 4,8

8: ∀z.S(z) ∀ intro 5-7

7:

. . .

S(i)

6: R(i)∧S(i) ∀ elim 1,5

5: actual i assumption

4: ∀y.R(y) ∀ intro 2-3

3:

. . .

R(i1)

2: actual i1 assumption

1: ∀x.(R(x)∧S(x)) premise

(b) after: R(i) ∧ S(i) consequent deduced

Figure 5.13: A ∀ elim step forwards

4: ¬∀y.R(y) ¬ intro 2-3

3:

. . .

⊥

2: ∀y.R(y) assumption

1: ∃x.¬R(x) premise

(a) before: ∃x.¬R(x) hypothesis and target conclusion
⊥ selected

6: ¬∀y.R(y) ¬ intro 2-5

5: ⊥ ∃ elim 1,3-4

4:

. . .

⊥

3: actual i, ¬R(i) assumptions

2: ∀y.R(y) assumption

1: ∃x.¬R(x) premise

(b) after: generalised proof outline introduced, with
private variable i

Figure 5.14: An ∃ elim step forwards

7: ∀y.R(y) ∀ intro 2-6

6: R(i) contra (classical) 3-5

5: ⊥ ¬ elim 4,1

4:

. . .

∃x.¬R(x)

3: ¬R(i) assumption

2: actual i assumption

1: ¬∃x.¬R(x) premise

(a) before: ∃x.¬R(x) conclusion and actual i
hypothesis selected

7: ∀y.R(y) ∀ intro 2-6

6: R(i) contra (classical) 3-5

5: ⊥ ¬ elim 4,1

4: ∃x.¬R(x) ∃ intro 3,2

3: ¬R(i) assumption

2: actual i assumption

1: ¬∃x.¬R(x) premise

(b) after: ¬R(i) antecedent deduced

Figure 5.15: An ∃ intro step backwards

30 CHAPTER 5. THE STEPS SUMMARISED

5.8 ∃ steps

∃ intro works backwards, ∃ elim forwards. ∃ elim is worth using early, because it introduces a variable. The
privacy condition on the ∃ elim step won’t usually bother you, because Jape always invents a new variable
(i, i1 , i2 , and so on).

To use ∃ elim forwards, you must select a hypothesis ∃x.P (x) and also a target conclusion, and then choose
“∃ elim” from the Forward menu. The justification is written next to the target conclusion, and a generalised
proof outline is introduced, as illustrated in figure 5.14.

To use ∃ intro backwards, you must select a conclusion ∃x.P (x) and also a hypothesis actual j, and then
choose “∃ intro” from the Backward menu. The effect is illustrated in figure 5.15.

Chapter 6

Unknowns, hyp and Unify

When James Aczel looked at novices learning logic with Jape, he pointed out that they found incomplete
steps quite disconcerting. Incomplete steps are ones that let you leave out important information so that
you can fill it in later, when you’ve discovered what it ought to be. You might be allowed to leave out the
variable in an ∃ intro step, for example, and fill it in later.

Jape uses unknowns — names starting with an underscore, like B1 — to stand for formulae which can be
filled in later. Even though James persuaded me to eliminate almost all incomplete steps from my treatment
of natural deduction, my users pleaded with me to allow some. So it is possible to introduce unknowns into
a Jape proof, and because of that it’s necessary to know how to get rid of them again.

To understand what follows you have to recognise the distinction between formula selection (red box round
a conclusion or a hypothesis formula) and subformula selection (yellow background behind part or all of
a conclusion or hypothesis formula). Note, in particular, that a subformula selection that encompasses a
complete formula is not the same thing as a formula selection.

6.1 Introducing an unknown

∨ elim backwards takes a formula with an ∨ connective and throws away half of it, because from A you can
prove A∨B, and from B you can prove A∨B. Some obsessively-forward reasoners wanted me to allow ∨
intro forwards, and just to spite them I did: it’s there in the Forward menu, under the line. Figure 6.1 shows
how you can deduce A ∨ B from A by choosing “∨ intro (inventing right)” from the Forward menu.

