
Prudent Engineering Practice

for Cryptographic Protocols

Mart��n Abadi and Roger Needham

November 1, 1995

Mart��n Abadi is at the Systems Research Center, Digital Equipment Cor-

poration, 130 Lytton Avenue, Palo Alto, CA 94301, USA.

Roger Needham is at the University of Cambridge Computer Laboratory,

Pembroke Street, Cambridge CB2 3QG, UK.

A preliminary version of this paper has appeared in the Proceedings of

the 1994 IEEE Computer Society Symposium on Research in Security and

Privacy.

c
Digital Equipment Corporation 1995

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

Authors' Abstract

We present principles for designing cryptographic protocols. The principles

are neither necessary nor su�cient for correctness. They are however helpful,

in that adherence to them would have prevented a number of published

errors.

Our principles are informal guidelines; they complement formal methods,

but do not assume them. In order to demonstrate the actual applicability of

these guidelines, we discuss some instructive examples from the literature.

Index Terms

Cryptography, authentication, cryptographic protocols, authentication pro-

tocols, security.

Contents

1 Introduction 1

2 Basics 2

2.1 Explicit communication . 2

2.2 Appropriate action . 3

2.3 Secrecy . 3

2.4 Examples and other principles 4

3 Notation 4

4 Naming 5

5 Encryption 8

5.1 The uses of encryption . 8

5.2 Signing encrypted data . 11

6 Timeliness 12

6.1 Timestamps, sequence numbers, and other nonces 12

6.2 What is fresh: use vs. generation 16

7 Recognizing messages and encodings 17

8 Trust 19

9 Conclusion 21

Acknowledgments 22

References 23

1 Introduction

Cryptographic protocols, as used in distributed systems for authentication

and related purposes, are prone to design errors of every kind. Over time,

various formalisms have been proposed for investigating and analyzing proto-

cols to see whether they contain blunders. (Liebl's bibliography [13] includes

references to protocols and formalisms.) Although sometimes useful, these

formalisms do not of themselves suggest design rules; they are not directly

bene�cial in preventing trouble.

We present principles for the design of cryptographic protocols. The

principles are not necessary for correctness, nor are they su�cient. They are

however helpful, in that adherence to them would have simpli�ed protocols,

and prevented a number of published confusions and mistakes.

We arrived at our principles by noticing some common features among

protocols that are di�cult to analyze. If these features are avoided, it be-

comes less necessary to resort to formal tools|and also easier to do so if

there is good reason to. The principles themselves are informal guidelines,

and useful independently of any logic.

We illustrate the principles with examples. In order to demonstrate

the actual applicability of our guidelines, we draw these examples from the

literature. Some of the oddities and errors that we analyze have been docu-

mented previously (in particular, in [4]). Other examples are new: protocols

by Denning and Sacco [6], Hickman (Netscape) [11, 10], Lu and Sundare-

shan [14], Varadharajan, Allen, and Black [31], and Woo and Lam [34]. We

believe they are all instructive.

Generally, we pick examples from the authentication literature, but the

principles are applicable elsewhere, for example to electronic-cash protocols

(e.g., [17]). We focus on traditional cryptography, and on protocols of the

sort commonly implemented with the DES [20] and the RSA [28] algorithms.

In particular, we do not consider the subtleties of interactive schemes for sig-

natures (e.g, [7]). Moreover, we do not discuss the choice of cryptographic

mechanisms with adequate protection properties, the correct implementa-

tion of cryptographic primitives, or their appropriate use; these subjects are

discussed elsewhere (e.g., [32, 19]).

Throughout, we concentrate on the simple principles with the largest

potential applicability and payo�. Admittedly, the literature is full of inge-

nious protocols and attacks. We do not attempt to formulate the laws that

underly this ingenuity, and perhaps it is not necessary to do so. We hope

that our simple principles and examples will contribute to the engineering

of robust cryptographic protocols.

1

2 Basics

A protocol, for present purposes, is a set of rules or conventions de�ning an

exchange of messages between a set of two or more partners. These part-

ners are users, processes, or machines, which we will generically refer to as

principals. In the cryptographic protocols we consider here, the whole or

part of some or all of the messages is encrypted. We interpret the term en-

cryption fairly broadly, applying it for example to signature operations. For

present purposes, encryption and decryption are de�ned as key-dependent

transformations of a message which may be inverted only by using a de�nite

key; the keys used for encryption and decryption are the same or di�erent,

depending on the cryptographic algorithm used.

We �nd two basic, overarching principles for the design of secure crypto-

graphic protocols. One principle is concerned with the content of a message

and the other with the circumstances in which it will be acted upon:

1. Every message should say what it means|its interpretation should

depend only on its content.

2. The conditions for a message to be acted upon should be clearly set

out so that someone reviewing a design may see whether they are

acceptable or not.

Next we explain these principles. They lead to other, more speci�c recom-

mendations, which we discuss in the subsequent sections.

2.1 Explicit communication

In full, our �rst basic principle is:

Principle 1

Every message should say what it means: the interpretation of

the message should depend only on its content. It should be pos-

sible to write down a straightforward English sentence describ-

ing the content|though if there is a suitable formalism available

that is good too.

For example, an authentication server S might send a message whose

meaning may be expressed thus: \After receiving bit-pattern P , S sends

to A a session key K intended to be good for conversation with B". All

elements of this meaning should be explicitly represented in the message, so

that a recipient can recover the meaning without any context. In particular,

2

if any of P , S, A, B, or K are left to be inferred from context, it may be

possible for one message to be used deceitfully in place of another.

This principle is not completely original. In [4], we recommend the

use of a logical notation in generating and describing protocols|essentially

proposing a method to follow the principle. Establishing the correspon-

dence between the logical protocol and its concrete implementation can be

a simple matter of parsing, as for example in [33, Section 4.3.2]. Although

a precise comparison of informal ideas is di�cult, we also �nd an a�nity

with Boyd and Mao's proposal that protocols should be robust in the sense

that \authentication of any message in the protocol depends only on infor-

mation contained in the message itself or already in the possession of the

recipient" [3]. An operational variant on this theme appears in the work of

Woo and Lam, who say that a protocol is a full information protocol if \its

initiator and responder always include in their outgoing encrypted messages

all the information they have gathered" [35].

