
Specification and Verification of

Reactive Systems with RSDS

Kalliopi Androutsopoulos

Submitted to the University of London

for the degree of

Doctor of Philosophy

June 2004

King’s College of London
Department of Computing

Abstract

Formal methods have been applied to reactive systems in order to capture errors early on in

the development life-cycle and reduce redesign costs. The Reactive Systems Development Support

(RSDS) method provides support for the analysis and design of reactive systems and generates code

from these specifications. An RSDS system is specified by a set of invariants, a set of statemachines

and a Data Control Flow Diagram (DCFD), which are then verified using the B theorem-prover.

B however requires user interaction and is not capable of proving temporal properties easily. This

thesis extends RSDS by integrating model checking so that temporal properties can be verified.

The model checker used is the Symbolic Model Verifier (SMV).

There are two distinct semantic views of statemachines in RSDS: the coarse-grain and the

fine-grain, with the key difference between them being the granularity of a step. We describe a

translation to SMV for each semantic view and we guarantee the quality of the translations by

formally proving their correctness. This proof is a vital part in our provision of transparent formal

method support for system design. To overcome the state explosion problem of model checking, we

propose some natural ways of using the RSDS decomposition techniques for dividing the system

into subsystems; these can then be model checked independently as separate SMV programs. We

have tested our translations with various case studies.

RSDS/UML is an object-oriented version of RSDS that uses a restricted subset of UML for

specification. It aims to bridge the gap between formal methods and mainstream software de-

velopment techniques. For the same reasons as with RSDS, we integrate model checking with

RSDS/UML by defining a translation for the coarse-grain and proving its correctness. The prop-

erties verified can reason over the dynamic instantiation of classes. The translation is illustrated

on the gas burner system.

Acknowledgments

Firstly, I would like to express my sincere thanks to Kevin Lano, my supervisor, for his interest,

patience and help, especially during the most difficult times. I feel lucky to have worked with such

a dynamic researcher in the field. Also, I am very grateful to David Clark for his enthusiasm,

stimulating discussions and for being a good friend. Thanks are also due to Tom Maibaum, who

gave me the opportunity to study at Kings and find out for myself what research is all about.

My time at King’s has been thoroughly enjoyable, especially because of the brilliant people

that I have met and the close friends that I have made. In particular, I wish to thank Laurie Tratt,

Naza Aguirre and Franco Raimondi for providing helpful feedback and lots of chats, tea (mate)

and cakes (home-made). Also thanks to Jung, Paul, Ulle and Islam for sharing their thesis and

viva experiences and for their comforting advice. My day-to-day life has been spiced up with the

highly entertaining lunch time sessions with all the other friends in this department - you know

who you are ! I am especially grateful to Arlene Ong (my twin) for cheering me on, spending lots

of late nights working together, motivating each other, cooking for me and being there for a chat

and a good laugh and of course for getting up to lots of mischief.

My friends from outside King’s have been very supportive and I thank them for their patience

and words of advice. Special thanks to Katerina, Jenny, Rachel, Sharon, Fuzz and Alexandra.

My most heartfelt thanks go to my parents for their unfailing support and love. I wish to thank

my brother, Vassilis, for understanding most of the time what I was going through, for helping

me out and for making me laugh.

Finally, I wish to thank Jameel Syed for being there with me every step of the way and for

believing in me. Without his constant love and support, I would not have been able to reach my

goals.

Declarations

This thesis is being submitted to the University of London in support of my application for

admission into the degree of Doctor of Philosophy. The work carried out in this thesis is a result of

original research (to the best of my knowledge) and it has not been submitted to another institution

of learning for its examination. Some parts of this work are based on joint work produced in

collaboration with other researchers and have been appropriately referenced. Specifically, the

joint work is described in Chapter 3, and section 7.2.

I declare that any ideas or quotations from the work of other people, published or otherwise,

have been acknowledged in accordance with the standard referencing practices of the discipline. I

also recognise the valuable guidance and support of my supervisor, Dr Kevin Lano.