¬ elim backwards is another good way to get an unknown, illustrated in figure 6.2. There’s only one
unknown in the proof, but it occurs twice.

These are by no means the only way to introduce unknowns into a proof. One very interesting way is to
select a conclusion, choose “Text command” from the File menu, type “apply cut” and press return. You

2:

. . .

∀y.R(y)

1: ¬∃x.¬R(x) premise

(a) before: ∃x.¬R(x) hypothesis selected

3:

. . .

∀y.R(y)

2: ¬∃x.¬R(x)∨_B1 ∨ intro 1

1: ¬∃x.¬R(x) premise

(b) after: unknown B1 introduced in consequent

Figure 6.1: An ∨ intro step forwards

31

32 CHAPTER 6. UNKNOWNS, HYP AND UNIFY

3: ∀y.R(y) contra (constructive) 2

2:

. . .

⊥

1: ¬∃x.¬R(x) premise

(a) before: conclusion is ⊥

5: ∀y.R(y) contra (constructive) 4

4: ⊥ ¬ elim 2,3

3:

. . .

¬_B1

2:

. . .

_B1

1: ¬∃x.¬R(x) premise

(b) after: unknown B1 introduced in antecedents

Figure 6.2: A ¬ elim step backwards

3: ∀y.R(y) contra (constructive) 2

2:

. . .

⊥

1: ¬∃x.¬R(x) premise

(a) before: conclusion ⊥ selected, subformula ¬R(x)
selected

5: ∀y.R(y) contra (constructive) 4

4: ⊥ ¬ elim 2,3

3:

. . .

¬¬R(x)

2:

. . .

¬R(x)

1: ¬∃x.¬R(x) premise

(b) after: ¬R(x) used in antecedents of ¬ elim

Figure 6.3: A ¬ elim step backwards with subformula selection

will get an unknown, intermediate between the hypotheses and your conclusion. I leave you to work out
how useful that can be.

6.2 Avoiding unknowns by subformula selection

If you know beforehand what should go in place of the unknown, you can tell Jape what to use at the time
you make an ∨ intro or ¬ elim step, by subformula selection (alt/option/middle-press-and-drag over the
formula or subformula you want to use). Figure 6.3 shows an example: note that the hypothesis is not
selected, but ¬R(x) is subformula-selected.

5: ∀y.R(y) contra (constructive) 4

4: ⊥ ¬ elim 2,3

3:

. . .

¬_B1

2:

. . .

_B1

1: ¬∃x.¬R(x) premise

(a) before: subformulae ∃x.¬R(x) and B1 selected

4: ∀y.R(y) contra (constructive) 3

3: ⊥ ¬ elim 2,1

2:

. . .

∃x.¬R(x)

1: ¬∃x.¬R(x) premise

(b) after: instances of B1 replaced by ∃x.¬R(x)

Figure 6.4: Effect of a Unify command

6.3. ELIMINATING AN UNKNOWN WITH UNIFY 33

5: ∀y.R(y) contra (constructive) 4

4: ⊥ ¬ elim 2,3

3:

. . .

¬_B1

2:

. . .

_B1

1: ¬∃x.¬R(x) premise

(a) before: hypothesis ¬∃x.¬R(x) and conclusion
¬ B1 selected

4: ∀y.R(y) contra (constructive) 3

3: ⊥ ¬ elim 2,1

2:

. . .

∃x.¬R(x)

1: ¬∃x.¬R(x) premise

(b) after: instances of B1 replaced by ∃x.¬R(x)

Figure 6.5: Effect of hyp on an unknown

Figure 6.6: Proof with proviso

5: ∀y.R(y) ∀ intro 3-4

4:

. . .

R(i)

3: actual i assumption

2: ¬∃x.¬R(x)∨_B1 ∨ intro 1

1: ¬∃x.¬R(x) premise

Provided:
i NOTIN _B1

Figure 6.7: Preparation for proviso-violating
unification

6.3 Eliminating an unknown with Unify

If you have an unknown in your proof, and a subformula somewhere in the proof which you want to use
to replace the unknown, then subformula selection and the “Unify” command from the Edit menu will do
the job. You subformula-select two or more subformulae which you want to make the same by replacing
unknowns (command/control-alt/option/middle-press-and-drag is the gesture you need to make more than
one subformula selection). Figure 6.4 shows an example. Note that there are no formula selections in figure
6.4(a), only subformula selections.