2.2 Appropriate action

For a message to be acted upon, it does not su�ce that the message be

understood; a variety of other conditions have to hold too. These conditions

often consist of what may be regarded informally as statements of trust,

though this anthropomorphic notion should be used with care.

Statements of trust cannot be wrong though they may be considered

inappropriate. For example, if someone believes that choosing session keys

should be done by a suitably trusted server rather than by one of the par-

ticipants in a session, then he will not wish to use a protocol such as the

Wide-mouthed-frog protocol [4].

In general, we have:

Principle 2

The conditions for a message to be acted upon should be clearly

set out so that someone reviewing a design may see whether they

are acceptable or not.

2.3 Secrecy

The secrecy of certain pieces of information is essential to the functioning

of cryptographic protocols. Obviously, a protocol should not publicize the

cryptographic keys used for communicating sensitive data. Further, it is

important to know how long a piece of information needs to remain secret,

and to protect it accordingly.

3

None of our principles makes these points explicitly. Rather, all of our

principles warn against mistakes that often imply the loss of secrecy, in-

tegrity, and authenticity. Some of the examples clarify how the principles

relate to the need for secrecy.

There may be more to say about secrecy guidelines for cryptographic

protocols, but these are outside the scope of the present paper.

2.4 Examples and other principles

Below we discuss many concrete examples where errors would have been

avoided by using our two basic principles. We also introduce other principles,

some of them corollaries of the basic ones. In particular, we recommend:

� Be clear on how encryption is used, and on the meaning of encryption.

� Be clear on how the timeliness of messages is proved, and on the

meaning of temporal information in messages.

Hopefully, the two basic principles will encourage a certain lucidity in the

design of cryptographic protocols, and thereby make it easier to follow the

other principles.

3 Notation

We adopt notation common in the literature. That notation is not quite

uniform and, in the examples, we make compromises between uniformity of

this paper and faithfulness to the original notation.

In this paper, the symbols A and B often represent arbitrary principals,

S represents a server, T a timestamp, N a nonce (a quantity generated for

the purpose of being recent), K a key, and K�1 its inverse. In symmetric

cryptosystems such as DES, K and K�1 are always equal. For asymmetric

cryptosystems such as RSA, we assume for simplicity that the inversion

operation is an involution (so K�1�1
equals K); we tend to use K�1 for

the secret part and K for the public part of a key pair (K;K�1). We write

fXgK to represent X encrypted under K; anyone who knows fXgK and

the inverse of K can obtain X. If K is secret, we may refer to fXgK as a

signed message, and to the encryption operation as a signature.

For example,

Message 4 B ! A : fTa + 1gK
ab

describes the fourth message in a protocol; in this message, B sends to A

the timestamp Ta incremented by 1, under the key Kab. In this example,

4

the subscript a in Ta is a hint that A �rst generated Ta; the subscript ab

in Kab is a hint that Kab is intended for communication between A and B.

Similarly, we may write Ka for A's public key.

The typical notation \Message 4 B ! A : X" needs to be interpreted

with some care. The messages constituting a cryptographic protocol are not

sent in a benign environment (in which they would frequently be unneces-

sary) but in one with error, corruption, loss, and delay. Accordingly we may

read \Message 4 B ! A : X" only as \the protocol designer intended X

to be originated by B as the fourth message in the protocol, and for it to

be received by A". There is nothing in the environment to guarantee that

messages are made in numerical order by the principals indicated, received

in numerical order or at all by the principals indicated, or received solely by

the principals indicated. If assurance is needed about any of these matters

it must be provided as part of the function of the protocol.

4 Naming

The most immediate instance of Principle 1 prescribes being explicit about

the names of principals:

Principle 3

If the identity of a principal is essential to the meaning of a

message, it is prudent to mention the principal's name explicitly

in the message.

The names relevant for a message can sometimes be deduced from other

data and from what encryption keys have been applied. However, when

this information cannot be deduced, its omission is a blunder with serious

consequences.

The principle is obvious and simple, yet it is commonly ignored. We give

several examples of fairly di�erent natures.

Example 3.1 In [6, p. 535], Denning and Sacco propose a protocol for key

exchange based on an asymmetric cryptosystem. In the �rst two messages

of this protocol, A obtains certi�cates CA and CB that connect A and B

with their public keys Ka and Kb, respectively. The exact form of CA and

CB is not important for our purposes. The interesting part of the protocol

is Message 3. There, A sends to B a key Kab for subsequent encrypted

communication between A and B, with a timestamp Ta. The protocol is:

Message 1 A! S : A; B

Message 2 S ! A : CA; CB

Message 3 A! B : CA; CB; ffKab; TagK�1
a

gK
b

5

This third message is encrypted for both secrecy and authenticity. When

A sends this message to B, it is important that no other principal obtain

Kab; the use of Kb provides this guarantee. Furthermore, the intent is that,

when B receives the message, B should know that A sent it (because of the

signature with K�1
a

). Finally, B should know that the message was intended

for B (because of the use of Kb).

Unfortunately nothing provides this �nal guarantee, with dramatic con-

sequences. Any principal B with which A opens communication can pretend

to a third party C that it actually is A, for the duration of validity of the

timestamp. For simplicity, we omit the exchanges which yield the public

certi�cates CA, CB, and CC. When A opens communication with B,

Message 3 A! B : CA; CB; ffKab; TagK�1
a

gK
b

B removes the outer encryption, re-encrypts with Kc, sends:

Message 3' B ! C : CA; CC; ffKab; TagK�1
a

gKc

and C will believe that the message is from A. In particular, C might send

sensitive information under Kab, and B may see it when perhaps only A

should.