Contents

1 Introduction 10

1.1 Background . 10

1.2 Problem Statement . 14

1.2.1 RSDS . 14

1.2.2 RSDS/UML . 17

1.3 Contributions . 19

1.3.1 RSDS . 19

1.3.2 RSDS/UML . 20

1.3.3 Contribution relative to co-authors . 21

1.4 Field of Modelling and Verification of Reactive Systems 21

1.4.1 Transition Systems . 22

1.4.2 Petri Nets . 25

1.4.3 Process Algebras . 26

1.5 Model checking Statecharts . 27

1.5.1 Problems encountered with model checking statecharts 27

1.5.2 Future directions . 28

1.6 Thesis Outline . 29

2 Model Checking: An Overview 31

2.1 The Model Checking Problem . 32

2.2 Models . 33

2.2.1 Kripke Structures . 33

2.3 Logics Used for Properties . 34

2.3.1 CTL . 34

2.3.2 LTL . 36

2.3.3 CTL* . 37

2.3.4 Expressivity of CTL∗, CTL and LTL . 38

2.4 Temporal Model Checking Approach . 39

CONTENTS 2

2.4.1 Verifying Branching-Time Logic Properties 39

2.5 Complexity of Model Checking Algorithms . 42

2.6 Techniques Addressing State Explosion . 43

2.6.1 Symbolic model checking . 43

2.6.2 On-the-fly techniques . 45

2.6.3 Partial-order reduction . 47

2.6.4 Other techniques . 47

2.7 Overview of Model Checking Tools . 49

2.7.1 Tools of the temporal logic approach . 50

2.7.2 Tools of the automata-theoretic approach 51

2.7.3 Model checking real-time and hybrid systems 52

2.7.4 Applying a combination of model checking approaches 52

2.7.5 Model checking programs . 53

2.7.6 Methods that embed existing model checkers 53

2.8 Discussion . 55

2.9 Summary . 57

3 Modelling of Reactive Systems with RSDS 59

3.1 Specification in RSDS . 60

3.1.1 Invariants . 61

3.1.2 SRS Statemachines . 63

3.2 Semantics of RSDS Specifications . 68

3.2.1 Describing components as temporal theories 68

3.2.2 Semantic views of SRS statemachines . 71

3.2.3 Coarse-grain Semantics . 72

3.2.4 Fine-grain Semantics . 79

3.3 Design . 82

3.4 Analysis and Verification . 87

3.5 The Gas Burner System . 90

3.6 Summary . 93

4 Applying Model Checking to the Coarse-grain View of RSDS 95

4.1 The SMV Model Checker . 96

4.1.1 The SMV language . 97

4.1.2 Axiomatic semantics for a subset of SMV 98

4.2 Translation Issues . 101

4.2.1 RSDS vs SMV . 101

4.2.2 The state space explosion problem . 102

4.3 Coarse-grain Translation from RSDS to SMV . 102

4.3.1 Translation of SRS statemachines . 103

4.3.2 Translation of the invariants . 109

4.3.3 Interpreting the results of SMV . 110

CONTENTS 3

4.4 Proof of Correctness for the Coarse-grain Translation 112

4.5 Applying Decomposition Techniques to SMV Models 122

4.5.1 Hierarchical composition of controllers . 122

4.5.2 Horizontal composition of controllers . 126

4.5.3 Phase composition of controllers . 128

4.5.4 Annealing . 129

4.5.5 Standard controllers . 129

4.6 Related Work . 131

4.7 Summary . 135

5 Applying Model Checking to the Fine-grain View of RSDS 138

5.1 Fine-grain Translation from RSDS to SMV . 139

5.1.1 Pre-processing and translation of the event queue 139

5.1.2 Translation of the system components . 147

5.1.3 Translation of the invariants . 152

5.1.4 Interpreting the results of SMV . 153

5.2 Proof of Correctness for the Fine-grain Translation 153

5.3 Applying Decomposition Techniques to SMV Models 170

5.3.1 Hierarchical composition of controllers . 171

5.3.2 Horizontal composition of controllers . 171

5.3.3 Phase composition of controllers . 173

5.3.4 Annealing . 175

5.3.5 Standard controllers . 175

5.4 Discussion . 179

5.5 Related Work . 180

5.6 Summary . 181

6 Comparison of RSDS against SCR and PVS using the autopilot system 186

6.1 The Autopilot Specification . 186

6.1.1 Formalising the requirements . 188

6.1.2 Producing the SRS statemachines . 191

6.1.3 Analysis of invariants . 193

6.1.4 Verifying the autopilot system . 196

6.1.5 Discussion . 202

6.2 Comparison of RSDS, SCR and PVS . 204

6.2.1 Overview of SCR . 205

6.2.2 Overview of PVS . 207

6.2.3 Evaluation of SCR, PVS and RSDS with the autopilot system 209

6.3 Related Work . 215

6.4 Summary . 216

CONTENTS 4

7 Model Checking RSDS/UML Specifications 218

7.1 RSDS/UML Specifications . 219

7.1.1 Class Diagrams . 219

7.1.2 Invariants . 220

7.1.3 Object Diagram . 223

7.1.4 Statemachines . 223

7.1.5 The gas burner system . 224

7.2 RSDS/UML Semantic Foundations . 225

7.2.1 Class Diagrams . 225

7.2.2 Invariants . 227

7.2.3 Object Diagrams . 228

7.2.4 Statemachines . 229

7.3 Model Checking RSDS/UML Specifications . 232

7.3.1 RSDS/UML vs SMV . 232

7.3.2 Coarse-grain translation . 234

7.3.3 The translation schemas for the actuator and controller 244

7.3.4 Translating the gas burner system . 246

7.4 Comparison with RSDS translations . 249

7.5 Proof of Correctness of the RSDS/UML Translation 251

7.6 Generalising RSDS/UML . 258

7.6.1 Additional translation rules . 259

7.7 A Simple Railway System for Testing Efficiency . 260

7.8 Related Work . 262

7.8.1 Verifying UML designs with model checking 262

7.8.2 Verifying UML designs with formal verification techniques 265

7.9 Summary . 266

8 Conclusion 268

8.1 Critical Evaluation . 269

8.1.1 Maintaining RSDS and RSDS/UML objectives 269

8.1.2 Quality of the translations . 271

8.2 Future Work . 274

8.3 Closing Remark . 275

A SMV code generated for the Fault Tolerant Production Cell 278

A.1 The subsystem for the table components . 278

A.2 The subsystem for the feedbelt components . 281

B SMV code generated for the Gas Burner System 284

B.1 Using the translation in [CAB+98] . 284

B.2 Using the alternative translation . 287

B.2.1 The coarse-grain view of the system . 287

CONTENTS 5

B.2.2 The fine-grain view of the system . 289

C The SMV and B Code Generated for the Autopilot System 294

C.1 The SMV Code Generated for the Autopilot System 294

C.2 The B Code Generated for the Autopilot System 299

D SMV code generated for RSDS/UML specifications 310

D.1 SMV code for the gas burner system . 310

D.2 SMV code for the Railway System (2D Array) . 313

D.3 SMV code for the Railway System (1D Array) . 323

List of Figures

1.1 The interaction of a control system with its environment. 11

1.2 The constituents of an RSDS specification. 15

1.3 The constituents of an RSDS/UML specification. 18

1.4 An outline of the translations and proof of correctness. 20

1.5 The translation and proof of correctness that we define for RSDS/UML. 21

1.6 An example of a transition system. 22

1.7 A Petri net that model a queuing system. 26

2.1 Properties of model checking approaches as given in [MOSS99]. 33

2.2 A Kripke structure for a model of a system with propositional atoms p, q, r. 34

2.3 Unwinding the system in Figure 2.2 into an infinite tree to show all the computation

paths starting from s0. 35

2.4 The meaning of p U q in the CTL semantics. 35

2.5 The expressiveness of CTL, LTL and CTL∗ . 39

2.6 The truth table, BDD and OBDD (with ordering a < b < c) for f(a, b, c) = (a · b) + c 44

2.7 A simple Kripke model and the representation of its substates of states. 45

3.1 The RSDS development steps . 59

3.2 An example of SRS statemachines. 64

3.3 An example of a SRS statemachine for a reactive system. 65

3.4 The DCFD for the reactive system in Figure 3.3. 65

3.5 An example of an OR state S2. 66

3.6 An example of AND composition A|B. 67

3.7 The form of an arbitrary categorical diagram that the colimit is applied to. 69

3.8 The morphisms h and k are added to show how the diagram commutes. 69

3.9 Every other commutative diagram. 69

3.10 There is a unique morphism j such that j ◦ h = h′ and j ◦ k = k′. 69

3.11 The cell and counter components share attribute act of component a 71

LIST OF FIGURES 7

3.12 system is the colimit of the cell and counter system diagram. 71

3.13 In RSDS statemachines, one coarse-grain step corresponds to a finite number of

fine-grain steps. 72

3.14 Example of how the sensors are flattened to derive a controller statemachine. . . . 75

3.15 The categorical diagram of the example system illustrated in Figure 3.14. 75

3.16 The colimit for the categorical diagram of a system with two actuators. 77

3.17 The DCFD for a system with theories for the corresponding components. 80

3.18 The categorical diagram for entire system illustrated in Figure 3.17. 80

3.19 Basic DCFD for representing reactive system with RSDS 83

3.20 Hierarchical decomposition of controllers. 84

3.21 Hierarchical decomposition applied to the train control system. 84

3.22 Horizontal decomposition of controllers. 85

3.23 The DCFD for the AND controller system. 86

3.24 The SRS statemachine for the AND controller system. 86

3.25 The DCFD for the priority controller system. 86

3.26 The SRS statemachine for the priority controller system. 87

3.27 A DCFD structure where controllers share an actuator that produces a DAG struc-

ture in B. 89

3.28 A DAG structure in B produced by controllers sharing a sensor and how to recon-

figure it. 89

3.29 The gas burner elements . 90

3.30 The DCFD for the gas burner . 90

3.31 The SRS statemachine Sys for the gas burner example 92

4.1 The SMV model checker. 96

4.2 The translation schema for the main module and DCFD of a simple reactive system.104

4.3 The main module for the gas burner system. 104

4.4 The SRS statemachine for the controller of the gas burner. 107

4.5 The statemachine and SMV code for the air valve component. 109

4.6 An example of how a counter-example maps to SRS statemachines. 111

4.7 A sketch of the correctness proof for coarse-grain RSDS specifications. 112

4.8 The DCFD for a hierarchical system. 122

4.9 The main components of the fault-tolerant production cell. 123

4.10 The DCFD for the fault-tolerant production cell. 124

4.11 The sensors for the feedbelt and table components. 125

4.12 The DCFD of the feedbelt with the virtual sensor STM 125

4.13 A Kripke model showing the intuition for proving global property. 127

4.14 The DCFD for a horizontal system. 127

4.15 The DCFD for a system with a phase composition of controllers. 128

4.16 The SRS statemachine for the AND controller system. 129

4.17 The SRS statemachine for the priority controller system. 131

LIST OF FIGURES 8

5.1 A reaction cycle for event e in the fine-grain semantic view of flattened SRS statema-

chines that corresponds to a single coarse-grain step. 138

5.2 Example of how the positions in the next snapshot of the queue are calculated. . . 140

5.3 A snapshot of the event queue for the gas burner system. 145

5.4 The counter-example produced when model checking fine-grain RSDS specification

of the gas burner system. 154

5.5 A sketch of the proof of correctness. 155

5.6 There are two levels of controllers in this hierarchically decomposed system. 171

5.7 The DCFD for the horizontally decomposed system. 172

5.8 An example of a system with three modes (subsystems). 174

5.9 The SRS statemachine for the AND controller. 175

5.10 The SRS statemachine for the priority controller. 177

5.11 SRS statemachines . 181

5.12 STATEMATE statecharts . 181

6.1 Control mode panel . 187

6.2 The DCFD of the autopilot system showing the horizontal decomposition of controller.191

6.3 SRS statemachines for all the components in the CASmode subsystem. 192

6.4 SRS statemachine for CAS controller and its actuators. 192

6.5 SRS statemachines of components of the Altitude subsystem. 193

6.6 SRS statemachine produced by the amalgamation of Mode and ALTengaged. . . . 194

6.7 The autopilot system is horizontally decomposed resulting in two independent sub-

systems. 197

6.8 The B Development Architecture of the Autopilot. 197

6.9 An example scenario of normal behaviour for the autopilot system. 199

6.10 The Four Variable Model. 205

6.11 Visual comparison of the DCFD with the Four Variable Model. 205

6.12 The SCR transitions expressed using SRS notation 206

6.13 The similarities between RSDS and SCR. 208

6.14 The difference between RSDS and SCR. 208

6.15 The SCR variable dependency graph. 211

7.1 A typical class diagram for a basic control system developed using RSDS/UML. . . 220

7.2 A possible object diagram for the class diagram in Figure 7.1. 223

7.3 The class diagram for the gas burner system. 224

7.4 The different views for a single class in a RSDS/UML specification. 235

7.5 The Controller class associated to the Actuator class. 240

7.6 Inheritance illustrated in (a) can be expressed by associations as in (b). 242

7.7 The class diagram for the gas burner system. 247

7.8 The statemachine for the controller class of the gas burner system. 247

7.9 The statemachines for each actuator class of the gas burner system. 249

7.10 A sketch of the proof of correctness. 251

LIST OF FIGURES 9

7.11 Class diagram for the railway system. 259

7.12 A typical example of UML class diagram. 259

7.13 Part of the railway system described in Figure 7.11. 260

A.1 The sensors for the feedbelt and table components. 278

CHAPTER 1

Introduction

1.1 Background

With technological advances in computing, the complexity of software and hardware systems has

increased as more sophisticated functionality and flexibility is demanded by users. Consequently,

there is a high possibility of subtle errors that, if undetected, can lead to fatal accidents or great

economic loss. In general, errors must be captured as early on in the development process as

possible to reduce redesign costs and faults. In industry, there is a growing demand for software

methods and tools that detect these errors in the early stages of development and that guarantee

the correctness of the systems.

This thesis is concerned with the development of correct reactive systems and in particular con-

trol systems. Reactive systems, a term introduced by Harel and Pnueli in [HP85], are systems that

continuously interact with their environment by responding to external stimuli. Their response

consists of enforcing the desired behaviour on the environment, and is determined by the system’s

current state and the occurrence of an external event. Control systems are “reactive systems

that control the operation of equipment or plant” [Sto96]. They are composed of three types of

components: sensors that interact with the environment by receiving external events; controllers

that compute the system’s response based on the external events; and actuators that carry out

the system’s response by monitoring and controlling some parameters. Figure 1.1 illustrates the

interaction of a control system with its environment.

Reactive systems are considered as safety-critical when a system failure has potentially devas-

tating effects on the environment or to human life. In order to reduce system faults, standards

have been defined, such as the defence standard [oD97], the railway industry standard CELENEC

EN 50128 [501] and [Com99], a more general safety standard. These describe procedures and

practices that must be complied with by industries to ensure that safety functions of systems are

implemented correctly. They insist on the use of formal methods as a primary development method

for the safety functions and properties, and recommend it for the rest of the system functions.

1.1 Background 11

Responses

C
T
U
A
T
O
R
S

S
E
N
S
O
R
S

Environment

CONTROLLER

Control System

Stimuli

A

Figure 1.1: The interaction of a control system with its environment.

Formal methods use a mathematical framework for describing specifications of computer sys-

tems precisely and unambiguously, and ensure their correctness with verification. The benefit of

formal methods is that they capture errors early on in the development process by verification,

thus reducing faults and redesign costs. They are composed of two main parts: a formal notation

and a verification system.

A formal notation has a formal syntax and semantics and is used to describe a system and

its properties (invariants). Properties vary from system to system. For reactive systems, the

properties are classified as [BBF+01]:

Definition 1 (Safety Properties). Safety properties express that under certain conditions

something never occurs.

Definition 2 (Liveness Properties). Liveness properties state that under certain conditions

something will eventually occur.

Definition 3 (Reachability Properties). Reachability properties declare that some particular

situation is reached.

Definition 4 (Fairness Properties). Fairness properties state that something will or will not

infinitely often occur.

Definition 5 (Deadlock-freeness Properties). Deadlock-freeness properties express that the

system cannot be in a situation where no progress is possible. It can be treated as a safety property.

Some of these properties can only be expressed using temporal logic and are known as temporal

properties. Temporal logic is an extension of propositional logic that contains temporal operators

that describe changes in time. It is usually used for reasoning about the dynamic behaviour of

systems.

A verification system is a system that supports verification. Verification is the process of using

a proof method to determine that the system satisfies its desired properties. The most commonly

used methods for performing verification are theorem proving and model checking.

Theorem proving expresses the system and its properties as formulae in a particular mathe-

matical logic. The logic is defined by a set of axioms and a set of inference rules that constitute a

formal system. The process of verifying with theorem proving consists of showing that the system

1.1 Background 12

satisfies its properties by constructing a proof in that logic for each of its properties. Axioms and

rules, and possibly lemmas or derived definitions, are applied where necessary during a step in

a proof. Software tools, collectively called theorem provers, have been developed to support this

verification process. These tools can handle systems with infinite state spaces, making theorem

proving a powerful verification technique. They often rely, however, on user interaction for de-

termining the proofs and as a consequence the verification process is slow and often error-prone.

Moreover, users are dissuaded from using this verification method as the notation is unfamiliar

and the verification process requires some expertise.

Alternatively, model checking carries out the verification process automatically. The system

is described as a model based on transition systems, with the desired properties expressed as

logical formulae and correctness found by determining the truth of the formulae in the model.

The algorithm that executes the verification process, exhaustively searches the state space to

determine whether or not a property is satisfied. A counter-example is produced if a property

is not satisfied by the model showing the steps that lead to the violation. The state space of

a system model must be finite in order for the algorithm to terminate. Although the size of

systems verifiable by model checking are limited compared to those handled by theorem provers,

this approach is appealing to software developers as it is fully automatic.

A further limitation arises with the size of the state space due to the length of time required

to model check a system. It is not feasible to model check large systems in a reasonable amount of

time. Therefore, only systems with a “suitable” state space size are model checked. Since system

sizes vary, it is difficult to determine what the “suitable” size is. There are two approaches that

have been applied to solve this problem. The first attempts to optimise the model by reducing

the size of the state space. Abstraction is one of the most popular techniques for this. The second

approach focuses on optimising the model checking algorithm.

Neither verification approach presented is ideal for ensuring the correctness of all aspects of

safety-critical systems [CW96]. A combination of both approaches is commonly used [JS93, Sha96,

HTZ96] to counterbalance the disadvantages of each approach [RSG99]. Model checking can be

first used to verify as many properties as possible automatically. If model checking fails to prove

any of the systems properties due to its limitations, then a theorem prover can be used.

For many years, verification has been criticised as being the most difficult aspect of formal

methods that deters potential users. The difficulty of verification has been alleviated by sophis-

ticated theorem provers, such as Prototype Verification System (PVS) [COR+95], that provide

standard proof techniques that can be automatically applied and by improving the efficiency of

model checking algorithms. In spite of these advances, users are still deterred from using formal

methods for development, because of the difficulties involved in formulating specifications in the

formal notation from requirements [BS00b], a process which often requires expert knowledge and

experience. Formal methods usually provide unfamiliar modelling notations with no guidelines

or templates to guide specification. As a consequence, users experience a steep learning curve as

few software engineers have expert knowledge of both the application domain and of the formal

notation. This leads to an increase in the length of projects as well as in the development costs.

Thus, formal methods are not used in industry as widely as expected. However, many users are

1.1 Background 13

still interested in using formal methods for system development, because in some cases (e.g. for

safety critical systems) the benefits surpass the limitations. Besides the benefits of provability,

which provides a measure of system integrity, the use of a formal notation for the description of

a specification aims to eliminate any ambiguity [Kli96] and provides a clear description of the

systems goals and behaviour. In addition, the development of formal system forces the user to

think more thoroughly about the design which helps identify faulty reasoning early on [BH95].

One way of improving the usability of formal methods is to integrate more widely used notations

with existing verification systems.

An approach to developing system specifications that is widely used in industry is to use a

collection of notations for expressing the requirements instead of just one. The different aspects

of a system are described using different notations. A set of such notations used in a specification

is termed a language. These notations can vary in formality. The most well-known language is

the Unified Modelling Language (UML) [UMLa] that consists of twelve different notations.

The use of such languages can improve the applicability of formal methods. The languages used

must be formal, in order to be able to prove correctness of a safety-critical system specification.

Since UML does not have formal semantics, it cannot be used. The Requirements State Machine

Language (RSML) [LHHR94, LHR99] and the Software Cost Reduction (SCR) [HBGL95] language

are examples of formal languages that are composed of a collection of notations for specifying

reactive systems. They were developed based on experience gained from developing actual systems.

The Reactive Systems Development Support (RSDS) method also has such a formal language and

it describes systems by using multiple notations i.e. statemachines, invariants and Data Control

Flow diagrams (DCFD). It focuses on specifying control systems in a simple way that is readable

by control engineers as well as by software engineers and to automate as much of the development

process as possible. Verification of RSDS specifications is performed with the B method. The

most recent version of RSDS (renamed as RSDS/UML) has a language that is considered as a

subset of UML with precise semantics. In this thesis we are concerned with systems described

using RSDS and RSDS/UML. We discuss these in more detail in section 1.2.

Formal languages are usually integrated with existing verification systems to ensure the cor-

rectness of system specifications. They are either integrated with theorem provers or with model

checkers or with both. One approach that is commonly used to integrate the notations is trans-

lation. This involves mapping every element in the source notation to elements in the target

notation. A specification is translated into the input notation of the verification system. Since a

specification can be described using multiple notations (i.e. a language), it is often required that

elements ranging across notations be translated as well. In some cases, not all of the elements in

the source notation can be translated (or directly translated) into the target notation. Some way

must be found to translate these in order to preserve the semantics of the source notation.

The translation approach is criticised [Day98] as having the following three disadvantages:

1. There is no guarantee that the translation preserves the semantics of the source language.

2. The results produced from some processing performed (in this case verification) on the target

notation is not represented in the source notation.

1.2 Problem Statement 14

3. The translation is notation-specific. Therefore, the specification is translated to a particular

input notation of a verification system, and is limited to the verification capabilities of that

system.

In this thesis, we use the translation approach to extend the verification support provided by

RSDS. In this way, we are able to rigorously check that some desired properties hold in a system

specification developed using RSDS, that we could not check with the existing verification support.

We respond to the criticisms on the translation approach as follows:

1. We formally show that the translation preserves the semantics of the RSDS language. Thus,

we are able to automate this translation and be confident that the model produced in the

target notation correctly maps to the model of the RSDS specification.

2. We show how the results produced when applying the chosen verification system on the

target notation are interpreted in an RSDS specification.

3. We want to adopt a notation-specific approach, i.e. the translation approach, because we

want to make full use of the capabilities provided by a particular notation. In this thesis, the

particular notation is a verification system that we want to integrate with RSDS in order to

extend the verification support provided.

1.2 Problem Statement

In this thesis, we are concerned with extending the verification support provided for control systems

that were developed using the RSDS approach. Since there are two main versions of the RSDS

approach, one which is object-oriented and the other that is not, we present the research problem

separately for each version.

1.2.1 RSDS

RSDS emerged from earlier work [LK98, LA99, LBA99] on the development of control systems

that used a combination of techniques from control engineering and formal methods. The be-

haviour of a system controller was described by finite state machines (FSM), a notation familiar

to control engineers. No timed or parameterised transitions were required. The system structure

was visualised with Data Control Flow Diagrams (DCFDs). DCFDs illustrate the flow of events

between the system components. From these visual descriptions, specifications in the notation of

the B formal method [Abr96, LH96, Sch01] were produced for the purpose of verification and for

the automatic generation of code.