6.4 Eliminating an unknown with hyp

The hyp step is really just a cloak for the Unify command: make this selected conclusion the same as
this selected hypothesis (or these selected hypotheses). For example see figure 6.5. Note that making
¬∃x.¬R(x) the same as ¬ B1 means making ∃x.¬R(x) the same as B1 .

34 CHAPTER 6. UNKNOWNS, HYP AND UNIFY

Figure 6.8: Jape’s reason for rejecting unification step

6.5 Provisos and the privacy condition

Recall that the ∀ intro and ∃ elim steps introduce a variable — i, i1 , i2 , ... — for private use within a
generalised proof. If a proof attempt doesn’t include unknowns, Jape can enforce the privacy condition
easily: simply use a variable that isn’t in use already, anywhere in the proof. If there are unknowns about,
things aren’t so simple: Jape has to ensure that you don’t unify that unknown with a formula that uses the
private variable, because that could violate the privacy condition.

Figure 6.6 shows what happens when Jape has to invent a variable and there is an unknown in the proof.
It must prohibit the possibility that the formula B1 includes the variable i: it does this with the proviso
“i NOTIN B1 ” in the proviso pane below the proof. Figure 6.7 shows preparation for an attempt to violate
the proviso with a Unify command (making B1 , which appears outside the box, the same as R(i) inside
the box). Figure 6.8 shows the error message that Jape generates when you try the unification.

You get the same situation if you try the steps in the other order (∀ intro backwards, ∨ intro forwards
selecting only the hypothesis).

Chapter 7

Disproof

My encoding of natural deduction in Jape deals with disproof by allowing you to make Kripke diagrams
which Jape will check against a sequent to see if they are examples, or counter-examples, or neither. You do
it by manipulating blobs, lines and atomic formulae in a disproof pane above the proof.

Jape shows you what is going on by underlining and colouring formulae and subformulae in the sequent
and by colouring blobs on the screen. This chapter should, therefore, be read in colour rather than in
monochrome.1

7.1 Getting started

At any point during a proof attempt you can invoke ‘Disprove’ from the Edit menu.2 Jape splits the proof
window and shows you a Kripke diagram with a single empty world and the proof-attempt sequent (you can
select hypotheses and conclusions to construct an alternative sequent: see below) in a disproof pane above
the proof pane. The sequent may already be underlined and coloured as in figure 7.1.

The main things to notice in this illustration are

• the blob in the diagram is ringed in red;

• some of the names and connectives in the sequent are coloured magenta, some are grey, and some are
black;

• some of the formulae are underlined and some are not;

• the sequent uses the semantic turnstile �;

• there’s a little green waste bin on the right;

• above the waste bin there are some tiles, each containing an atomic formula.

1 I am aware that use of colour means that some people can’t use Jape as easily as others. This is only the tip of a nasty iceberg:
Jape uses a visual presentation to make it easier to understand proof and disproof, and that excludes many people with reduced
visual acuity from using it at all.
Contrary to some propaganda, these problems aren’t easy to overcome. But I’d love to try, and I’d love to hear from anybody
who has suggestions to make, advice to offer, technical information to share, guinea-piggery to volunteer, whatever. Messages
to me at the title page address, as usual.

2 There isn’t a Disprove button in the conjecture panels. Perhaps there should be! You have to hit Prove to start a proof attempt
and then choose Edit:Disprove.

35

36 CHAPTER 7. DISPROOF

Figure 7.1: Proof attempt with proof pane below and disproof pane above

actual j
R(j)

actual j

R(j)

S(j)

actual j, S(j) ⊧ ∀x.(R(x)→S(x))

Figure 7.2: A multi-world situation

R(j)
actual j

actual j

R(j)

S(j)

actual j, S(j) ⊧ ∀x.(R(x)→S(x))

Figure 7.3: A single-world situation

In general magenta means ‘forced’, black means ‘unforced’ and grey means ‘irrelevant’.