The intended meaning of Message 3 is roughly \At time Ta, A says that

Kab is a good key for communication between A and B". Any adequate

format for Message 3 should contain all of these elements expressly or by

implication. The obvious one is:

Message 3 A! B : CA; CB; ffA; B; Kab; TagK�1
a

gK
b

although the name A might be deducible from K�1
a

. It is important that

this format must not be used for anything else; we return to this point in

Section 7. 2

Example 3.2 In [34, pp. 42{43], Woo and Lam present an authentication

protocol based on symmetric-key cryptography. When B wants to check

that it is in A's presence, it runs:

Message 1 A! B : A

Message 2 B ! A : Nb

Message 3 A! B : fNbgKas

Message 4 B ! S : fA; fNbgKas
gK

bs

Message 5 S ! B : fNbgK
bs

Here Nb is a nonce, S is a server, and Kas and Kbs are keys that A and

B share with S. Basically, A claims his identity (Message 1); B provides

6

a nonce challenge (Message 2); A returns this challenge encrypted under

Kas (Message 3); B passes this message on to S for veri�cation, bound with

A's name under Kbs (Message 4); S decrypts using A's key and re-encrypts

under B's (Message 5). If S replies fNbgK
bs
, then B should be convinced

that A has responded to the challenge Nb.

The protocol is
awed. The connection between the messages is not

su�cient. In particular, nothing connects B's query to S with S's reply.

The protocol is therefore vulnerable to an attack, as follows. Suppose that

B is willing to talk to A and to C roughly at the same time; A may be

o�-line. Then C can impersonate A:

Message 1 C ! B : A

Message 1' C ! B : C

Message 2 B ! A : Nb

Message 2' B ! C : N 0

b

Message 3 C ! B : fNbgKcs

Message 3' C ! B : fNbgKcs

Message 4 B ! S : fA; fNbgKcs
gK

bs

Message 4' B ! S : fC; fNbgKcs
gK

bs

Message 5 S ! B : fN 00

b
gK

bs

Message 5' S ! B : fNbgK
bs

where N 00

b
is the result of decrypting fNbgKcs

using Kas. In Messages 1

and 1', C tells B that both A and C want to establish a connection. In

Messages 2 and 2', B replies with two challenges; C receives one normally,

and captures the other one, which was destined to A's address. In Messages

3 and 3', C replies to both challenges. On A's behalf, it can send anything.

On its own behalf, C responds to the challenge intended for A. In Messages 4

and 4', B consults S about the two responses. Messages 5 and 5' are the

replies from S. One of these replies matches nothing, while the other one

contains the challenge intended for A. On the basis of these replies, then,

B must believe that A is present.

The existence of this attack demonstrates that the messages in the proto-

col are not su�ciently explicit about the identity of the principals in ques-

tion. (After we contacted them, Woo and Lam came to the same con-

clusion [35].) Reasoning as in Example 3.1, we may remove the
aw, by

changing the last message of the protocol to

Message 5 S ! B : fA; NbgK
bs

A further change is discussed in Example 6.2. 2

Example 3.3 A more dramatic example is provided by the basic Internet

protocol of Lu and Sundareshan [14, pp. 1016{1017]. This protocol is rather

7

complicated for a detailed description. Its intent is to allow two principals

A and B to obtain a session key, with the mediation of local servers and

gateways.

On the other hand, the fundamental
aw of the protocol is rather simple.

One immediately sees that neither A nor B ever receives a message that

contains the other's name. Obviously, this opens the door for confusions

between di�erent connections. It also allows some easy attacks to defeat the

protocol. After we contacted them, the authors published a correction [15],

where names appear in messages explicitly. 2

Example 3.4 The SSL protocol [10] from Netscape allows a Web server and

a client to exchange session keys. An early version of the SSL protocol [11]

includes the following messages:

Message 1 A! B : fKabgK
b

Message 2 B ! A : fNbgK
ab

Message 3 A! B : fCA; fNbgK�1
a

gK
ab

In the �rst message, the client A sends a session key Kab to the server B,

under B's public key. Then B produces a challenge Nb, which A signs and

returns along with a certi�cate CA. These three messages are the ones

relevant for client authentication; we omit other messages.

This version of the SSL protocol does not in fact provide client authenti-

cation as was intended. We leave the construction of an attack as an exercise

for the reader. This
aw can be repaired by making the third message more

explicit:

Message 3 A! B : fCA; fA; B; Kab; NbgK�1
a

gK
ab

The current version of the SSL protocol corrects this and other
aws that

we found. 2

5 Encryption

The next group of principles and examples concern encryption. They are

generally related to Principle 1, since they concern what encryption means

and what it does not mean.

5.1 The uses of encryption

As the examples below illustrate, encryption is used for a variety of purposes

in the present context [21].

8

� Encryption is sometimes used for the preservation of con�dentiality.

In such cases it is assumed that only intended recipients know the key

needed to recover a message. When a principal knows K�1 and sees

fXgK , it may deduce that X was intended for a principal who knows

K�1; and it may even deduce that X was intended for itself, given

additional information.

� Encryption is sometimes used to guarantee authenticity. In such cases

it is assumed that only the proper sender knows the key used to encrypt

a message. The encryption clearly contributes to the overall meaning

of the message. The extreme situation is that where a principal shows

that a key is known by encrypting a null message or a timestamp.

� While encryption guarantees con�dentiality and authenticity, it also

serves in binding together the parts of a message: receiving fX; Y gK is

not always the same as receiving fXgK and fY gK . When encryption

is used only to bind parts of a message, signature is su�cient. The

meaning attached to this binding is rather protocol-dependent, and

often subtle.

� Finally, encryption can serve in producing random numbers. There

is a vast theory that explains the relation between one-way functions

and random-number generators. At the level of abstraction that we

consider, one typically assumes that random numbers are available

without examining how they are constructed (but see Example 7.1).

There is considerable confusion about the uses and meanings of encryp-

tion. If the cryptography is asymmetric it may be obvious what is intended;

if the cryptography is symmetric, it is generally not.