B is a formal method for developing systems from formal specification to code. It expresses

specifications using the B Abstract Machine Notation (AMN) that is based on first order predicate

logic and set theory. It is a modular notation, where the basic modules are known as machines.

Each machine consists of data, operations for manipulating the data and invariants that the data

must always maintain. Once a system is specified using a set of machines, it must be formally

checked by proofs to ensure that the invariants are maintained. Stepwise refinement techniques

1.2 Problem Statement 15

are applied on the machines for deriving code, such as C or C++. For each refinement, it is

required to formally show (by proofs) that it satisfies its previous specification. The intermediate

modules produced are known as refinements and implementations. There are two tools available

to support development with the B method: the B-Toolkit [BTo] and Atelier B [Ate]. However,

the proofs required to show that the invariants are maintained and those for refinement usually

require user interaction.

Thus, the primary concerns of the earlier work were how to best describe FSMs of reactive

systems as B specifications so that a translation between the two notations can be defined that

can be automated. Consequently, B specifications were automatically generated from FSMs.

This aimed to bridge the communication gap between control engineers and software engineers as

control engineers need not have any knowledge about formal methods. Moreover, errors that may

be introduced by users when formulating specifications are reduced.

The RSDS method [LAK00, LAC00, LCAK00, LCA01, AL01] has similar objectives. However,

as a result of the earlier work, it has the following additional objectives: to provide a modelling

language that is as simple as possible for describing reactive systems; to provide tool support for

automating as much of the development process as possible and to ensure that all the system’s

properties expressed in a specification are verified.

The RSDS language is comprised of the following notations as illustrated in Figure 1.2: in-

variants, a modular statemachine notation (variation of FSM) and a DCFD. Invariants are logical

formulae that must always be true in a specification. They are used to precisely describe the

system requirements in a simple and abstract way. Statemachines describe the dynamic behaviour

of the system and have two semantic views concerning the granularity of a computation step: the

coarse-grain and the fine-grain. A single step in the coarse-grain corresponds to several steps in

the fine-grain. In the fine-grain view, the specific order in which transitions of actuator compo-

nents occur is described, while in the coarse-grain they occur simultaneously. DCFDs are used

in the design stage for visualising the system structure. Various decomposition techniques can be

applied to decompose the system into smaller components. A control algorithm is automatically

synthesised from the invariants and used to generate specification in B and code such as Java.

Invariants

S1

Sn

A1

Ap

Controller

Sn

S1 Controller

Ap

A1

+ +

StatemachinesDCFD

Figure 1.2: The constituents of an RSDS specification.

RSDS uses B to ensure, by proof, that the invariants are maintained by the specification.

Invariants at both semantic views of statemachines are verified: the coarse-grain corresponds to

execution semantics of B machines, while the fine-grain corresponds to B implementations where

1.2 Problem Statement 16

operations are executed sequentially. However, the verification support provided by the B method

is not sufficient.

The proofs in B are not completely automated. Most non-trivial proofs will require human

interaction. These are challenging, requiring expertise, and can be erroneous if incorrect lemmas

are provided by the user.

The structure mechanisms of B impose some restrictions that can make it difficult to specify

and structure specifications of reactive systems in B. For example, the INCLUDES structuring

mechanism allows no cycles, that is, no two machines are allowed to change the state of a shared

machine at the same time (single writer and multiple readers only). This restriction arises to en-

force non-interference with compositionality and to preserve independent refinement of machines.

In [BPR96, BB99, DBMM00, Lec02, Rod] ways of overcoming these limitations are presented but

unfortunately are not yet implemented in the B tools. INCLUDES is used to structure B machines

that represent system components. Its impossible to specify a reactive system with two controllers

that share an actuator. In practise, there is a way to overcome this (described in detail in section

3.4) by defining dummy specifications and then replacing the code generated accordingly. However,

this is not a good solution as we change the code generated after we have proven the correctness

of the implementation. Therefore, we believe that one cannot verify a system structured in this

way easily with B.

Temporal properties cannot be proven easily in B. In [AM98], new clauses are introduced in

the B notation for expressing temporal properties of event-driven systems. However, the manner

in which these properties are expressed is complex and does not resemble their logical form. For

example, the temporal property 2(P ⇒ 3Q) (which defines “leads to”) for predicates P and

Q is expressed in B with a loop and the proof required must show that it terminates. It is defined

in B in five parts under a MODALITIES clause as follows.

MODALITIES
SELECT
P

LEADSTO
Q

WHILE
F1 OR · · · OR Fn

INVARIANT
J

VARIANT
V

END

P is the predicate that must be true initially and Q is the predicate that must be eventually

true. A non-empty list of event names F1 OR · · · OR Fn are required to identify those that may

be taken in the loop in order for P to progress to Q (if none is given then all the events in the

system are considered). J is an optional invariant predicate that must be true during the loop

(i.e. the invariant must be true between the activation of all events). Finally, V is a natural

number expression that represents the decreasing variant of the loop. The new clauses used in

this example are LEADSTO, INVARIANT and VARIANT.

1.2 Problem Statement 17

Expressing temporal properties in this way could lead to the additional introduction of errors

as further information is required from the user, that is, a variant, a loop invariant and a list of

events. Besides the modality “leads to”, there are two other patterns used for describing temporal

properties: the modality “until” (2(P ⇒ (PUQ)) and the dynamic invariant. These patterns

correspond to only a fragment of Propositional Linear Time Logic (PLTL), meaning that the

range of properties that can be expressed in this way is limited compared to the expressive power

of LTL or Computational Tree Logic (CTL), for example. Moreover, these new constructs have

not been implemented by the B tools and therefore cannot be used in practice.

An alternative solution is provided in [BCJ02, BDJK00, JMM99] that uses a combination of

model checking (SPIN) and B for verifying temporal properties. The temporal properties are ex-

pressed in Propositional Linear Time Logic (PLTL) and model checked on a finite-state transition

system of the abstract B specification. The static properties are proved in B as normal. As the B

specification is refined, new PLTL properties are described for the new events that are introduced

and the old PLTL properties are redefined. The temporal properties of the refinements are not

verified by model checking but are proven using B. This approach seems to be more suitable for

verifying the temporal properties of RSDS specifications. However, since RSDS specifications are

described using statemachines that are similar to transition systems on which model checking is

performed, it seems unnecessary to translate RSDS specifications into B and then into transition

systems for model checking. A much simpler solution would be to translate RSDS specifications

directly into the input language of a model checker, that also allows for verification, independent

from B. The standards [Com99] and related railway industry standards such as CELENEC EN

50128 [501] recommend that several verification tools should be used to provide independent veri-

fication. Moreover, RSDS does not use the refinement techniques of B during system development.

Recently, the B method has been extended with a model checker, ProB [LB03], but it only

verifies standard B invariants and not temporal properties as yet.

Therefore, we propose integrating a model checker with RSDS for solving the verification prob-

lem of temporal properties. To integrate the model checker with RSDS, we define translation rules

for deriving a model of the system in the language of the model checker. Since the performance

of model checking is handicapped by the state space explosion problem, we investigate how the

structure of RSDS specifications can be exploited in a natural way to reduce the size of the model

generated.

1.2.2 RSDS/UML

RSDS/UML [LCA04, LAC03, LCA02c, LCA02d, LCA02a] came about in response to finding a

way of improving the applicability of formal methods and bridging the gap between mainstream

software development techniques and formal methods. Object-oriented design is mainly used in

mainstream software development. By integrating object-oriented techniques and formal methods,

the former obtains the formality and verification support that object-oriented notations often lack,

while the latter obtains familiar modelling techniques for formulating modular specifications that

are flexible, maintainable and reusable. Examples of such integrations include Object-Z [Smi00],

VDM++ [Gro00] and U2B [Sno02].

1.2 Problem Statement 18

RSDS is extended with a subset of UML to form RSDS/UML that specifies systems in an

object-oriented way. UML was chosen over other object-oriented languages because of its close

resemblance with the RSDS language and because it is an international standard. RSDS/UML

specifications are described using a restricted subset of the following UML notations: a class

diagram, object diagrams and a statemachine notation. A class diagram is used in the place of

the DCFD to model the relationship of system components with classes and associations. The

instances of classes and associations are visualised using object diagrams. Invariants are defined

in the class diagram as OCL constraints and are attached to classes (local properties) or to

associations (properties describing the interaction of numerous classes). The dynamic behaviour

of instances is described using statemachines. These statemachines also have a coarse-grain and

fine-grain semantic views. Figure 1.3 illustrates the different UML notations used to specify

reactive systems with RSDS/UML.

RSDS/UML is still under development. In this thesis, we use one of the more stable versions

[LCA02a, LCA02c] whose semantics are given. The future version of RSDS aims to reduce the

number of a classes used to specify a system, by defining a class for each subsystem with attributes

for the sensor and actuator components.

Cont
Controller S1:Sensor

Ap:Actuator

A1:Actuator

Cont:Controller

Sn:Sensor

Object Diagrams

+ +

Class Diagram Statemachines

state = val1 => act_state = val2

Sensor Actuator
p

* 1 1 *
A1

Ap

S1

Sn

Figure 1.3: The constituents of an RSDS/UML specification.

There are many benefits in integrating UML with RSDS in this way. Firstly, RSDS/UML is

suitable for the development of critical systems as it has precise semantics, whereas UML has some

semi-formal semantics [UMLa], but in conjunction with the informal semantics are incomplete.

Compared to RSDS, RSDS/UML can represent several similar components as a single class that

can create and delete objects as needed. This is particularly useful for control systems as these

systems usually contain a large number of similar components, such as switches or valves, and

template classes for these components can be defined and reused. Furthermore, in the RSDS/UML

language it is possible to define temporal properties that specify how the relationships dynamically

change (or don’t change) between objects of classes representing components.

As with RSDS, we need to provide verification support for RSDS/UML. There are two types

of properties that must be verified: properties local to a class that only refer to local attributes

and properties that describe behaviour with associated classes that can refer to attributes from

all classes involved in the association. In addition, we need to ensure that with the creation and

deletion of instances in an RSDS/UML specification, the relationships among them remain correct.

Some of these properties are temporal and therefore the verification support provided must also

support the verification of temporal properties.

Again, the B method is used to provide verification support and translations have been pub-

1.3 Contributions 19

lished in [LAC03, LCA04]. However, we still encounter the problems in B that we discussed in

section 1.2.1 with verifying temporal properties. Therefore, we choose to apply model checking

to RSDS/UML specifications as well, for verifying the temporal properties. Hence, we integrate

model checking with RSDS/UML by defining a translation and proving its correctness. In this

thesis, we only consider the coarse-grain semantic view of the RSDS/UML statemachines as we

want to investigate to what extent model checking is suitable for verifying these object-oriented

systems. If the results of this investigation are positive, model checking can be applied to a larger

set of UML (newer versions of RSDS/UML) and a wider range of applications could be specified

and verified in this way.

1.3 Contributions

The main focus of this thesis is to find a way to verify the temporal properties of reactive systems

developed with RSDS and also with RSDS/UML. Several verification systems (proof and model

based) exist that support the verification of temporal properties. To verify the temporal properties

of RSDS and RSDS/UML specifications, we choose to integrate an existing verification system

with RSDS and RSDS/UML instead of defining a new one. The main criterion for choosing which

verification system to integrate is its degree of automation. We prefer a verification system that

carries out the verification process automatically and thus adheres to the objectives of RSDS and

RSDS/UML. Model checking is such an approach that can be integrated. In particular, we have

chosen to use the Symbolic Model Verifier (SMV) [McM93] which has its own tool support. We

justify this choice by relating SMV with other tools in section 2.7.

We use the translation approach to integrate model checking with RSDS and RSDS/UML. The

translations that we define map elements in the source language (RSDS or RSDS/UML) to ele-

ments in the model checking language (SMV). These mappings can later be automated to prevent

any user interaction that could introduce errors. Since we are using the translation approach, it

is important that we are able to overcome the problems associated with the translation approach

discussed in [Day98]. Therefore, we formally show that the translations preserve the semantics

of RSDS and RSDS/UML respectively. These proofs of correctness are very important for safety

critical systems as we can be sure that the model being model checked does in fact represent the

system specified. We emphasise that the proof of correctness is what makes our approach unique

as many similar translations [Kwo00, CAB+98, LHHR94, HN96] have not provided such a proof.

In the chapters were our translations are defined, we compare and contrast our translation with

other similar translations. Also, we show how the results from the model checker are interpreted

on the original specification. In the following sections, we discuss the specific contributions made

for RSDS and RSDS/UML respectively.

1.3.1 RSDS

Our main contribution is that we have provided a way of verifying the temporal properties of RSDS

specifications by translating into the notation of a model checker. A translation is defined by a set

of translation rules that can be used to automate the translation. Since RSDS specifications have

1.3 Contributions 20

two different semantic views of statemachines (the coarse-grain and the fine-grain), we define a

translation for each view. Only the coarse-grain translation has been implemented by Kevin Lano

in the RSDS tool based on the translation rules defined in this thesis.

We prove the correctness of both the coarse-grain and fine-grain translations with respect to

the RSDS semantics, to ensure that we do not verify a misrepresented system. This proof requires

that the RSDS language has formal semantics. Therefore, we have consolidated a number of

versions of semantics of RSDS. Moreover, the proof of correctness requires the semantics of the

model checking language, in this case SMV, to be formally defined and preferably in the same way

as the RSDS semantics (axiomatically). Thus, we define the semantics axiomatically for the subset

of SMV that we use in the translations. Figure 1.4 outlines the translations that are required for

model checking RSDS specifications and the respective proofs of correctness.

SRS statemachines

+ DCFD

Coarse−grain

semantic view

Fine−grain

semantic view
SMV model for

fine−grain view

SMV model for

coarse−grain view

SMV notationRSDS

Specification

Proof of correctness

Translation

Proof of correctness

Translation

Invariants

Figure 1.4: An outline of the translations and proof of correctness.