Because of operating system variations, your window may not look exactly like the illustration, but it will
have the same parts. In other illustrations I show the important bits of the proof and/or disproof panes,
without the waste bin and the scroll bars and stuff.

7.2 Alternative sequents

If you select a conclusion in the proof pane (or, if Jape doesn’t want to let you do that, the reason next to
the conclusion) and then hit Edit:Disprove, Jape will use the disproof sequent consisting of the conclusion
as consequent and all the hypotheses above it as antecedent formulae. If you select some of the hypotheses
as well as the conclusion, they will be used as the antecedents.

You can choose a new disproof sequent at any time, even in the middle of a disproof attempt.

If you want to set up an entirely new challenge, enter it into one of the conjectures panels (New button), hit
Prove and then Edit:Disprove in the proof window.

7.2.1 Selecting a situation

There is always one selected world in a diagram, ringed in red. The selected world is the root world of the
situation evaluated by Jape. For example, in figure 7.2 the situation is the whole diagram; in figure 7.3 it’s

7.3. MAKING DIAGRAMS 37

E

F

G

E→(F→G) ⊧ (E→F)→G

Figure 7.4: A simple counter-
example

actual j actual k R(k)

actual j actual k R(j)

actual j actual k actual j

actual k

R(j)

R(k)

actual j, actual k ⊧ ∃x.(R(x)→R(j)∧R(k))

Figure 7.5: An elaborate counter-example

the single world at top left.

7.2.2 What’s forced ? — colouring, greying, underlining

Jape evaluates all the formulae and sub-formulae of the sequent in the situation with the selected world as
its root, and colours all those formulae and sub-formulae.

• The default colour is black, and it means not forced.

• If a (sub-)formula’s value is never called on — usually this is true of quantified predicates, for example
— then it’s grey, meaning strictly irrrelevant.

• An atomic (sub-)formula which is forced is coloured magenta (this covers atoms like E, atomic pred-
icates like S(j) and individuals like actual k).

• When a non-atomic (sub-)formula is forced, its connective is coloured magenta.

• When an entire sequent premise or conclusion is forced, it is underlined in magenta.

So: when all the premises are magenta-underlined and the conclusion is not, you have a counter-example;
when everything is underlined you have an example; otherwise you have nothing in particular.

Figure 7.4 shows a sample counter-example, and the colouring gives a hint of why it’s a counter-example: E
isn’t forced anywhere, so the premise implication is forced (magenta arrow, underlining); and then, because
E → F is forced but G isn’t, the conclusion isn’t forced (black arrow, no underlining). Figure 7.5 shows
an elaborate counter-example: the premises are obviously forced, but there are no individuals to force the ∃
quantification in the conclusion.

The disproof pane in figure 7.1 shows neither a counter-example nor an example. The premises aren’t forced
because, as atomic formulae, they aren’t present at the root world; the conclusion is forced because every
individual in the situation (there aren’t any ... remember the green sheep) forces a version of R(x)→ S(x).
Similar remarks apply to figures 7.2 and 7.3.

7.3 Making diagrams

To begin your disproof Jape presents you with the simplest diagram: the isolated empty world. You add
components to your diagram — worlds, formulae and lines — using drag-and-drop mouse gestures. You
can delete components by dragging them to the waste bin. You can add tiles with double-clicks. You can
Undo your actions to any degree that you like, and Redo likewise.3

38 CHAPTER 7. DISPROOF

To move a component of a diagram you put the mouse pointer over it, press (left button on a multi-button
mouse), hold a moment, then — still pressing — move to a new position, and finally release. Jape shows
you a transparent image of the thing you are dragging, so you can see what you are doing.

To duplicate a component you hold down the alt/option key throughout the gesture (or use the middle button
on a multi-button mouse) and you drag a new copy of the thing you pressed on.