Principle 4

Be clear about why encryption is being done. Encryption is not

wholly cheap, and not asking precisely why it is being done can

lead to redundancy. Encryption is not synonymous with security,

and its improper use can lead to errors.

Example 4.1 The Kerberos protocol [18] is based on the original Needham-

Schroeder protocol [22], but makes use of timestamps as nonces in order

to remove
aws demonstrated by Denning and Sacco [6] and in order to

reduce the total number of messages required. Like the Needham-Schroeder

protocol on which it is based, the Kerberos protocol relies on symmetric-key

9

cryptography. A slightly simpli�ed version of the protocol goes:

Message 1 A! S : A; B

Message 2 S ! A : fTs; L; Kab; B; fTs; L; Kab; AgK
bs
gKas

Message 3 A! B : fTs; L; Kab; AgK
bs
; fA; TagK

ab

Message 4 B ! A : fTa + 1gK
ab

Here, Ts and Ta are timestamps, and L is a lifetime. Initially the server S

shares the keys Kas and Kbs with the principals A and B; after execution,

A and B share Kab. This protocol serves to illustrate di�erent uses of

encryption; we describe the protocol step by step:

� Encryption is not essential for Message 1. Without encryption, though,

an attacker can
ood S with requests for keys, by falsifying instances

of Message 1. It is common for designers not to focus on this sort of

vulnerability.

� Message 2 requires encryption: Kab should remain con�dential, and S

should sign the message as a proof of authenticity.

� We may however question why double encryption is used in Mes-

sage 2. Most probably, this use of double encryption is simply in-

herited from the Needham-Schroeder protocol (see Example 9.1). As

in the Needham-Schroeder protocol, double encryption does not add

anything from the points of view of con�dentiality or authenticity, and

it is not entirely free of cost.

It does provide a guarantee: when B receives the �rst part of Mes-

sage 3, it knows that A must have extracted it from Message 2, and

hence that A must have looked at Message 2. (Heintze and Tygar [9]

discuss a similar use of encryption in a variant of the Otway-Rees pro-

tocol [25].) This interpretation of encryption is sound, but slightly

unusual, and probably not what the protocol designers had in mind.

The double encryption has been eliminated in recent versions of Ker-

beros.

� In the second part of Message 3, encryption is used for an entirely

di�erent purpose: A encrypts Ta with Kab in order to prove knowledge

of Kab near time Ta.

In general, Ta may be a few hours newer than Ts. However, if Ta is not

much di�erent from Ts, the encryption is redundant: the use of double

encryption in Message 2 gives adequate proof of knowledge of Kab. In

this case, the second part of Message 3 could be omitted altogether,

and B could use Ts in Message 4.

10

� The encryption in Message 4 serves an analogous purpose.

2

Examples 6.1 and 6.2, below, illustrate the interaction of encryption

and nonces. In short, encryption is often used for binding when a nonce

provides an association between a message and an implicit name. Following

Principle 3, we make this missing name explicit. The use of both encryption

and nonces is then much simpler and economical.

5.2 Signing encrypted data

Signature is used, as the name suggests, to indicate which principal last

encrypted a message. It is frequently taken as also guaranteeing that the

signing principal knew the message content. It is hard, but fortunately

unnecessary to be precise about what knowing is. An informal notion is

su�cient for stating the next principle:

Principle 5

When a principal signs material that has already been encrypted,

it should not be inferred that the principal knows the content of

the message. On the other hand, it is proper to infer that the

principal that signs a message and then encrypts it for privacy

knows the content of the message.

Failure to follow this principle can lead to errors, as in the next example.

Example 5.1 The CCITT X.509 standard contains a set of three protocols

using between one and three messages [5]. The protocols are intended for

signed, secure communication between two principals, assuming that each

knows the public key of the other.

The CCITT proposal has problems. We discuss one problem described

in [4]; it appears already in the one-message protocol:

Message 1 A! B : A; fTa; Na; B; Xa; fYagK
b
g
K
�1

a

Here, Ta is a timestamps, Na is a nonce (not used), and Xa and Ya are user

data. The X.509 protocol actually uses hashing to reduce the amount of

encryption. We do not show this because it does not a�ect our argument

about X.509.

The protocol is intended to ensure the integrity of Xa and Ya, assuring

the recipient of their origin, and to guarantee the privacy of Ya. However,

although Ya is transferred in a signed message, there is no evidence to suggest

that the sender is actually aware of the data sent in the private part of the

11

message. This corresponds to a scenario where some third party intercepts

a message and removes the existing signature while adding his own, blindly

copying the encrypted section within the signed message. This problem can

be avoided by several means, the simplest of which is to sign the secret data

before it is encrypted for privacy. 2

A particular case of the principle concerns hash functions:

Example 5.2 It is common to use hash functions in order to save on encryp-

tion with asymmetric-key systems (see for example [27, 12]). In particular,

A can send a signed, con�dential message to B as follows:

Message 1 A! B : fXgK
b
; fH(X)g

K
�1

a

where H is a one-way hash function. When A sends this message, only B

discovers X, and B knows that A signed the hash of X. For example, if

X is a request for an operation, B may then infer that A supports X. We

should think of one-way hashing as encryption, and then Principle 5 applies.

In this instance, it means that B cannot be certain that A knew X. For

example, if X is a secret such as a password, B cannot be certain that A

knew the secret; A may have received H(X) from a friend. 2

In general, we recommend careful examination of those protocols that

require a principal to sign material that is both already encrypted and such

that the principal cannot decrypt it. On the other hand, signing before

encrypting is not a bill of health; see Example 3.1.

6 Timeliness

An important part of the meaning of a message is made up of temporal

information. Further, one common precondition for acting upon a message

is that there is reason to believe that the message is fresh, and hence not a

replay of an old one. This freshness has to be inferred from some compo-

nent of the message. Whatever this talisman, it should be bound together

with the rest of the message so that it cannot be attached to a message

being replayed. It is important to understand properly how the freshness

component works, and what is being assumed about it.