The size of the SMV model produced for large systems can be so large, because of the state

space explosion problem, that it is impossible to verify. In RSDS, large systems are structured by

applying decomposition techniques. Therefore, we discuss natural ways in which the structure of

the systems can be exploited to reduce the size of the SMV model.

Finally, the translations have been tested on several systems specified in RSDS and in RSDS/UML

such as the gas burner system, the production cell and the autopilot. In particular, we use the

autopilot system to compare the entire RSDS method (with the integration of the SMV) against

two popular approaches: the SCR (a method) and PVS (a verification system).

1.3.2 RSDS/UML

Our contribution for RSDS/UML specifications is that we have found a way of verifying their

temporal properties, again by translation. In this case, we have only defined translation rules

for the coarse-grain view of RSDS/UML because RSDS/UML is still under development and we

want to first investigate to what extent model checking is suitable for verifying object-oriented

systems. If the results are positive then we can pursue to define both translations with a stable

version of the RSDS/UML. We also formally show that the coarse-grain translation preserves the

RSDS/UML semantics. Figure 1.5 indicates what we have achieved for RSDS/UML specifications,

that is, we have defined a translation for the coarse-grain view and proved its correctness. The

1.4 Field of Modelling and Verification of Reactive Systems 21

gas burner system and part of a railway system have been implemented in RSDS/UML and the

translations have been applied to generate SMV code.

+ semantic view

SMV model for

coarse−grain view

Specification
RSDS/UML

+ Object Diagram

Class Diagram

Proof of correctness

Translation

SRS statemachines

SMV notation

Coarse−grain

Figure 1.5: The translation and proof of correctness that we define for RSDS/UML.

1.3.3 Contribution relative to co-authors

The development of RSDS and RSDS/UML is based on work produced in collaboration with

the researchers: Kevin Lano and David Clark. My role in this work is clearly defined. I have

been primarily concerned with the verification of temporal properties of RSDS specifications by

model checking. I have used the translation approach to integrate RSDS and the SMV model

checker. However, for the translation I defined and for its proof of correctness, I had to have

a consistent definition of the RSDS language. Kevin Lano and David Clark are working on the

(formal) definition of the RSDS and RSDS/UML language. Therefore, the joint work effort mainly

involved the definition of RSDS and RSDS/UML. Kevin Lano has also been working on defining

translations into B and has been implementing the RSDS tool1 and recently the RSDS/UML

tool. The current implementation of the RSDS tool allows a user to define a coarse-grain RSDS

specification, automatically check its consistency, generate SMV code (for the coarse-grain) based

on the rules defined in this thesis, and also generate B code.

In this thesis, joint work is discussed in Chapter 3 where the RSDS method is introduced and its

language is formally presented. Since the RSDS language is always evolving, I have consolidated

the existing semantics and have extended it to formally define controllers as amalgamations of

sensor modules. Also, joint work is discussed in sections 7.1 and 7.2, which define the language

and semantics of RSDS/UML.

1.4 Field of Modelling and Verification of Reactive Systems

In this section, we discuss methods and languages comparable to RSDS (and RSDS/UML) for

specifying and verifying reactive systems. These languages are based on one the following three

formalisms that are used for specifying reactive systems: transition systems, Petri nets and process

algebras. We informally introduce the three formalisms and since RSDS is based on transition

systems (in particular finite-state machines), we review in more detail languages based on this

formalism. Each language needs some procedure for checking the validity of a specification. The

level of difficulty of performing this checking depends on the language that is used and the level

1I have been involved in the earlier developments of the RSDS tool.

1.4 Field of Modelling and Verification of Reactive Systems 22

of validity that is required (for example, safety critical systems require a high level of validity).

We also discuss the verification support provided for each language.

Languages can be synchronous or asynchronous, depending on how concurrency is viewed.

Synchronous languages implicitly assume the presence of a global clock. At each clock tick, all

inputs are considered, the outputs and new states are calculated and then transitions are made. It

thus has the advantage of guaranteeing deterministic behaviour. On the other hand, asynchronous

languages describe several processes that are non-deterministic since the order in which tasks are

executed is not specified. This is a more realistic view of concurrency, however, synchronous

languages provide high level modular constructs that aid with the design of these systems. RSDS

and RSDS/UML are synchronous languages and therefore we only discuss synchronous languages

in the related work. Also, we only consider languages that specify discrete reactive systems with

no timing (i.e. timing constraints, delays).

1.4.1 Transition Systems

The most widely used formalism for specifying reactive systems is transition systems, which have

different forms depending on their use. An example of a transition system is illustrated in Figure

1.6. Basically, a transition system is a directed graph where the nodes represent the states of a

system and the edges represent transitions. There is a designated state that represents the initial

state of a system. Usually, transition systems that have labels on states are known as Moore

machines, and those that have labels on transitions are known as Mealy machines. Transition

systems can have labels on both states and transitions. Consequently, transition systems can be

state-based or event-based. Some systems are modelled more naturally using one rather than the

other. The reactive behaviour of a transition system is given by a sequence of transitions or states

starting from the initial state. For example, in Figure 1.6 one such behaviour is: a1, a2, b1, c1.

a1

a2d1

a2

c1 a2

b1

b1

c1

Figure 1.6: An example of a transition system.

A more expressive form of transition systems was informally introduced by Harel in [HN96]

known as statecharts, that introduces hierarchy and modularity with the definition of AND and OR

states. If a state with inner states is active and its inner states are OR states, then exactly one of

the states will be active. If its inner states are AND states, then all of its states will be active. Many

1.4 Field of Modelling and Verification of Reactive Systems 23

successful attempts have been made to formalise the statechart semantics [PS91, HN96, LMM99b],

which resulted in some many variants of the language. One such variant (but not entirely formal)

is part of the UML [UMLa].

There are two ways in which transition systems are verified: model checking which is the

most natural choice as their models are based on transition systems (Kripke models), and formal

verification systems such as PVS, or the B prover. For the latter, the transition systems used to

describe reactive systems must be represented in the specification language of the formal method.

In some cases, this is not straight forward as the formal methods were not developed with these

particular systems in mind. For example, event-driven B is introduced in [Lec02] for defining

reactive systems as B specifications, and in [Led91], the Vienna Development Method (VDM)

[DN87, BR91] is extended in order to specify and verify reactive systems.

The languages based on transition systems can have a tabular form, be expressed as a state

diagram, or textual object code format. The language of RSDS and RSDS/UML includes statema-

chines that are expressed as diagrams.

Tabular form

Transition systems can be expressed using a tabular notation that lists the current state and

inputs, transitions and next state or outputs. The problem with this approach is that the number

of rows in the table grows exponentially with the number of inputs. However, consistency of the

table can be simply determined as there must be exactly one row for each state/input and each

output or next state must be an allowed output or state.

The SCR method specifies reactive systems using a tabular notation based on transition sys-

tems. It consists of two formal models [Hei02]: the Four Variable Model and the SCR requirements

model. In [HBGL95] a set of software tools were developed to analyse documents with SCR re-

quirements. The SCR requirements model [HJL96] is a special case of the Four Variable Model

that provides precise semantics by representing the system as a statemachine. Three types of

tables are used for describing specifications with SCR: mode transition tables, event tables and

condition tables. The mode transition table describes the system modes in terms of the system

states and how they are changed when transitions occur. Event tables are used to describe the

changes to the variables depending on the events that occur and also which mode the system is in.

Condition tables describe how the values of the output variables or terms change as a function of

a mode and condition. Besides the size of the tables that can grow exponentially, it is difficult for

one to follow a particular reactive behaviour as it can range over a number of tables. A variable

dependency graph is introduced to help reduce this problem. SCR provides both model checking

(translations into SPIN and SMV) and the use of a theorem prover (PVS) for verification. Their

tool hides the verification process from the user as it provides a friendly user interface to PVS and

interprets the results of the model checkers. In Chapter 6 we compare SCR with RSDS in detail.

State Diagrams

State diagrams refer to the collective graphical representation of transition systems. The particular

form of each element can change from one diagram to the next, depending on which transition

1.4 Field of Modelling and Verification of Reactive Systems 24

system is illustrated. These are slightly better than the tabular form because transitions are

visualised easily and it is easier to understand the reactive behaviour of the system. However,

verification is more difficult than in the tabular form, because of the use of predicates on the

labels of the transitions instead of the explicit representation of the tabular form.

STATEMATE [Sta] is a tool for specifying and analysing systems. Its modelling language is

Harel’s statecharts [HN96]. Compared to RSDS statemachines, statecharts are more expressive as

they allow nested OR and AND states. STATEMATE, by performing checks, ensures that good

design practices are adhered to when describing specifications. For example, it checks that every

part of the model should be reachable, i.e. that there is no ”dead code”. Model checking is used to

perform these checks. Model checking is also used for testing the behaviour of the model in extreme

or critical configurations, as well as for verifying desired properties of a system. However, model

checkers suffer from the state space explosion problem and for large systems they are unfeasible.

The RSDS method aims to use model checking as well as the B prover for verification.

Requirements State Machine Language (RSML) [LHHR94] is a requirements specification lan-

guage that uses a modified notation of statemachines ([HN96], [PS91]) as well as other techniques

like AND/OR tables, to specify each component. As with STATEMATE, RSML statecharts are

more expressive than RSDS statemachines and the notion of a step is different. Moreover, RSDS

presents two semantic views. RSML is limited with respect to the structuring mechanisms that

it provides: like SCR, it only decomposes the controller by modes. A variety of analyses can be

performed such as: completeness and consistency analysis, fault tree generation, model checking,

code generation and test data coverage. These range over the entire development life cycle and

together form a complete method. RSDS also aims to be a complete method, however, it does not

provide any support for performing hazard analysis.

DOVE (Design Oriented Verification and Evaluation) [Dov] is a tool with a graphical editor

for drawing statemachines, an animator for simulating the execution and a prover for verifying the

critical properties. Unlike RSDS, the tool does not provide structuring mechanisms and guidelines

and does not check the liveness property because it represents only finite configurations. The

only property it can check is the progress property i.e. a state can be reached after a number of

transitions.

Roscoe shows in [Ros03] how to verify statecharts using the model checker FDR. The novelty

in his approach is that statecharts are translated first into CSP (see section 1.4.3) and CSP

methods such as compression, abstraction, data independence and symmetry are used to improve

the performance of FDR checks. Therefore, the state space explosion problem inherent in all

model checkers is reduced in this case via CSP.

Object Code (OC)

The Object Code format was developed as an intermediate language for the synchronous languages:

Lustre [CPHP87, HR99, Hal93], Esterel [Ber98] and Argos [Mar91, MR01]. It is the easiest

to execute on a sequential processor. Unlike other high-level languages, it does not have any

concurrency as it only describes a single finite-state machine. It is only suited to describing

sequential control processes. Therefore, an OC program describes a single finite state machine.

1.4 Field of Modelling and Verification of Reactive Systems 25

Each state has a decision tree attached to it. The nodes in the decision tree are indices of an

action table and the leaves of the tree are pointers to the next states. An action table contains a

list of atomic behaviours which include testing a variable or signal, computing the new value of a

variable, calling an external function or sending out a signal. The main drawback of this approach

is that all OC languages suffer from is that OC forces two events to happen in a strict order, when

they could happen simultaneously. This causes some artificial dependencies to form that can lead

to system deadlock.

Lustre is a declarative, textual synchronous language that mainly concerns itself with dataflows.

Lustre programs consist of expressions that define flows. Flows describe a possibly infinite sequence

of values of a particular type along with a clock (sequence of times for a sequence of values). A

restriction imposed by the compiler is that the operators work pointwise on flows, for example, if x

and y are flows (x1, x2, ..., xn) and (y1, y2, ..., yn) with identical clocks, then x+ y = (x1 + y1, x2 +

y2, ..., xn + yn). Sequential behaviour can be defined using delay and initialisation operators. It is

fairly easy to check consistency of Lustre programs. This is because feedback loops without a pre

operator (it delays the flow by one clock cycle) are prohibited.

Esterel is a textual and imperative synchronous programming language and also a compiler

which translates Esterel programs into finite-state machines. It is well-suited for specifying se-

quential control-dominated tasks. It is deterministic and concurrent, and supports preemption as

well as an exception mechanism that is compatible with concurrency. An Esterel program consists

of a group of modules that are executed concurrently. These modules communicate through sig-

nals that at each clock tick are either absent or present with a value. Sequential behaviour can be

described succinctly with Esterel. Consistency checking of Esteral programs is more challenging

than for the other OC languages. This is because it is easy to write paradoxes in the language

and in order to look for them, every possible execution of the program must be explored. Recent

compilers can do this symbolically.

Argos is a language that describes specifications as hierarchical finite-state machines, a syn-

chronous derivative of Harel’s statecharts. Therefore, it allows the definition of inner states as OR

and AND states. Consistency checking of an Argos specification is more difficult than that of a

state diagram. For example, a possible check might consider which states are reachable from a

particular sequence of inputs.

Argos has been extended into the SyncCharts [And02, And96] formalism. SyncCharts support

hierarchy (OR states), concurrency (AND states), communication (instantaneous broadcasting of

signals) and preemption (abortion and suspension). A SyncChart model can be automatically

translated into an Esterel program in order to use the software environment of Esterel, such as

checking for consistency and generating code.

1.4.2 Petri Nets

Petri nets is a class of models of concurrent systems that were introduced as an extension of

standard finite automata models with communication. There is a vast amount of literature on

Petri nets and its variations: in [PR91] more than four thousand entries have been given. A Petri

1.4 Field of Modelling and Verification of Reactive Systems 26

net model is a directed bipartite2 graph as illustrated in Figure 1.7. The circles in the graph

represent conditions, while the boxes represent events. If a circle contains a black dot, then a

condition is marked with a token. The arcs in the model are of two kinds: input arcs that connect

conditions to events, and output arcs that connect events to conditions. The dynamics of the

model are given by the token game rules that define how the tokens float between conditions.