Sometimes the purpose of the drag is to drop one component onto, or into, another. You drag the first
component until the mouse pointer is over the one you want to drop onto/into. The recipient will change
colour if it’s prepared to accept the drop, and you simply let go while it’s lit up. If the drop fails (you aren’t
over a component, or it won’t light up) then the dropped component flies back to base.

7.3.1 Dragging worlds

You can move-drag worlds about the place to make your diagram look nicer. You press on the blob, and you
drag the blob plus any formulae attached to it. Lines connected to the world stay connected, and you can
drop it anywhere you like. To preserve the ‘connections only upwards’ principle, Jape will delete a line if
you drag a world below its parent.

By duplicate-dragging a blob, you drag a copy of the world — the blob plus any formulae attached to it —
with a line attaching it to the world it came from. The new world stays where you put it. If it’s above the
world you dragged it from, they will be connected by a line. If it’s level or below, then no line.

You can drag a world onto a line (which lights up to show you are over it) or another world (which lights up
ditto) and Jape does the obvious thing, adding whatever formulae are necessary to whatever worlds in order
to maintain monotonicity.

If you drag a world to the waste bin it’s deleted, along with all the formulae attached to it and all the lines
connected to it. The bin lights up when it will accept the world; it won’t accept the currently-selected world.

If you drop the world onto another the two worlds are merged. Jape does the correct monotonicity adjust-
ments to the diagram by adding formulae to the children of the destination.

7.3.2 Dragging lines

You can drag lines and drop them onto worlds or into the waste bin, as you wish. Jape does the obvious
thing in each case (if you can’t guess what that is, just try it!).

If you want to make a line between world A and world B, where A is below B, duplicate-drag A to B and
drop the new world onto B. Jape makes the monotonicity adjustments, adding formulae to B and its children
as necessary. Dragging from B to A will have some not-very-useful effect (but there’s always Undo!).

7.3.3 Dragging formulae

You can drop a formula on a world, or drag it away from a world, in one of several ways. If a formula is
added to a world then, to preserve monotonicity, it is added to the children of that world as well. If a formula
is deleted from a world then it is deleted from all ancestors of that world.

You can drag a formula from a tile and drop it onto a world (the world lights up, of course, to show that
it’s eager to accept; worlds won’t accept a second copy of a formula they already have). The formula isn’t
deleted from the tile, whichever kind of drag gesture you use, because tiles are infinite sources of formula-
copies.
3 Undo and Redo apply to the last pane you used the mouse in, either proof or disproof.

7.4. MAKING INDIVIDUALS AND PREDICATE INSTANCES 39

E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.6: A counter-example

E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.7: ¬¬E forced here
E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.8: ¬¬E → E forced
here

E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.9: ¬E forced here

E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.10: Multiple forcing

E

E

 ⊧ (¬¬E→E)∨¬E∨¬¬E

Figure 7.11: Too much forcing

You can move-drag a formula from one world onto another; it is added to the destination world and deleted
from the source world. If you duplicate-drag it instead, it is simply added to the destination world.

7.4 Making individuals and predicate instances

If a sequent mentions an individual by including a hypothesis like actual j, then there will be a tile for that
individual (see figures 7.1, 7.2, 7.3 and 7.5, for example). If there are quantifiers but no individuals you will
get a free actual i tile.

If you need more individuals, double-click any “actual ...” tile. Jape uses an obvious numbering algorithm
to name the new individual — actual j, for example, generates first actual j1 then actual j2 , and so on.4

If you want to make a new predicate instance, double-click a predicate-instance tile. Jape looks through
your tiles for unused individuals and uses them to give you a new one. For example if you have a tile for
S(j) and tiles for actual j and actual j1 , then double-clicking S(j) gets you S(j1), as you might expect. If
there’s more than one instance that could be made, Jape shows you the alternatives and asks you to choose.
If you don’t have enough individuals to make a new instance, it tells you so.

7.5 Exploring reasons

The hardest thing to explain to a novice is why a particular formula is forced in a particular situation. Figure
7.6 shows a particularly ludicrous formula and its counter-example, which really needs explanation. Jape
provides mechanisms which can be some help.