The next group of principles and examples concern time. They all ad-

dress what must be assumed about proofs of timeliness, and what they

actually prove.

6.1 Timestamps, sequence numbers, and other nonces

When guarding against replay of messages from an earlier run of the same

protocol it is common to use nonces as part of a challenge-response exchange.

12

Amessage is sent which leads to a reply which could only have been produced

in knowledge of the �rst message. The objective is to guarantee that the

second message is made after the �rst was sent, and sometimes to bind

the two together. There is sometimes confusion about nonces|are they

guaranteed new, random, unpredictable? Whence we propose:

Principle 6

Be clear what properties you are assuming about nonces. What

may do for ensuring temporal succession may not do for ensuring

association|and perhaps association is best established by other

means.

Example 6.1 In [25], Otway and Rees describe the following protocol. It

allows two parties A and B to establish a shared key Kab, with the help of

a server S with whom they share keys Kas and Kbs, respectively, using the

nonces M , Na, and Nb:

Message 1 A! B : M; A; B; fNa; M; A; BgKas

Message 2 B ! S : M; A; B; fNa; M; A; BgKas
; fNb; M; A; BgK

bs

Message 3 S ! B : M; fNa; KabgKas
; fNb; KabgK

bs

Message 4 B ! A : M; fNa; KabgKas

This is the �rst protocol analyzed in [4]. Perhaps because of our relative

inexperience, we were rather bold in the idealization of this protocol|in

assigning meanings to these messages. As a consequence, we suggested in

passing that the encryption of Nb in Message 2 is unnecessary. As Mao

and Boyd have since explained in detail [16], the encryption of Na and Nb

is essential: because Na and Nb are bound with the names A and B by

encryption in Messages 1 and 2, they can serve as secure references to A

and B in Messages 3 and 4. Encryption is being used not for secrecy, but

for binding; nonces are exploited not only as proofs of timeliness but also as

substitutes for names.

Much encryption can be avoided when names are included in S's reply:

Message 1 A! B : A; B; Na

Message 2 B ! S : A; B; Na; Nb

Message 3 S ! B : fNa; A; B; KabgKas
; fNb; A; B; KabgK

bs

Message 4 B ! A : fNa; A; B; KabgKas

The protocol is not only more e�cient but also conceptually simpler after

this modi�cation. 2

Example 6.2 Example 3.2 describes a protocol due to Woo and Lam. Look-

ing back at the use of encryption in that protocol, we notice that the purpose

13

of encryption in Message 4 is to bind two parts of a message. Looking back

at the use of nonces, we notice that Nb provides only a proof of freshness,

but not an association to the name A as was intended.

As we argue in Example 3.2, Message 5 should mention the name A

explicitly for the sake of security. With that change, the binding of Message 4

becomes unnecessary. Further, Nb needs to be viewed only as a proof of

freshness. The protocol is now simply:

Message 1 A! B : A

Message 2 B ! A : Nb

Message 3 A! B : fNbgKas

Message 4 B ! S : A; B; fNbgKas

Message 5 S ! B : fA; NbgK
bs

2

It is not essential for nonces to be unpredictable. In fact, the value of a

counter makes a proper nonce. However, predictable nonces should be used

with caution:

Principle 7

The use of a predictable quantity (such as the value of a counter)

can serve in guaranteeing newness, through a challenge-response

exchange. But if a predictable quantity is to be e�ective, it

should be protected so that an intruder cannot simulate a chal-

lenge and later replay a response.

Example 7.1 Protocols that rely on synchronized clocks must be accompa-

nied by protocols to access time servers. These protocols cannot themselves

rely on synchronized clocks, but they can rely either on random nonces or

on predictable nonces.

Using random nonces, we may have:

Message 1 A! S : A; Na

Message 2 S ! A : fTs; NagKas

where Ts is the current time and Na is a random nonce, used as a challenge.

After this exchange, A accepts Ts as the current time if the response arrived

reasonably soon after the challenge. Reiter exploits random nonces roughly

in this manner [26].

This protocol would not work if Na were predictable. An attacker C

could make A set its clock back: early on, C makes a request for the current

time using a future value of the nonce, saves S's response, and then forwards

the response to A when A uses this value in a challenge.

14

When Na is predictable, it should be protected:

Message 1 A! S : A; fNagKas

Message 2 S ! A : fTs; fNagKas
gKas

The attack is no longer possible. Note that it is not important for Na

to remain secret (and after all we have assumed it is predictable). The

encryption in Message 1 serves to construct a quantity fNagKas
that only

A and S can predict from a quantity that anyone can predict.

A similar exchange arises in the context of Kerberos. Neuman and

Stubblebine suggest using Kerberos itself to obtain the time from a time

server [24]. The quantity used as a nonce is roughly predictable: it is an

incorrect timestamp; since it is encrypted, we expect no di�culties. 2

Freshness can also be proved by the use of timestamps. Timestamps are

appealing because they seem easier to use than random numbers. However,

their use is not always correct. There are a number of aspects of prudent

practice in the use of timestamps, and they are often misunderstood. One

use of timestamps is as a kind of nonce. In this case the ultimate user of

the timestamp, as part of a response, is the same as the originator of the

challenge of which the timestamp was part. This style of use does not depend

on clock synchronization at all, but does need care because the timestamp

may be to a large extent predictable. Another style of use does depend on

clock synchronization. The recipient of a message looks at a timestamp in

it, and accepts the message only if the timestamp is within a reasonable

interval of the recipient's local time. In this case we have:

Principle 8

If timestamps are used as freshness guarantees by reference to

absolute time, then the di�erence between local clocks at various

machines must be much less than the allowable age of a message

deemed to be valid. Furthermore, the time maintenance mecha-

nism everywhere becomes part of the trusted computing base.

Example 8.1 Timestamps have received abundant attention in the authen-

tication literature. Gong, in particular, has described problems arising from

the use of incorrect timestamps [8]. Therefore, we keep this example brief,

summarizing Gong's example for the Kerberos system.