The token game rules state: an event fires by taking a token from each of its input conditions

and putting a token in each of output conditions. The intuition behind the meaning of events,

conditions and tokens for modelling systems is that events represent the transitions of a system,

conditions represent local resources and tokens represent the availability of local resources. For

example, the Petri net given in Figure 1.7 that is taken from [Pet] models a queuing system .

waiting
processes

thinking
processes

think enter service
services
busy

serve

available
services

Figure 1.7: A Petri net that model a queuing system.

A way in which Petri nets can be analysed is to compute all the tokens reachable from the

initial token. In this way, one can explain how the tokens move through the conditions around

the model. Transition systems can be derived from these reachable tokens by labelling the arrows

with e from a token T to token T ′ where e is the event that when fired in T moves the token to

T ′. This procedure is known as state space enumeration. Since Petri nets can be described as

transition systems, the same notation of behaviour for transition systems apply to Petri nets.

1.4.3 Process Algebras

Process algebras (or process calculi) are a family of languages that are used for describing concur-

rent reactive systems. The most eminent of these are: CCS (Calculus of Communicating Systems)

[Mil80, Mil89], CSP (Communicating Sequential Systems) [Hoa85] and ACP (Algebra of Commu-

nicating Processes) [BK84]. A process algebra is a language that describes processes that can be

built from subprocesses by using a number of combinators and also a facility for spawning (gen-

erating) subprocesses. A process refers to the behaviour of system. Some examples of processes

are:

inaction 0 is the simplest process, i.e. the process that cannot perform any actions

prefixing a.P denotes a process that can perform an action a and become P

2A bipartite graph is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices
within the same set are adjacent.

1.5 Model checking Statecharts 27

sequential composition P ;Q denotes a process that behaves as P and then Q

non-deterministic choice P +Q denotes a process that can become either P or Q

parallel composition P ||Q denotes a process whose subprocess P and Q are running concur-

rently

Milner was the first to realise that such combinators exhibit or should exhibit algebraic prop-

erties. The semantics of process algebras are usually given using structural operational semantics

(SOS) [Bae04]. The structure of the syntax guides the derivation of the operational or stepwise

behaviour of processes by means of SOS rules.

Verification of process algebras is most successful when verification techniques that come from

process algebras are used, i.e. equational reasoning [Bae04]. Model checking and theorem proving

have also been applied. The use of a combination of these verification techniques is favourable.

[GR]

Jack (Just Another Concurrency Kit) [GLM99] is a support environment for the specification

and verification of reactive system by means of process algebras. It provides a graphical view of

the specification and translates properties described in natural language into ACTL formulae. In

this way, it assist in the formalisation of informal system requirement which can eventually be

model checked.

1.5 Model checking Statecharts

The RSDS statemachine language is a restricted variation of statecharts, i.e. it is more expressive

than finite-state machines as it contains AND states and OR states (these cannot be nested).

This thesis is about model checking RSDS statemachines. Therefore, we relate our work with

other approaches that model check statechart models, and in particular with the SMV model

checker. There are two key translations that closely relate to our work: translation of RSML

statecharts [CAB+98] to SMV and the translation of STATEMATE to SMV [CH00]. We compare

and contrast these with our translations at the end of Chapter 3 and 4, where our translations are

defined. In this section, we discuss briefly the problems encountered with verification of statecharts

as presented in [BR04] and we give an indication of the future directions of this area of research.

1.5.1 Problems encountered with model checking statecharts

Statecharts are very expressive and contain features that prove difficult to translate into SMV

because it is based on transition systems that are more primitive. RSDS statemachine have only

a few features of statecharts and therefore does not face that many challenges. These features are:

• State Hierarchy: usually the hierarchy of statecharts is flattened and then translated into

SMV. However, this could lead to a SMV model with an enormous state space which if it is

greater than 1020 state cannot be model checked. Also, the SMV model generated will be

very complicated to read. RSDS statemachine also have a hierarchy. However, its not very

deep, as AND states cannot be nested with OR states and so on. Therefore, the modular

structure of RSDS specification is preserved in the translations.

1.5 Model checking Statecharts 28

• Inter-level transitions: these are rich control transfers between state hierarchies. RSDS

statemachines do not model inter-level transitions.

• Conflicting transitions: transition are conflicting if they have the same source state.

RSDS statemachines do not allow the occurrence of these transitions.

• Concurrency: the view of concurrency that RSDS adopts is that of synchronous execution

which can be easily represented in SMV. RSDS has two semantic views: the coarse-grain

and the fine-grain. The first denotes that the reaction to a sensor event must occur in a

single step (all actuator events happen concurrently), while the second denotes that the

specific order of actuator events must be defined. The second proves to be challenging when

modelling in SMV as it is difficult to specify this order.

• History: statechart model have history connectors for recalling states that have

been visited. RSDS statemachines do no have such connectors.

1.5.2 Future directions

According to [BR04], the future work for verifying statecharts, that is based on identifying the

gaps in the current approaches, is the following.

1. Preservation of statechart hierarchy in model checking Alur in [AGM00, AY01,

AKY99] presented a way in which the hierarchy of hierarchical reactive modules was pre-

served when translating. Although the semantics of reactive modules is different from stat-

echarts, in [BR04], they suggest that it would be very useful if the approach in it is adopted

for statecharts.

2. Compositional verification Compositional verification consists of verifying properties of

sub-components that guarantee properties of the entire system. A compositional verification

technique for verifying Argos programs has been presented in [Ram00], that could be ex-

tended and used for statecharts. The sub-component can be either concurrent automaton or

top-level automaton with some hierarchical states being reduced to basic states. By verifying

the sub-component only, the state space of the model being verified is reduced. A limitation

of this approach is that not all properties can be proven in this way, at least not easily. The

result from verification holds, if the input formula satisfies certain conditions such as that

it is local (referring to localised events) and that it does not state anything negative about

states or events not in the sub-component.

3. Refinement Statecharts can be used to define high level abstract specification that can

be refined to into a detailed specification, that is also modelled by statecharts. Therefore,

verification would consists of checking the detailed specification implements the abstract

specification by defining refinement maps between the two specifications.

Another point that was made in [BR04] is that the tools that perform the translations are not

at a commercial standard and they do not manage to translate all of the features of statecharts.

Moreover, the results produced by the model checker are not interpreted on the statecharts, hence

1.6 Thesis Outline 29

there is no traceability between the models. Traceability would improve the use of model checkers

as debugging tools.

1.6 Thesis Outline

Chapter 2 introduces the field of model checking. We briefly discuss the different approaches

for implementing model checking algorithms and several techniques that were developed for

reducing the state space explosion problem. For model checking RSDS specifications, we

choose to use the SMV model checker that is developed according to the temporal logic

(branching time) approach. Therefore, we present the temporal logic model checking ap-

proach in more detail. We give an overview of some model checking tools available and we

provide justification for our choice.

Chapter 3 presents the RSDS method and how it can be used to develop reactive systems. In

addition, the semantic foundations of RSDS are formally defined, including the definitions of

the two semantic views of statemachines: the coarse-grain and fine-grain. In order to demon-

strate how the RSDS method can be used in practice, the gas burner system is developed

using RSDS. This system is referred to throughout the thesis.

Chapter 4 describes how coarse-grain specifications are model checked by translating them into

the input language of SMV. The translation is given as translation rules and is illustrated

with the gas burner system. In order to prove the correctness of the translation with respect

to the RSDS semantics, we define the SMV semantics formally using the same logic as that

used to define the semantics of RSDS. Moreover, we show some natural ways in which the

modular structure of decomposed systems can be used to reduce the state space of the SMV

model produced.

Chapter 5 describes how fine-grain RSDS specifications are model checked, also by translating

them into the input language of the SMV model checker. This chapter complements the

work in Chapter 4. Therefore, we present a translation by translation rules and a proof of

correctness with respect to the semantics of RSDS. In addition, we show some natural ways

in which the modular structure of decomposed systems can be used to reduce the state space

of the SMV model produced.

Chapter 6 compares RSDS against SCR and PVS, two other prominent methods used for de-

veloping reactive systems. The autopilot case study is used as a basis of this comparison.

Chapter 7 describes how RSDS/UML specifications are verified by model checking. A transla-

tion is defined from RSDS/UML to the language of SMV. We only model check coarse-grain

RSDS/UML specifications and provide a proof of correctness with respect to the RSDS/UML

semantics. Also, it gives a flavour of how future versions of RSDS/UML can be model

checked. The chapter concludes with a discussion of related work.

Chapter 8 summarises and evaluates the translations presented for model checking RSDS spec-

ifications, and explores directions for future work.

1.6 Thesis Outline 30

Appendix A provides the SMV code for the RSDS specification of part of the fault-tolerant

production cell.

Appendix B lists the SMV code for the RSDS specification of the gas burner system. Also, it

lists the SMV code for the gas burner system generated from a comparable translation.

Appendix C provides the SMV and B source code for the autopilot system generated using the

RSDS method.

Appendix D gives the SMV code for the RSDS/UML specification of the gas burner system and

a part of a railway system.

CHAPTER 2

Model Checking: An Overview

Model checking consists of representing a system as a finite model in an appropriate logic and

checking whether the model satisfies some desired properties. If the model does not satisfy a

property, a counter-example is produced, that is, a trace that outlines the system behaviour that

led to that contradiction. Model checking is fully algorithmic, that is, it is an entirely automatic

approach that requires no user interaction. The system model is expressed as a transition system.

The properties to be verified are expressed as either temporal logic formulas or as automata.

There are three distinct approaches for implementing model checking algorithms: the temporal

logic approach based on fixed point-based algorithms, the automata-theoretic approach that is

based on proving language containment and the tableau approach that constructs a proof-tree.

Initially, the system model was restricted to finite systems in order for the algorithm to termi-

nate. Although this restriction is no longer absolute, it still requires systems to have “medium-

sized” state spaces and simple descriptions of behaviour due to the state space explosion problem.

The term “medium-sized” refers to systems with at most 108 reachable states [BCM90]. The state

space explosion problem is the tendency of the state space to become very large as there is an

exponential relation between the number of variables or the number of components that constitute

a system, and the size of the state space. For example, the complexity of verifying a property of a

system is doubled when a new variable is added to the model. A system with a “large” state space

is one with greater than 108 reachable states which cannot be model checked by tools implemented

using explicit state enumeration methods [BCM90]. Researchers in the field of model checking

are mainly concerned with developing methods and data structures for overcoming this problem.

These are approximately grouped into the following categories: symbolic model checking (it can

model check systems with in excess of 1020 states [BCM90]), on-the-fly model checking, reduction

and compositional reasoning.

In this thesis we are interested in verifying the temporal logic formulas expressed for RSDS

specifications. RSDS specifications model reactive systems by using finite statemachines and

invariants. Model checking is an appropriate verification approach for reactive systems for the

2.1 The Model Checking Problem 32

following reasons. These systems have states whose descriptions are short (i.e. in RSDS states

just have a name) and easily manipulated because the intricacies lie more in the control rather

than in the data [Wol95]. The behaviour of these systems is described in terms of their possible

interaction with their environment rather than by transformations on complex data. We discuss

which logic and hence which model checking approach we have chosen for this work.

In this chapter, we start by presenting the model checking problem and outline several possible

implementations for solving it. Before we discuss the details of the model checking algorithms, we

describe the notation used to represent system models and the different temporal logics that can

be used to express the properties to be verified as formulas. The performance of these algorithms

can be improved by applying techniques for reducing the state space explosion problem. From

these, we discuss some of the most commonly used. We conclude with a brief overview of some of

the model checking tools available and discuss the reasons for using the SMV model checker for

this work.

2.1 The Model Checking Problem

In [MOSS99], the model checking problem is shown to be specified in two ways:

The global model checking problem: For a given finite model M and a formula φ, establish

the set of states in M that satisfy φ.

The local model checking problem: For a given finite model M , a formula φ and a specific

state s, establish whether s satisfies φ.

These definitions are closely related [MOSS99]: the solution generated by the global model

checking problem includes the solution generated by the local model checking problem. However,

the global and local model checkers are used for different applications. For example, applications

that are disabled by the state space explosion problem might prefer the use of local model checking

as it inspects and constructs only a small part of the model. Global model checking is required

by some applications that want to verify global properties such as liveness, that usually requires

access to all the states in the model.

There are several ways in which model checking is implemented. The three most common

approaches are:

Temporal logic approach: In this approach the formulas are expressed using temporal logic and

their semantics are inductively computed on the finite model. The model is expressed as some

transition system. This results in a global model checker that works best for branching-time

temporal logics.

Automata-theoretic approach [MV86, VW94, CPS93, VBW94]: The formulas, as well

as the model, are expressed as automata in this approach. The model checking problem

is reduced to an inclusion problem between automata. It is best suited to model checking

linear-time temporal logic formulas and solves the global model checking problem.

2.2 Models 33

Tableau Approach [SW91, Cle90]: This approach solves the local model checking problem

using sub-goals. Its aim is to find a proof tree that determines whether a given state has

the given property. If no proof tree can be found, then the given state does not satisfy the

given property. Only a small part of the state space is inspected.

Figure 2.1 gives an overview of the model checking approaches and indicates which temporal

logics they are best suited to and which model checking problems they solve. Some researchers

[VBW94, CGH97] have shown that it is possible for the model checking approaches to model check

formulas of other logics that are not indicated in the figure. However, these are less common.

Model checking approaches Global Local Branching-Time Linear-Time
Temporal logic

√ √
Automata-theoretic

√ √ √
Tableau

√ √ √

Figure 2.1: Properties of model checking approaches as given in [MOSS99].

In this thesis we want to verify the temporal logic properties of RSDS specifications by model

checking. Since these are expressed using branching-time temporal logic (see Section 3.1.1) and

include global properties, the temporal logic model checking approach is the most obvious choice

to adopt. Therefore, the RSDS method uses a model checker that implements the temporal model

checking approach for branching-time logic. We present, in the following sections, how models are

described and what temporal logics are used for expressing properties for model checking, and the

temporal model checking approach for branching-time properties is provided.