4 It would be nicer if it went i, j, k, i1 , j1 , k1 , i2 , ... One day I’ll make it do that.

40 CHAPTER 7. DISPROOF

actual j actual k

actual j actual k R(j)

actual j

actual k

R(j)

R(k)

actual j, actual k ⊧ ∃x.(R(x)→R(j)∧R(k))

Figure 7.12: Support for a quantifier

The colouring of atomic (sub-)formulae and connectives is the first mechanism. But with the negative
connectives —→ and ¬— and with the quantifiers, we often need a bit more help.

Jape allows you to select (click or left-click) or subformula-select (alt/option/middle-press-and-drag) in the
sequent. It will colour magenta all the worlds which force the selected (sub)formula. For example, figure
7.7 shows where ¬¬E is forced in the difficult example. Figures 7.8 and 7.9 show information about some
other subformulae.

If you choose more than one formula, Jape colours the worlds that force them all: see figures 7.10 and 7.11.

If you choose a quantifier formula in the sequent, Jape colours magenta not only the worlds which support it,
but also the presence markers which support that formula: i.e. individuals at worlds which which generate
a forced formula if you instantiate the quantified formula with them. In figure 7.12, for example, worlds
which force the selected quantifier are magenta; individuals which support it are magenta too. You can see
that R(k)→ R(j) ∧R(k) at each of the worlds in this example.

7.6 Completing a disproof

When you have a disproof (all the premises underlined, the conclusion not underlined), you can register it
with Jape using Edit:Done. Disproved conjectures are marked with a cross; proved conjectures get a tick.
Because you can prove some conjectures classically and also disprove them constructively, it’s possible to
get both a tick and a cross together. See figure 1.5 on page 8 for examples.

7.7 Printing disproofs

You can print or export an image of the disproof pane, using Edit:Print Disproof or Edit:Export Disproof.

Chapter 8

Using theorems and stating conjectures

8.1 Using theorems

A theorem is a proved conjecture, one with a tick next to it in a conjecture panel. Jape lets you use the
theorem

A1, A2, . . . , An ` B

as if it was the rule

A1 A2 . . . An

B

You can apply a theorem backwards or forwards using the Apply button in its conjecture panel.

To work backwards, just select an open conclusion in the proof window, select the theorem in its panel,
and press the Apply button. Jape will apply the theorem like any rule, instantiating it to fit the conclusion,
making antecedents of its premises and entering them as hypotheses or linking to existing hypotheses if
possible. See figure 8.1, for example.

Because forward steps take a lot of careful use of behind-the-scenes technology, theorems work best back-
wards. But sometimes you must work forwards, and you can do that in two ways.

If your theorem has exactly one premise, you can select a hypothesis to match that premise and apply the
theorem like a forward rule, as illustrated in figure 8.2.

If your theorem has no premises or more than one premise, don’t select a hypothesis but do select a conclu-
sion and apply the theorem. It sounds daft but it works: Jape makes a version of the theorem in which all the
variable and formula names are replaced by unknowns and inserts it into the proof, as illustrated in figure
8.3. You have to get rid of the unknowns using hyp steps or the Unify command, as described in chapter 6.

1:

. . .

E∨¬E

(a) before: conclusion E ∨ ¬E selected

2: E∨¬E Theorem ¬(¬E∧¬F) ⊢ E∨F 1

1:

. . .

¬(¬E∧¬¬E)

(b) after: hypothesis ¬(¬E ∧ ¬¬E) generated

Figure 8.1: Theorem applied backward

41

42 CHAPTER 8. USING THEOREMS AND STATING CONJECTURES

3: ((E→F)→E)→E → intro 1-2

2:

. . .

E

1: (E→F)→E assumption

(a) before: hypothesis (E → F) → E selected

4: ((E→F)→E)→E → intro 1-3

3:

. . .

E

2: (E∧F)→E Theorem (E→F)→G ⊢ (E∧F)→G 1

1: (E→F)→E assumption

(b) after: consequent (E ∧ F) → E generated

Figure 8.2: Single-premise theorem applied forward

2:

. . .