In Kerberos, as elsewhere, a principal with a slow clock is exposed to

all sorts of di�culties, since the principal may mistake expired certi�cates

for current ones. It is more interesting that a fast clock can also be an

opportunity for attackers. If a principal A signs a request at time T0 using a

timestamp T , with T0 < T , an attacker C can replay this request near time

15

T . The e�ect of the request at time T may bene�t C, for example if C is

using A's workstation at time T .

Bellovin and Merritt have discussed further problems in the use of times-

tamps in Kerberos [2]. 2

6.2 What is fresh: use vs. generation

Roughly, a bit-pattern is fresh if any message that contains it must be recent.

Clearly, it does not su�ce that the bit-pattern participate in one recent

message, if it may also participate in old ones. This observation is most

important for keys:

Principle 9

A key may have been used recently, for example to encrypt a

nonce, yet be quite old, and possibly compromised. Recent use

does not make the key look any better than it would otherwise.

Example 9.1 The Needham-Schroeder protocol and the Kerberos protocol

are similar in structure and in goal; the Needham-Schroeder protocol reads:

Message 1 A! S : A; B; Na

Message 2 S ! A : fNa; B; Kab; fKab; AgK
bs
gKas

Message 3 A! B : fKab; AgK
bs

Message 4 B ! A : fNbgK
ab

Message 5 A! B : fNb + 1gK
ab

As in Kerberos, only A makes contact with S, who provides A with the

session key, Kab, and a certi�cate encrypted with B's key Kbs conveying

the session key to B. Then B decrypts this certi�cate and carries out a

nonce handshake with A to be assured that A is present currently, since the

certi�cate might have been a replay. As explained in Section 7, Message 5

contains Nb + 1 rather than Nb in order to distinguish this message from

Message 4.

Messages 4 and 5 of the Needham-Schroeder protocol were intended to

convince B that A is present and active. They do not (and in fact were

not intended to) convince B that Kab is fresh, and it was pointed out by

Denning and Sacco that compromise of a session key could allow an intruder

to deceive B [6]. Once the importance of freshness of Kab is recognized, a

solution may be found by using timestamps, as suggested by Denning and

Sacco. In another solution, described in [23], B sends a nonce to S, and

then S includes it in its certi�cate. 2

16

Example 9.2 In [31], Varadharajan, Allen, and Black present several pro-

tocols for delegation in distributed systems. We take as an example the

one for delegation in a Kerberos environment [31, p. 273]. In this protocol,

client B shares the key Kbt with the authentication server; B has generated

a timestamp Tb and wants a key Kbs to communicate with another server S.

The authentication server gives Kbs and fKbsgK
bt
to S. Then S constructs

fTb + 1gK
bs
, and sends:

Message 5 S ! B : S; B; fTb + 1gK
bs
; fKbsgK

bt

The authors reason:

Having obtained Kbs, B is able to verify using Tb that S has

replied to a fresh message, so that the session key is indeed fresh.

However, B obtains no proof that Kbs is fresh. All that B can deduce is that

Kbs has been used recently|but it may be an old, compromised key. 2

7 Recognizing messages and encodings

It seems important that principals recognize messages for what they are,

and can associate them correctly with the current step of whatever protocol

they are executing. There are two possible forms of confusion (which could

happen together): �rst, between the current message and a message of sim-

ilar purpose from a previous run of the protocol, and second, between the

current message and a message belonging either elsewhere in the protocol,

or to another protocol. Snekkenes [29] and Syverson [30] have constructed

examples of protocols where these confusions can arise.

We believe that these confusions are less important when all our princi-

ples are correctly followed. If a message says what it means then we have

no reason to be concerned with its context. The message is meaningful (or

meaningless) on its own, whether we know that it belongs in a particular

protocol instance or not.

Still, mapping a message to the appropriate protocol instance is con-

venient when it contributes to the compact encoding of the message. For

example, Message 1 of the Wide-mouthed-frog protocol always means some-

thing of the form: \the signer (with key Kas) says at time Ta that Kab is

a good key to talk to B" (see Example 11.2). If the principal who receives

a message can be certain that it is Message 1 of this protocol, then the

message can be encoded compactly: fTa; B; KabgKas
.

We arrive at the following recommendation:

17

Principle 10

If an encoding is used to present the meaning of a message, then

it should be possible to tell which encoding is being used. In

the common case where the encoding is protocol dependent, it

should be possible to deduce that the message belongs to this

protocol, and in fact to a particular run of the protocol, and to

know its number in the protocol.

Mapping a message to the appropriate protocol instance is often trivial

if the message obeys our other principles. If the message contains su�cient

timeliness guarantees and su�cient names, then the current instance cannot

be confused with an old instance, or an instance for other principals. It could

be confused with a concurrent instance for the same principals.

Next we give an example where this principle is relevant, but where other

more important principles apply as well.

Example 10.1 If signature or con�dentiality are mediated by symmetric-

key encryption, then a particular form of confusion is associated with the

direction in which a message is intended to pass.

In the Needham-Schroeder protocol, a participant sends a challenge Nb

and receives Nb + 1 as a response (see Example 9.1):

Message 4 B ! A : fNbgK
ab

Message 5 A! B : fNb + 1gK
ab

The purpose of incrementing Nb is to distinguish the challenge from the

response. Without this increment, an attacker could send B's message back

to B, who could mistake it for A's reply. The purpose of incrementing

a nonce has often been misunderstood. For example, a \+1" operation

appears in Kerberos, where it is unnecessary.

The messages would be clearer if they were rewritten:

Message 4 B ! A : fN-S Message 4: NbgK
ab

Message 5 A! B : fN-S Message 5: NbgK
ab

though in fact any way of making the two messages di�erent will do. (This

is an instance of our suggestion to Syverson mentioned in [30].)