2.2 Models

The behaviour of a system is usually described as a discrete model for the purpose of model

checking. The models use graph structures to represent the system behaviour, where the nodes

represent the system states and the arcs between the nodes represent the possible transitions.

Additional information is included in the definition of some graph structures to provide a more

detailed description of the model. There are three types of augmented graph structures typically

used [MOSS99]: Kripke structures (also known as transition systems), whose nodes are annotated

with atomic propositions; labelled transition systems (LTS) whose arcs are annotated by actions

and the Kripke transition systems that combine Kripke and LTS. For reasons of simplicity, we

choose to describe only Kripke structures in this chapter.

2.2.1 Kripke Structures

A Kripke structure over a set of atomic propositions P is a triple (S,R,L), where S is a set of

states, R ⊆ S × S is a transition relation and L : S → 2P is a function that labels each state

with the set of atomic propositions that hold at that state. S and P are finite for model checking.

Although atomic propositions are formally just symbols, they represent some basic local properties

of states. The propositions true and false are always contained in the set P and for any state

s, true ∈ L(s) and false 6∈ L(s). For model checking, the execution of a system starts at the

2.3 Logics Used for Properties 34

initial state, that is defined as s0 ∈ S, and the graph is said to be rooted. A Kripke model for a

system is total if for all s ∈ S there is a t ∈ S such that (s, t) ∈ R, otherwise it is partial. Figure

2.2 illustrates a Kripke structure for a model of a system where the atomic propositions p, q, r are

true in the states which they are contained.

p,q

S2
q

S3

S0
p,r

S1

r

Figure 2.2: A Kripke structure for a model of a system with propositional atoms p, q, r.

2.3 Logics Used for Properties

Pnueli [Pnu77, Pnu86, MP92] proposed that temporal logic be used for reasoning about reactive

systems. A temporal logic is a formal system, where the propositional operators have been aug-

mented with tense operators that describe changes in time. We can express properties that cannot

be expressed using propositional logic, such as, the formula Fq that is true in the present if at

some moment in the future, q is true. Another example is the formula Pq that is true in the

present if q is true at some moment in the past. In this thesis, we only consider formulas with

future operators because RSDS invariants are described using future operators only and there are

very few efficient model checkers [PPSM03] available for verifying formulas with past operators.

Moreover, it has been shown [LS95] that most of the formulas expressed with past operators can

be translated into formulas with only future operators.

Numerous temporal logics have been defined for various uses. These are usually grouped

according to two distinct views of time: linear-time logics that consider time as a sequence of

time instances and branching-time logics that for a given point in time offer several alternative

future states. An additional characteristic of time concerns the view of time as being continuous

or discrete. In this thesis, we are concerned with model checking discrete systems. Computational

Tree Logic (CTL) is a subset of modal branching-time logic that is discrete. We also present

Linear-Time Temporal Logic (LTL) that is a linear-time logic and CTL*. CTL* is a uniform

logical framework that was introduced by [EH86] for comparing the expressive power of both CTL

and LTL as both CTL and LTL properties can be expressed in CTL*.

2.3.1 CTL

Time is modelled by CTL as an infinite tree-like structure with many future paths. The Kripke

structure in Figure 2.2 can be unwound into a computational tree that is visualised in Figure 2.3.

Thus, the future is nondeterministic as any of these paths can be considered as the future path.

Temporal operators are used to reason over the states and paths of the structure and can only

2.3 Logics Used for Properties 35

occur in pairs. The first of the pair reason over paths, where A means “along all paths” and E

means “along at least one path”. The second temporal operator of the pair reason over states,

where F means “some future state”, G means “all future states”, U means “until” and X means

“next state”. Figure 2.4 illustrates the precise meaning of pUq, where p holds continuously until

the next occurrence of q, that is from S2 to S7. E is dual to A as ∃ is to ∀ in predicate logic.

p,r
s1

p,r
s1

s1

s0
p,q

p,rr
s2

s0
p,q

s2
r q

s3

s3
q

p,r
s1

s2
r

Figure 2.3: Unwinding the system in Figure 2.2 into an infinite tree to show all the computation
paths starting from s0.

q

S S S S S S S S S0 1 2 3 4 5 6 7 8

p

Figure 2.4: The meaning of p U q in the CTL semantics.

Syntax

The syntax of CTL formulas is defined inductively via a Backus-Naur form as [HR00]:

φ ::= ⊥ | > | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | AXφ|
EXφ | A(φUφ) | E(φUφ) | AGφ | EGφ | AFφ | EFφ.

where p ranges over a countable set of atomic formulas. The symbols ⊥ and > denote false

and true respectively. If φ is a CTL formula, then so is ¬φ, (φ ∧ φ) and so on.

Semantics

The semantics of CTL define the truth and falsehood of formulas with respect to a model expressed

as a Kripke structure. Let M = (S,R,L) be a model for CTL, defined as the Kripke structure in

section 2.2.1. A path π of a model M is an infinite sequence of states (s0, s1, s2, ..) ∈ Sω such that

each successive pair (si, si+1) is an element of R. The notation πi is used to denote the suffix of

π starting at si. Every path is a maximal linearly ordered subset of the tree structure unwound

2.3 Logics Used for Properties 36

from s0. For any state s, M, s � φ denotes that φ holds in state s. Structural induction is used

on all CTL formulas in order to define the satisfaction relation � as given in [HR00].

1. M, s � > and M, s 6� ⊥ for all s ∈ S.
2. M, s � p iff p ∈ L(s).
3. M, s � ¬φ iff M, s 6� φ.
4. M, s � φ1 ∧ φ2 iff M, s � φ1 and M, s � φ2.
5. M, s � φ1 ∨ φ2 iff M, s � φ1 or M, s � φ2.
6. M, s � φ1 → φ2 iff M, s 6� φ1 or M, s � φ2.
7. M, s � AXφ iff for all s1 such that (s, s1) ∈ R we have M, s1 � φ.
8. M, s � EXφ iff for some s1 such that (s, s1) ∈ R we have M, s1 � φ.
9. M, s � AGφ holds iff for all paths π, where s0 equals s,

and all si along the path, we have M, si � φ.
10. M, s � EGφ holds iff there is a path π, where s0 equals s,

and all si along the path, we have M, si � φ.
11. M, s � AFφ holds iff for all paths π, where s0 equals s,

there is some si such that M, si � φ.
12. M, s � EFφ holds iff there is a path π, where s0 equals s,

there is some si such that M, si � φ.
13. M, s � A(φ1Uφ2) holds iff for all paths π where s0 equals s,

π satisfies φ1Uφ2.
14. M, s � E(φ1Uφ2) holds iff there is a path π, where s0 equals s,

and that path satisfies φ1Uφ2.

Two CTL formulas φ and ψ are semantically equivalent if any state in the model satisfies φ,

precisely when it satisfies ψ. We write this as φ ≡ ψ.

2.3.2 LTL

Time is modelled in LTL as a single infinite future path. Therefore, LTL has no path quantifiers

such as A and E of CTL. However, the temporal operators concerning the states of the model are

the same as those of CTL. It may seem that LTL is less expressive than CTL. However, this is not

true as LTL allows the nesting of boolean connectives and modalities in a way that is not allowed

in CTL.

Syntax

The syntax for LTL is expressed in Backus Naur form as follows [HR00]:

φ ::= p | (¬φ) | (φ ∧ φ) | Xφ | (φ U φ) | Gφ | Fφ
where p is any propositional atom.

An LTL formula is evaluated on a single path, or on a set of paths. A formula φ holds on a

set of paths if φ holds on every path in the set.

Semantics

For a CTL model M = (S,R,L), a path π = (s0, s1, s2, ...) satisfies an LTL formula via the

satisfaction relation � for LTL formulas as follows:

1. π � >.
2. π � p iff p ∈ L(s1).
3. π � ¬φ iff π 6� φ.

2.3 Logics Used for Properties 37

4. π � φ1 ∧ φ2 iff π � φ1 and π � φ2.
5. π � Xφ iff π2

� φ.
6. π � Gφ holds iff, for all i ≥ 0, πi

� φ.
7. π � Fφ holds iff, for some i ≥ 0, πi

� φ.
8. π � φ1 U φ2 holds iff there is some i ≥ 0, πi

� φ2 and for all
j = 0, ..., i− 1 we have πj

� φ1.

Two LTL formulas are semantically equivalent, that is φ ≡ ψ, if they are true for the same

paths.

2.3.3 CTL*

CTL* is a logic that embodies CTL and LTL. It includes the nesting of modalities and boolean

connectives (allowed by LTL) before applying the path quantifiers E and A (allowed by CTL).

Syntax

The syntax of CTL* is defined inductively in the Backus Naur form. The definition of CTL*

formulas is divided into two types of formulas: state formulas, that are true in a particular state

and path formulas that are true along a particular path. The definition of each class depends on

the definition of the other.

• State formulas:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E[α]

where p is any atomic formula and α is any path formula. If α is a path formula then A[α]

is a state formula, and similarly with E[α].

• Path formulas:

α ::= φ | (¬α) | (α ∧ α) |(α U α) | G(α) | F (α) | X(α)

where φ is any state formula. If φ is a state formula, then φ is also a path formula.

Semantics

For a Kripke model M, we describe the semantics [CGP99] of CTL∗ by defining inductively the

relation � as follows. We assume that φ1 and φ2 are state formulas and ψ1 and ψ2 are path

formulas.

1. M, s � p iff p ∈ L(s).
2. M, s � ¬φ1 iff M, s 6� φ1.
3. M, s � φ1 ∧ φ2 iff M, s � φ1 and M, s � φ2.
4. M, s � φ1 ∨ φ2 iff M, s � φ1 or M, s � φ2.
5. M, s � Eφ1 iff there is a path π from s such that M, π � φ1.
6. M, s � Aφ1 iff for every path π starting from s, M, π � φ1.
7. M, π � φ1 iff s is the first state of π and M, s � φ1.
8. M, π � ¬ψ1 iff M, π 6� ψ1.
9. M, π � ψ1 ∧ ψ2 iff M, π � ψ1 and M, π � ψ2.
10. M, π � ψ1 ∨ ψ2 iff M, π � ψ1 or M, π � ψ2.

2.3 Logics Used for Properties 38

11. M, π � Xψ1 iff M, π1
� ψ1.

12. M, π � Fψ1 iff there exists a k ≥ 0 such that M, πk
� ψ1.

13. M, π � Gψ1 iff for all i ≥ 0, M, πi
� ψ1.

14. M, π � ψ1Uψ2 iff there exists a k ≥ 0 such that M, πk
� ψ2 and

for all 0 ≤ j < k, M, πj
� ψ1.

The minimum set of operators required to express any other CTL∗ formula is: ∨, ¬, X, U
and E.

2.3.4 Expressivity of CTL∗, CTL and LTL

CTL∗ was introduced as a logical framework for comparing the expressiveness of CTL and LTL.

Both CTL and LTL are considered as subsets of CTL∗. This is true for LTL, even though the

syntax of LTL does not include path quantifiers, the semantics of LTL is described in terms of all

paths. Therefore, an LTL formula α can be expressed in CTL* as A[α]. CTL is also a subset of

CTL∗ because of the CTL∗ fragment that restricts the form of path formulas to:

α ::= (α U α) | G(α) | F (α) | X(α)

We discuss the expressivity of CTL and LTL in general for model checking with respect to

the model and the properties (formulas). Then, we discuss the suitability of CTL and LTL for

describing models and properties of reactive systems.

A logic must be able to handle non-determinism in models, where states can have a number of

successors [Wol95, Gia99]. One way in which non-determinism arises is by underspecification of

some system component or of the environment. CTL handles non-determinism explicitly, where

the model of time is a tree. CTL properties contain operators that express that something holds

on some or all of the possible futures. This selectivity is what makes branching time logic suitable

for expressing properties of reactive systems [MOSS99, BBF+01]. Formulas are interpreted on the

computational tree defined by the finite-state model of the program. In contrast, LTL handles

non-determinism implicitly, where the model of time is linear. Thus, a program is seen as a set of

possible executions. Formulas are interpreted on the program executions. According to [Wol95],

the linear model checking approach is better adapted to systems whose properties reason about

the execution of a program. On the other hand, the branching approach is better adapted to

systems whose properties reason about the structure of the program.

For property specification in model checking, the expressiveness of the logics CTL and LTL

must be compared. Figure 2.5 illustrates which formulas can be expressed only in CTL, LTL

and CTL∗. In CTL, the formula AGEFp, means that regardless of what state the program

enters, there exists a computation that leads to a state where p holds. This formula can be used

to express reachability properties. The negation of a reachability property is a safety property

[BBF+01]. For reactive systems, reachability and safety properties are significant for determining

their correctness. However, the formula AGEFp and its negation cannot be expressed in LTL.

A CTL∗ formula that can be expressed in LTL but not in CTL is A[GFp → Fq], meaning

that if there are infinitely many p along the path, then there is an occurrence of q. Fairness

constraints are usually expressed in this form. Since CTL cannot express this property (it does

not allow the nesting of G and F without a path quantifier), it must be extended in order to do

so. These extensions are easily implemented, however, the complexity of these model checkers

2.4 Temporal Model Checking Approach 39

G[p −> Fq] (LTL)

*

LTL CTL

E[GF p]

A[GF p −> F q] AG [EF p]AG[p −> AFq] (CTL)

CTL

Figure 2.5: The expressiveness of CTL, LTL and CTL∗

increases [BBF+01]. Several tools, such as the one that we have decided to use for this thesis

(SMV), consider fairness property to be part of the model, rather than expressing the property

as a formula in an extended CTL. This approach has no effect on the model but [BBF+01] argue

that there are losses with respect to expressivity while gaining only slightly in simplicity.