∃y.¬R(y)

1: ¬∀x.R(x) premise

(a) before: conclusion selected

3:

. . .

∃y.¬R(y)

2: _E∨¬_E Theorem E∨¬E

1: ¬∀x.R(x) premise

(b) after: theorem inserted, with unknowns

Figure 8.3: Theorem applied to non-matching conclusion

Figure 8.4: The New Conjecture window

8.2. STATING YOUR OWN CONJECTURES 43

8.2 Stating your own conjectures

Press the “New...” button on any conjectures panel and you see a window like figure 8.4. You type your
conjecture using the keyboard in the normal way, and you can use the buttons provided to get the fancy
symbols that aren’t on your keyboard.

Names in a conjecture have to obey certain rules:

• variables must start with x, y, z, i, j or k and can continue with any letter or digit;

• formula or predicate names must start with A, B, C, D, E, F , G, H , P , R, S or T and can continue
with any letter or digit.

If you make a mistake, like leaving out a dot or a bracket in a crucial spot, or typing a name it can’t
recognise, Jape will complain. If you make more than one mistake, Jape only spots the first (reading left to
right). Sometimes the error messages will be hard to understand: I’m sorry for that, but it’s really hard to
improve them.

44 CHAPTER 8. USING THEOREMS AND STATING CONJECTURES

Chapter 9

Troubleshooting

9.1 Problems getting started

On MacOS / OS X your security settings may stop you running Jape, saying it comes from a unknown
developer. There’s a way round this: ctrl-click Jape, choose Open from the little menu that appears, and say
Open on the alert window that comes up. After that it can be double-clicked as normal.

On Windows and Linux Bernard distributes an ‘installation jar’ – a bundle of stuff that distributes itself
round your filestore. From his website:

It is never appropriate for you to unpack the .jar file, but it turns out that certain file-archiving
software on these operating systems tell the operating system that .jar files are archives, and that
opening means unpacking. On a Linux machine the way round this is to java -jar Install...jape.jar
from a terminal window. On a Windows machine right-click on the jar file, and select the Open
with ... java ... menu entry.

The Jape app can be put anywhere you like. The examples can be anywhere you like.

If you installed Jape and it won’t start properly, throw it all away and install it again. This time follow the
instructions precisely. Then it will work.

9.2 What if a proof step goes wrong?

When you try to apply a rule one of two things can happen. Either the rule applies, and the step goes through,
or it doesn’t, and Jape shows you an error message.

Even though a rule does apply and the proof step does go through, it may not turn out to be the right thing to
do. Sometimes an apparently successful step can lead to a dead end. Sometimes a step works, but not in the
way that you expected — perhaps lots of unknowns suddenly appear in the proof, or there are lots of extra
lines that you didn’t expect, or lots of lines suddenly disappear.

Whenever something happens that isn’t what you expected, the first stage of a cure is to use the Undo
command from the Edit menu. Undo takes you back one step in the proof, two Undos take you back two
steps, and so on. Using several Undos can move you back from a dead end to an earlier position from which
you can move forward in a different direction.

You can even recover from Undo! The Redo command (also in the Edit menu) reverses the effect of Undo,
two Redos reverse two Undos, and so on. So if you decide, after Undoing, that you really did want to make

45

46 CHAPTER 9. TROUBLESHOOTING

the step after all, Redo will make it again. (If you Undo and make a new proof step, then the one you Undid
is gone for ever, like it or not.)

The Undo command allows you to explore if you don’t know what rule or theorem to apply in a proof: you
can experiment with different rules and theorems from the menus until you find one that works. That can
be a bad thing, if you just try things at random until you find one that happens to work, and don’t reflect on
what you are doing. It’s also the slowest way of finding proofs. But sometimes we all need to search and
experiment (aka “thrash about”), and then Undo and Redo are invaluable. I hope that when you do search
and find a surprising avenue that happens to work,. you will pause to ask yourself why it works. Jape is
designed to support ‘reflective exploration’ — it helps with the exploring part, and you learn by reflecting
on the results.