Guided by the principle that messages should say what they mean, how-

ever, we ought to rewrite the messages:

Message 4 B ! A : fB says that Kab is a good key to talk to A;

sometime after receiving KabgK
ab
; Nb

Message 5 A! B : fA says that Kab is a good key to talk to B,

sometime after receiving NbgK
ab

18

Of course, shorter encodings of these meanings can be constructed. Not

only is there no risk of confusion between these two messages, but also each

of them is self-contained. It is not important to know that they are part of

a particular instance of the Needham-Schroeder exchange. 2

8 Trust

The use of timestamps makes explicit for the �rst time a question of trust.

When can a principal A rely on another principal B putting a correct times-

tamp in a message? The answer usually given is that this is acceptable if A

trusts B in relation to timestamps.

The idea of trust is pervasive and a little elusive. A careful classi�cation

of types of trust is given in [36] and is taken further by Klein in her doctoral

thesis. There are questions both of practice and philosophy to do with trust

relations|for example whether they are transitive or not|which it would

not be appropriate to pursue here. We may simply say that A trusts B in

regard to some function if a loss of security to A could follow from B not

behaving in the speci�ed way; it is usually di�cult or impossible for A to

verify B's good behavior.

There is some measure of trust involved whenever one principal acts on

the content of a message from another. It is essential that this trust be

properly understood.

Principle 11

The protocol designer should know which trust relations his pro-

tocol depends on, and why the dependence is necessary. The

reasons for particular trust relations being acceptable should be

explicit though they will be founded on judgment and policy

rather than on logic.

Example 11.1 Complete loss of security could follow from a Kerberos server

issuing wrong timestamps. The server, and its source of time, must be

trusted by all concerned. This, it may be pointed out, is a case in which

clients can to some extent monitor the good behavior of the trusted server

because the correct time is public and global. If a client reads GPS time

it will have reason for suspicion if Kerberos' time varies from this time

signi�cantly. 2

Example 11.2 The Wide-mouthed-frog protocol uses symmetric-key cryp-

tography and an authentication server. It transfers a key from A to B via

19

S in only two messages:

Message 1 A! S : A; fTa; B; KabgKas

Message 2 S ! B : fTs; A; KabgK
bs

First, A sends a session key Kab to S, including a timestamp Ta. Then S

checks Ta and forwards the message to B, together with its own timestamp

Ts. Finally, B checks Ts and accepts the session key Kab for communication

with A. Thus, A is trusted to choose a session key. This kind of trust is often

thought unacceptable because of the quality requirements placed on key

generation such as secrecy, non-repetition, unpredictability, and doubtless

more. 2

Example 11.3 Principals associate public keys with other principals by

consulting public-key certi�cates. These certi�cates can be issued by certi�-

cation authorities (CAs). CAs are trusted to certify a key only after proper

steps have been taken to identify the principal that owns it. Since there is

no global source of authority, it is not surprising that this is an area where

questions of transitivity of trust come up. It may happen that the only way

A can �nd out B's public key is by accepting a certi�cate from CA1 for

CA2's public key which is used to sign a certi�cate for CA3's public key : : :

which is used to sign a certi�cate for B's public key, for example. In this

case A knows and trusts CA1 but has never heard of the other certi�cation

authorities|and maybe even distrusts them. 2

Example 11.4 It is usually taken for granted that the two principals in

an authentication dialogue are honestly working to the common end of es-

tablishing a secure communication channel for subsequent use. This is not

always the case, as may be seen in communication between potential ene-

mies or between security forces and terrorists. Possible sorts of bad behavior

are disclosure of keys and forgery of messages. Therefore, if this assumption

is made in a particular case then it should be explicit. 2

Example 11.5 An access control list (ACL) is a statement of trust [1]: if

principal A appears on the ACL for an operation then A is trusted when

it says that the operation should be performed (that is, when it makes a

request). It can be a complex matter to determine whether the statement of

trust that the ACL represents is appropriate. Often, the question of whether

it is appropriate makes little sense, particularly in the context of completely

discretionary access control policies. Nonetheless, understanding ACL's and

their consequences is essential to security. 2

In practice, it is not very common for complicated inferences about trust

to be necessary. With the exception of the chains of trust of Example 11.3,

which are likely to be simpler in practice than they might be in theory,

20

it is usually not di�cult to isolate the trust relations being relied on in a

particular circumstance. It is valuable to do so explicitly, because this may

lead to useful debate about the appropriateness of these trust relations.

9 Conclusion

We have found the principles and examples described in this paper useful

in our own work. Perhaps it is because of this that they bear a certain

subjective character. We do however believe that they respond to an im-

mediate general need, in a discipline where some basic mistakes appear in

print several times.

Many of our suggestions can be embodied in development methods and

in formalisms. While these are helpful, we tried to emphasize an informal

understanding of some issues essential for security. We hope that our guide-

lines will help improve the practice of designing cryptographic protocols.

21

Acknowledgments

We have bene�ted from discussions with Mike Burrows and Butler Lamp-

son. In particular, we discovered many of the examples in this paper in

collaboration with Mike Burrows. Bob Morris pointed out the importance

of clarifying the meaning of the ! notation, and Mark Lomas helped us

do it. Raphael Yahalom, Michael Reiter, and anonymous referees all made

useful comments on earlier versions of this paper. The authors of the papers

from which we drew our examples have also been helpful. Finally, Cynthia

Hibbard suggested improvements in the exposition.

22

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. \A Calculus for

Access Control in Distributed Systems". ACM Transactions on Pro-

gramming Languages and Systems Vol. 15, No. 4, September 1993,

pp. 706{734.

[2] S.M. Bellovin and M. Merritt. \Limitations of the Kerberos Authen-

tication System". Computer Communication Review Vol. 20, No. 5,

October 1990, pp. 119{132.

[3] C. Boyd and W. Mao. \On a Limitation of BAN Logic". Advances in

Cryptology: Eurocrypt '93, Springer-Verlag, 1993, pp. 240{247.

[4] M. Burrows, M. Abadi, and R.M. Needham. \A Logic of Authenti-

cation". Proceedings of the Royal Society of London A Vol. 426, 1989,

pp. 233{271. A preliminary version appeared as Digital Equipment Cor-

poration Systems Research Center report No. 39, February 1989.