Overall, CTL∗ seems to be the best choice for describing properties of reactive systems. How-

ever, even though CTL∗ is more expressive, the algorithm for model checking CTL∗ is less efficient

than that of model checking CTL. Therefore, we choose to use CTL instead because the model

checking algorithm for CTL is more efficient than that of LTL or CTL∗ (see Table 2.1). Also, we

prefer CTL over LTL because it handles non-determinism explicitly.

2.4 Temporal Model Checking Approach

The temporal model checking approach was proposed independently by Clarke and Emerson in

[CE81] and by Quielle and Sifakis in [QS82]. The algorithms that they implemented were for

verifying branching-time logic properties. In this section we describe only the temporal model

checking approach for verifying CTL formulas on the transitional behaviour of the model. In

[CGH97], the authors show how LTL model checking can be reduced to CTL model checking.

2.4.1 Verifying Branching-Time Logic Properties

The most effective algorithm [HR00] for model checking CTL formulas is based on a fixed point

characterisation of CTL operators. Fixed point theory can be exploited for CTL model checking

as CTL formulas are satisfied by a set of states (instead of paths). The fixed points can be easily

computed and they ensure that the model checking algorithm terminates after a maximum of |S|
rounds.

The algorithm used is recursive. It determines all the states of a given structure that are

reachable by applying the transition relation and that also satisfy the given CTL formula. Initially,

the set of states is computed that satisfy the atomic sub-formulas that have no path or state

quantifiers. Next, fixed points of monotonic functionals for the CTL quantifiers are applied in

rounds until a fixed point is obtained. The algorithm must show that the initial state of the

2.4 Temporal Model Checking Approach 40

structure is also an element of the set of reachable states computed. If this is so, then the

structure is a model of the CTL formula.

Preliminaries

A function F : P(S) → P(S) on the power set of S, where S is a set of states, is monotone, if

x ⊆ y implies F (x) ⊆ F (y) for all subsets x and y of S. A subset x of S is considered a fixed point

of F if F (x) = x. The Knaster-Tarski Theorem proves that for a finite set S = {s0, s1, ..., sn} with

n+ 1 elements, if F : P(S) → P(S) is a monotone function, then:

• Fn+1(∅) is the least fixed point of F , where Fn+1 means that the function is applied n+ 1

times and,

• Fn+1(S) is the greatest fixed point of F .

This theorem asserts the existence of the least and greatest fixed points for monotonic functions

and also provides a way for computing them. For example, to compute the least fixed point, an

algorithm repeatedly applies the function F to the empty set until the result becomes invariant.

Therefore, this theorem guarantees that the algorithm terminates as there is always a fixed point

for monotone functions. Furthermore, the worst-case number of iterations is n+ 1 for a set with

n+ 1 elements.

The algorithm

The model checking algorithm computes the set of states s ∈ S satisfying φ, given a CTL formula φ

and a CTL model M = (S,R,L). The set of states computed is written as [[φ]]. The computation

starts with the states that satisfy the atomic sub-formulas of φ, which contain no path or state

quantifiers. These formulas φ are either ⊥, > or p and [[φ]] is computed directly, or are smaller

sub-formulas combined with CTL operators. An example of such a formula is ψ1 ∧ ψ2 where the

algorithm computes the sets [[ψ1]] and [[ψ2]] and then combines them in this case by taking the

intersection to obtain [[ψ1 ∧ ψ2]]. For formulas that contain path or state quantifiers, each formula

is computed in concurrence with the semantics of the CTL operators used. For example, EXψ

is computed by first obtaining the set [[ψ]] and then by computing the set of states that have a

transition to a state in [[ψ]]. The meaning of the temporal operators are expressed by fixed points

as there is no direct computations of these. We will discuss in detail how the fixed points are used

in the algorithm to characterise the EG operator.

The pseudo-code for the model checking algorithm as described in [HR00] is as follows.

2.4 Temporal Model Checking Approach 41

function SAT (φ)
begin
case
φ is > : return S
φ is ⊥ : return ∅
φ is atomic : return {s ∈ S|φ ∈ L(s)}
φ is ¬φ1 : return S − SAT (φ1)
φ is φ1 ∧ φ2 : return SAT (φ1) ∩ SAT (φ2)
φ is φ1 ∨ φ2 : return SAT (φ1) ∪ SAT (φ2)
φ is φ1 → φ2 : return SAT (¬φ1 ∨ φ2)
φ is AXφ1 : return SAT (¬EX¬φ1)
φ is EXφ1 : return SATEX(φ1)
φ is A(φ1Uφ2) : return SAT (¬(E[¬φ2U(¬φ1 ∧ ¬φ2)] ∨ EG¬φ2))
φ is E(φ1Uφ2) : return SATEU (φ1, φ2)
φ is EFφ1 : return SAT (E(>Uφ1))
φ is EGφ1 : return SATEG(φ1)
φ is AFφ1 : return SAT (¬EG¬φ1)
φ is AGφ1 : return SAT (¬EF¬φ1)

end case
end begin

The algorithm only deals with an adequate1 set of temporal operators: EU , EG and EX . The

main function SAT (which stands for satisfies) takes as input a CTL formula and returns the set

of states that satisfy the formula. The algorithm calls functions SATEU , SATEG and SATEX

each time it encounters EU , EG and EX respectively in the parse tree for the given formula. It

is assumed that SAT can access any part of the model.

The semantics of EGφ assert that s0 � EGφ holds iff there exists a computational path such

that si � φ holds for all i ≥ 0. This could also be expressed by the equivalence:

EGφ = φ ∧ EXEGφ

that expresses that EGφ holds if φ holds and EGφ in one of the next states to the current state.

This equivalence can be proved from the semantic definition of EGφ. The semantic definition of

EXψ can be used to rewrite the equivalence in the following way:

[[EGφ]] = [[φ]] ∩ {s| exists s′ such that (s, s′) ∈ R and s′ ∈ [[EGφ]]}

This does not seem like a good way for computing EGφ as it is a circular definition. However,

it can be shown that

F (X) = [[φ]] ∩ {s| exists s′ such that (s, s′) ∈ R and s′ ∈ X}

is a monotone function, and that [[EGφ]] is the greatest fixed point of F (X). The pseudo code

for SATEG computes EGφ as follows.

1A set of temporal operators is adequate if any CTL formula can be converted into a semantically equivalent
formula that uses only those operators.

2.5 Complexity of Model Checking Algorithms 42

function SATEG(φ)
local var X, Y
begin
Y := SAT (φ);
X := 0;
repeat until X = Y
begin

X := Y;
Y := Y ∩ {s| exists s′ such that (s, s′) ∈ R and s′ ∈ Y }

end
return Y

end

Functions for SATEU and SATEX are derived similarly.

Example

Let us consider the Kripke model illustrated in Figure 2.2 and show how to compute the set

[[EGq]] using the fixed point functions. This set is the greatest fixpoint of the function F , i.e.

[[EGq]] = Fn+1(S) where S = {S0, S1, S2, S3}. From Figure 2.2, it is clear that [[q]] = {S0, S3}
and therefore:

F (X) = [[q]] ∩ {s ∈ S| such that (s, s′) ∈ R for some s ∈ X}
= {S0, S3} ∩ {s ∈ S| such that (s, s′) ∈ R for some s ∈ X}.

Since [[EGq]] is the greatest fixed point of F , F must be iterated on S until the process

stabilises. Therefore, the first iteration consists of:

F 1(X) = {S0, S3} ∩ {s ∈ S| such that (s, s′) ∈ R for some s ∈ S}
= {S0, S3} ∩ S since every s has some swhere(s, s′) ∈ R
= {S0, S3}.

The second iteration:

F 2(X) = F (F 1(S))
= {S0, S3} ∩ {s ∈ S| such that (s, s′) ∈ R for some s ∈ {S0, S3}}
= {S0, S3}.

Since the process stabilises, the greatest fixed point of F is {S0, S3}.

2.5 Complexity of Model Checking Algorithms

The complexity of model checking algorithms [Sch02a] is measured in order to evaluate their cost,

that is, their running time, and to try to show that the algorithms are optimal. Optimality of

algorithms is a specific term used in the theory of computational complexity for showing that no

better algorithm exists at the cost of some simplifying abstractions, such as asymptotic measures

and comparing performance on the worst case. In the model checking field, the complexity measure

is used to compare the computational capabilities of algorithms for different temporal logics (i.e.

LTL versus CTL) and for identifying any efficiency limitations.

The cost of model checking algorithms, for example, for the one we presented that solves the

problem of M � φ for some Kripke structure M and for a given formula φ, is given by the sizes

2.6 Techniques Addressing State Explosion 43

Table 2.1: Summary of complexity measures for LTL, CTL and CTL∗

Temporal Logic Program-complexity Formula-complexity Total Complexity

LTL NLOGSPACE-complete PSPACE-complete PSPACE-complete
CTL NLOGSPACE-complete LOGSPACE P-complete
CTL∗ NLOGSPACE-complete PSPACE-complete PSPACE-complete

|M | and |φ|. In [Sch02a], they assume that |φ| is the number of symbols (strings) in φ and |M | is

the sum of the number of nodes and edges |S| + |R|.
In the early days of model checking, it was believed that model checking CTL formulas (P-

complete) was easier than model checking LTL formulas (PSPACE-complete). The complexity

of model checking CTL∗ is PSPACE-complete. In [Sch02a], the author presents an argument

against this belief and shows a different approach for determining the complexity of model checking

algorithms. This approach considers two parameters that contribute separately to the complexity

of model checking. For the Kripke structure M and the formula φ, the size of M is usually

large and the size of φ is usually small. Therefore, the size of M is seen to be more significant

with respect to cost of model checking. In the complexity-theoretic framework, these parameters

lead to the determination of: program-complexity and formula-complexity. Program-complexity is

measured as a function of the Kripke structure M only, whereby the formula φ is fixed. Conversely,

formula-complexity is measured as a function of φ only and M is fixed. Therefore, we can measure

the impact of each input to the overall cost. We summarise in the table below the complexity

measures for LTL, CTL and CTL∗ for model checking as presented in [Sch02a], where more details

can be found on the results.

In [Var98], they also point out that the complexities and expressiveness of the logics do not

simply indicate which logic is easier to model check. Therefore, this factor should not entirely

influence our choice of model checking approach to use for the work in this thesis.

2.6 Techniques Addressing State Explosion

Although the complexity of the model checking algorithms seems tractable, in practice, the algo-

rithms still suffer from the state space explosion problem. This is because when the model checker

is implemented, the program that represents the system model can become very large as there is

an exponential relation between the number of variables and the number of components. Several

techniques have been proposed for reducing this problem by improving the efficiency of model

checking algorithms.

2.6.1 Symbolic model checking

One way of improving the efficiency of the algorithm is to apply symbolic model checking. A

symbolic representation is used in symbolic model checking for implicitly representing the state

variables and transitions of a transition system as well as the CTL formulas. The issue of concern

is no longer the size of the state space but rather the size of the symbolic representation, which

may be much smaller.

2.6 Techniques Addressing State Explosion 44

One such symbolic representation used is a canonical representation of boolean functions known

as Ordered Binary Decision Diagrams (OBDDs) [Bry86, Bry92]. This representation is a more

efficient extension of Binary Decision Diagrams (BDDs) [Bry85] as reductions have been applied

(for example, the removal of duplicate nodes) and a strict ordering has been imposed on the

variables, as BDDs were not a great improvement from truth-table representations. BDDs and

hence OBDDs are similar to binary decision trees, with the exception that they are directed acyclic

graphs rather than trees.

OBDDs are composed of non-terminal nodes (denoted by circles) labelled with boolean vari-

ables and terminal nodes (denoted by squares) labelled with boolean values, i.e. 1 or 0. The edges

that connect the nodes are either represented by dashed lines if the values of the variables are

0 or by solid lines if the values of the variables are 1. Therefore, to obtain the truth values of

the boolean function, one traverses the OBDD starting from the root node, and follows the edges

depending on the values of the variables to reach the values expressed by the terminal nodes.

Figure 2.6 illustrates the BDD and OBDD for the function f(a, b, c) = (a · b) + c where · denotes

∧, + denotes ∨, 1 denotes > and 0 denotes ⊥. The truth-table is also given as it corresponds

to the boolean variables and values in the diagrams. The OBDD has no duplicate terminal or

non-terminal nodes and imposes an order on variables that in Figure 2.6 increases along any path.

b

a

b

c c c

b

c

1101010 1

0 0 0 0
0 0 1 1

0 1 1 1
0 1 0 0

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a b c f(a,b,c)

10

c

a

Figure 2.6: The truth table, BDD and OBDD (with ordering a < b < c) for f(a, b, c) = (a · b) + c

Symbolic model checking [BCM90] uses OBDDs to represent the finite-state model of the sys-

tem and checks temporal formulas directly on them. A finite-state model M = (S,R,L) is

expressed as OBDDs in the following way. Each element of S is assigned a vector of boolean

values (v1, v2, ..., vn), where n = dlog2 |S|e . A set of states {s1, s2, ..., sk} is represented as the

OBDD of the boolean function

(v11 · v12 · ... · v1n) + (v21 · v22 · ... · v2n) + ...+ (vk1 · vk2 · ... · vkn)

The transition relation R (subset of S×S) is represented by a pair of boolean vectors, one encoding

the current state and the other encoding the next state. It is represented by the OBDD for the

boolean function

(v1 · v2 · ... · vn) · (v′1 · v′2 · ... · v′n)

and the entire transition relation is the OBDD resulting from the disjunction of such formulas.

2.6 Techniques Addressing State Explosion 45

Figure 2.7 shows how the substates of states of a simple Kripke model are represented by boolean

values and functions.

SS0

q

p

S

2

1

set of representation by representation by
states boolean values boolean functions

∅ 0
{S0} (1,0) p · q̄
{S1} (0,1) p̄ · q
{S2} (0,0) p̄ · q̄
{S0, S1} (1,0),(0,1) p · q̄ + p̄ · q
{S0, S2} (1,0),(0,0) p · q̄ + p̄ · q̄
{S1, S2} (0,1),(0,0) p̄ · q + p̄ · q̄
S (1,0),(0,1),(0,0) p · q̄ + p̄ · q + p̄ · q̄

Figure 2.7: A simple Kripke model and the representation of its substates of states.