[5] CCITT. CCITT Blue Book, Recommendation X.509 and ISO 9594-8:

The Directory-Authentication Framework. Geneva, March 1988.

[6] D.E. Denning and G.M. Sacco. \Timestamps in Key Distribution Pro-

tocols". CACM Vol. 24, No. 8, August 1981, pp. 533{536.

[7] U. Feige, A. Fiat, A. Shamir. \Zero Knowledge Proofs of Identity".

Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing, 1987, pp. 210{217.

[8] L. Gong. \A Security Risk of Depending on Synchronized Clocks". Op-

erating Systems Review Vol. 26, No. 1, January 1992, pp. 49{54.

[9] N. Heintze and J.D. Tygar. \Timed Models for Protocol Security".

CMU Technical Report CMU-CS-92-100, January 1992.

[10] K.E.B. Hickman and T. Elgamal. \The SSL Protocol". Internet Draft,

Netscape Communications Corp., version of June, 1995. Currently

available from http://home.netscape.com/newsref/std/SSL.html.

[11] K.E.B. Hickman. \The SSL Protocol". RFC, Netscape Communications

Corp., version of October 31, 1994.

[12] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. \Authentication

in Distributed Systems: Theory and Practice". ACM Transactions on

Computer Systems Vol. 10, No. 4, November 1992, pp. 265{310.

23

[13] A. Liebl. \Authentication in Distributed Systems: A Bibliography".

Operating Systems Review Vol. 27, No. 4, October 1993, pp. 31{41.

[14] W.P. Lu and M.K. Sundareshan. \Secure Communication in Inter-

net Environments: A Hierarchical Key Management Scheme for End-

To-End Encryption". IEEE Transactions on Communications Vol. 37,

No. 10, October 1989, pp. 1014{1023.

[15] W.P. Lu and M.K. Sundareshan. \Enhanced Protocols for Hierarchical

Encryption Key Management for Secure Communication in Internet

Environments". IEEE Transactions on Communications Vol. 40, No. 4,

April 1992, pp. 658{660.

[16] W. Mao and C. Boyd. \Towards Formal Analysis of Security Protocols".

Proceedings of the Computer Security Foundations Workshop VII, 1993,

pp. 147{158.

[17] G. Medvinsky and B.C. Neuman. \NetCash: A Design for Practical

Electronic Currency on the Internet". Proceedings of the 1993 ACM

Conference on Computer and Communications Security, pp. 102{106.

[18] S.P. Miller, B.C. Neuman, J.I. Schiller, and J.H. Saltzer. \Kerberos

Authentication and Authorization System". Project Athena Technical

Plan Section E.2.1, MIT, July 1987.

[19] J.H. Moore. \Protocol Failures in Cryptosystems". Proceedings of the

IEEE Vol. 76, No. 5, May 1988, pp. 594{602.

[20] National Bureau of Standards. \Data Encryption Standard". FIPS Pub.

46, January 1977.

[21] R.M. Needham. \Cryptography and Secure Channels". Distributed Sys-

tems, 2nd Ed., S. Mullender (editor), ACM Press, 1993, pp. 231{241.

[22] R.M. Needham and M.D. Schroeder. \Using Encryption for Authen-

tication in Large Networks of Computers". CACM Vol. 21, No. 12,

December 1978, pp. 993{999.

[23] R.M. Needham and M.D. Schroeder. \Authentication Revisited". Op-

erating Systems Review Vol. 21, No. 1, January 1987, p. 7.

[24] B.C. Neuman and S.G. Stubblebine. \A Note on the Use of Times-

tamps as Nonces". Operating Systems Review Vol. 27, No. 2, April

1993, pp. 10{14.

24

[25] D. Otway and O. Rees. E�cient and Timely \Mutual Authentication".

Operating Systems Review Vol. 21, No. 1, January 1987, pp. 8{10.

[26] M.K. Reiter. \A Security Architecture for Fault-Tolerant Systems".

Ph.D. Thesis, Cornell University. Available as Technical Report 93-

1367, Department of Computer Science, Cornell University, July 1993.

[27] R. Rivest. \The MD4 Message Digest Algorithm". Advances in Cryp-

tology: Crypto '90, Springer-Verlag, 1991, pp. 303{311.

[28] R.L. Rivest, A. Shamir, and L. Adleman. \A Method for Obtaining

Digital Signatures and Public-key Cryptosystems". Communications of

the ACM Vol. 21, No. 2, February 1978, pp. 120-126.

[29] E. Snekkenes. \Roles in Cryptographic Protocols". Proceedings of the

1992 IEEE Symposium on Security and Privacy, pp. 105{119.

[30] P. Syverson. \On Key Distribution Protocols for Repeated Authentica-

tion". Operating Systems Review Vol. 27, No. 4, October 1993, pp. 24{

30.

[31] V. Varadharajan, P. Allen, S. Black. \An Analysis of the Proxy Problem

in Distributed Systems". Proceedings of the 1991 IEEE Symposium on

Security and Privacy, pp. 255{275.

[32] V.L. Voydock and S.T. Kent. \Security Mechanisms in High-Level Net-

work Protocols". Computing Surveys Vol. 15, No. 2, 1983, pp. 135{171.

[33] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. \Authentication

in the Taos Operating System". ACM Transactions on Computer Sys-

tems Vol. 12, No. 1, February 1994, pp. 3{32.

[34] T.Y.C. Woo and S.S. Lam. \Authentication for Distributed Systems".

Computer Vol. 25, No. 1, January 1992, pp. 39{52.

[35] T.Y.C. Woo and S.S. Lam. \A Lesson on Authentication Protocol De-

sign". Operating Systems Review Vol. 28, No. 3, July 1994, pp.24-37.

[36] R. Yahalom, B. Klein, T. Beth. \Trust Relations in Secure Systems|A

Distributed Authentication Perspective". Proceedings of the 1993 IEEE

Symposium on Security and Privacy, pp. 150{164.

25