The algorithm presented in 2.4.1 for model checking CTL formulas is suitable to be used with

OBDDs. That is, OBDDs are used to represent the atomic propositions and the transition relation

of the model and the algorithm returns the OBDD for all the system states that are true for the

given formula. Fixed point characterisation of temporal operators also forms the basis of the

symbolic model checking approach. There are a number of operations that are defined on OBDDs

and these are used in order to implement the operations defined in the model checking algorithm.

Relational mu-calculus has been used as a syntax for referring to fixed points in the context of

boolean formulas and for describing the dependencies and interactions of fixed point invariants.

Symbolic model checking has been successfully used for model checking CTL formulas and has

been shown [CGP99] to benefit LTL-model checking as well as automata-theoretic approaches.

This approach has allowed several systems [BCM90] to be model checked that were previously

rejected because of the size of the state space.

However, OBDD algorithms do not perform better in all cases because the size of the OBDD

depends greatly on the chosen ordering of the variables. The problem of finding an ordering that

generates a minimal OBDD is NP-complete. Moreover, it has been shown that for some boolean

functions the size is always exponential no matter which ordering is applied [CGL93]. Nevertheless,

several heuristics have been developed for choosing a suitable variable ordering, if such an ordering

exists.

The complexity of the optimal symbolic model checking algorithm [Sch02a] for LTL, CTL

and CTL∗ is PSPACE-complete and the program-complexity is also PSPACE-complete. For

symbolic model checking algorithms of branching-time µ-calculus2, the complexity of the algorithm

is EXPTIME-complete [Sch02a].

2.6.2 On-the-fly techniques

On-the-fly techniques improve on the efficiency of performing reachability analysis. Reachability

2We have not presented this algorithm for simplicity.

2.6 Techniques Addressing State Explosion 46

analysis is a verification technique that exhaustively explores all the reachable states and transi-

tions in the system which usually requires the entire state graph (reachability graph) of the system

to be stored. This is made impossible by the state space explosion problem for many industrial

systems. On-the-fly techniques describe ways of performing reachability analysis without storing

the entire state graph. Instead, all possible transition sequences performed by the system are

simulated in a depth first traversal of the system graph, without storing any of the states. This

reduces the amount of memory required to perform verification [JJFM92].

There are two extreme strategies for handling the storage requirements of the depth-first search.

The first handles the minimum storage requirement of storing the current path being explored.

This reduces the memory required and still ensures that reachability analysis is performed suc-

cessfully. However, the time needed to complete the search increases immensely. The second

strategy handles the maximum storage requirement where states are stored as they are visited.

This improves the execution time but increases the memory requirements which can lead to the

impossibility of all states of some systems being stored. Several methods have been proposed that

can be seen as a compromise between these two strategies.

Two further techniques:

1. State-space caching [GHP92] creates a restricted cache for storing chosen visited states. The

cache initially stores all the states that it visits until there is no more space. After, it

applies one of many replacement strategies for replacing the old states with new ones. The

effectiveness of state-space caching depends on the size of the cache and the structure of the

state space. Since the latter is unforeseeable, it is very difficult to find the optimal cache

setup that can lead to a dramatic increase in execution time.

2. Bit-state hashing or supertrace technique [Hol95] is used when the size of system does not

allow for exhaustive verification. It performs a partial search of the state space and stores

the visited states in a hash table whose size depends on the memory available. A sequential

bit-state technique can be applied to increase the coverage of the algorithm by performing

multiple runs with statistically independent hashing functions, until the coverage level is

reached. In this case, there is no time limitation, only space.

The applicability of reachability analysis is extended with the development of automata-

theoretic approaches [CVWY92]. That is, it is no longer limited to detecting errors such as

static deadlock. For example, LTL model checking can be reduced to reachability analysis and

therefore algorithms can be provided for performing model checking on-the-fly. Examples of such

algorithms are found in [CVWY92]. However, the use of on-the-fly techniques is not restricted to

LTL model checking. They have also been applied to CTL.

The main advantage of on-the-fly techniques is that the algorithms execute until an error is

found. Thus, the entire state space need not be explored and errors, if any, are detected quickly.

In the worst case, if the system model is correct, the entire state space is explored. Therefore,

on-the-fly techniques are suitable for systems detecting errors in the initial stages of design. If

errors are found, counter-examples are generated to help the user with correcting them.

2.6 Techniques Addressing State Explosion 47

2.6.3 Partial-order reduction

Traditionally model checking was used for verifying hardware as the state explosion problem is

especially large for software [CGP99]. The reason for this is that software tends to have less

regularity of structure than hardware. In particular, the state space of asynchronous concurrent

software is extremely large. These systems have distinct processes that perform the activities

independently without a global clock. Partial order reduction techniques were invented as ways

to successfully reduce the state space of asynchronous concurrent software, while still managing

to prove the system properties.

An asynchronous concurrent system is usually represented by an interleaving model, that

arranges all the events in a single execution into a linear order known as an interleaving sequence.

Events can thus be ordered in any way with respect to one another. Properties of such systems

are expressed using logics that can differentiate between interleaving sequences in which events are

executed with different orders. The state space of these systems grows extremely large because

all the possible interleaving of events must be considered. This is not a problem for synchronous

concurrent systems, as they execute events simultaneously.

Partial order reduction techniques exploit the notion of independence of concurrently executed

events, that is, that events can be executed in any order and the results are still the same. They

are able to reduce the number of interleaving sequences to be considered and consequently the

state space is reduced. If two or more indistinguishable interleaving sequences that are only differ-

entiated by the order in which they are executed, then only one of these needs to be considered.

This approach is based on the “partial order model of program execution” [CGP99].

Many researchers have proposed techniques for reducing the state space in this way. The

first proposal of such a reduction technique was presented in [Ove81]. However, it considered

a restricted concurrent system, without loops and nondeterministic choice [CGP99]. There are

several partial order reduction techniques that have been implemented by model checking algo-

rithms. They perform a selective search of the system state space, where for each state s reached

during the search, a subset T is processed that contains the set of transitions enabled at s and

explores only those. Techniques for identifying these subsets that are described in the literature

include stubborn sets [Val90], persistent sets [God90], ample sets [Pel94], sleep sets [Val90] and

the unfolding technique [McM95].

2.6.4 Other techniques

The following techniques can be used in conjunction with the techniques that we have already pre-

sented, that is, with symbolic model checking, on-the-fly verification and partial order reduction.

We only give a brief description of these.

Compositional reasoning

Compositional reasoning consists of decomposing a complex system into smaller, more manageable

components, and identifying local properties of these components that guarantee desired properties

of the global system. The local properties must be verified first and are then combined to deduce

the global properties of the system. Since only smaller substates of the system are considered at

2.6 Techniques Addressing State Explosion 48

any time, the entire system state space does not need to be explored. Therefore, this approach

does not suffer from the state space explosion problem.

Numerous researchers [McM98b, BCC98, PT98, Sha98, KV98, PDH99, BCY02, LFK02] have

devoted their attention to this approach as it seems to be the most promising for reducing the

state space. However, there are some issues that prevent it from being so. One of the main issues

that arises is knowing that local properties of components remain true when they are combined

in parallel. Some specific assumptions about their environment must be made. An approach is

presented in [CLM89] that models the environment of a component by another component, known

as the interface process. An interface rule is used to deduce the properties of a composition by

inspecting the local properties of each component.

The task of decomposing the global properties into local properties is very hard. Furthermore,

it must be shown that the decomposition of these properties is correct. Automating this process

is also very difficult but it is required in order for it to be used commercially. Certain heuristics

exist and are still required [CW96] for efficiently decomposing systems.

More recently, [BCY02] show ways of exploiting a distributed environment for model checking,

where parts of a system are model checked across a network (or grid) of computers (called node)

that provide extra resources for handling the state space explosion problem. The authors present

an algorithm that first partitions the given state space among the nodes, and then each node

model checks its partition. They use border states for representing the missing parts of the state

space3. Therefore, whenever a model checker reaches a border state, it obtains information of

other nodes about the truth of formulas in that state - assumptions. These assumption might

change and require a re-computation. These ideas are similar to those in [LG98].

Abstraction

Abstraction techniques [CGL94, DGG97] are used to reduce the complexity of model checking

by producing a smaller representation (abstract system) of the actual system which is easier to

verify. The states and transitions of the actual system are mapped to states and transitions in

the abstract system. This approach appears to be suitable for reactive systems as they contain

data paths, that is, simple relationships between data values. Two such techniques are: data

abstraction and cone of influence reduction [CGP99].

Data abstraction consists of finding a mapping between actual data values in a system and a

small set of abstract data values. By applying this mapping to states and transitions, a smaller rep-

resentation of states and transitions can be produced that emulates the actual system. Therefore,

it is simpler to model check the abstract model as it is smaller in size.

The cone of influence reduction technique focuses only on the variables that are referred or

that influence properties to be verified. All the other variables are eliminated, which results in the

generation of a smaller state transition graph. Therefore, the properties are verified on a smaller

model of the system.

3This idea is similar to the virtual sensors that is introduced in Chapter 3 and 4.

2.7 Overview of Model Checking Tools 49

Symmetry

Software systems usually have some replicated components or structure, for example, concurrent

systems have identical processes, and reactive systems have similar sensors (switches) or actuators.

Symmetry [ES96] can be used to generate reduced models of such systems. If a system has some

symmetry, then there exists a nontrivial permutation group that preserves both the state labeling

and the transition relation. These groups can then be used to reduce the state space of a system

by defining an equivalence relation on the state space [CGP99]. The smaller models can be used

to verify the temporal properties of the original model.

Induction

Induction is used for model checking a network of processes of finite-state concurrent systems

[CGB86], since model checking of networks is limited due to state space explosion, lack of inference

and lack of generalisation [CM02, MC03]. Inference refers to the ability to infer properties of a

system with n processes from the properties of a system with less than n processes. Generalisation

refers to the ability to generalise properties to components of an infinite group of processes.

The problem of model checking parameterised systems is undecidable [AK86]. Nevertheless, it

is sometimes possible to find an invariant process that represents the behaviour of a number of

systems in a family. This invariant can be used to check properties that should hold true for all

systems that belong to that family. Then, to ensure that the invariant is a suitable representation,

an inductive argument is used.

Summary

Different techniques were presented that address the state space explosion problem when imple-

menting the model checkers. There are three main techniques for improving the efficiency of

the model checking algorithms (symbolic model checking, on-the-fly techniques and partial-order

reduction) that can be applied independently, and a number of other techniques (compositional

reasoning, abstraction, symmetry and induction) that can be applied in conjunction with the main

techniques. We summarise the main techniques in the following table with respect to two main

issues: how these techniques improve the efficiency of the model checking algorithms and to what

extend they achieve this.

2.7 Overview of Model Checking Tools

Numerous tools have been developed for solving the model checking problem. These tools apply

to different application domains, implement different model checking approaches, present ways

of overcoming the state space explosion problem. Some of these are academic tools while others

are used in industry. Some model checkers are standalone, while others are embedded within

development methods. In this thesis, we want to use an existing model checker to verify the

temporal properties of RSDS specifications. Therefore, in this section we provide a brief description

of a selection of these tools and provide references for others. The factors that have influenced our

2.7 Overview of Model Checking Tools 50

Table 2.2: Summary of main techniques addressing the state space explosion problem

How efficiency is improved To what extend

Symbolic model checking Uses OBDDs for implicit Can model check 1020 states,
representation of states however size of OBDDs
and variables depends on ordering

On-the-fly techniques Performs reachability analysis Best case: execute until error is found.
without storing the entire Worst case: if system model is correct,
state graph entire state space is explored.

Partial order reduction Exploits the notion of Depends on how many processes
independence of concurrently are used. It gaurantees low message
executed events complexity O(N × log(N))

choice for this selection are: the popularity of a tool and its relevance to our work, that is how

suitable it is for model checking RSDS specifications.

2.7.1 Tools of the temporal logic approach

There are a few such model checkers that include SMV, VIS, Murφ [D. 96].

SMV

Symbolic Model Verifier (SMV) [McM92a] is a tool for symbolically model checking CTL formulas

of finite-state systems. It provides a language for describing a system as a number of modules

that can be composed synchronously or asynchronously. Asynchronous composition means that

the modules are interleaved arbitrarily which is useful for describing communication protocols and

asynchronous systems. Also, the SMV language allows the use of non-deterministic expressions for

modelling the environment or for the purpose of abstraction. When SMV model checks a system

against a set of CTL formulas, it produces as output: either the word “true” if all the properties

hold in the system model, or the word “false” with a counter-example that outlines the steps leading

to the violation of the property. SMV’s model checking algorithm was the first to use BDDs and

showed that it could exhaustively check systems with large state spaces as in [BCM90]. Moreover,

it offers several strategies for ordering the boolean variables in order to improve the efficiency of

the algorithm. SMV has been used for verifying both hardware [MS91, CGH+93, CGL94] and

software systems [WVF95, CAB+98].

VIS

Verification Interacting with Synthesis (VIS) [RGA+96] is a verification and synthesis tool that is

applicable to finite-state hardware systems. Verilog [Ver] is used as a front end of the tool with the

extended features of a non-deterministic construct and symbolic variables, that is, representing and

analysing the value of variables symbolically. VIS uses the efficient algorithms in [CGMZ95] for

model checking, including one for improving the efficiency of checking invariants. Also, it provides

further techniques to improve the efficiency of verification such as abstraction, equivalence checking

of two designs and structural pruning techniques (that is, techniques for eliminating part of the

2.7 Overview of Model Checking Tools 51

network that are not affected by the invariant being checked). Moreover, VIS can be considered as

a platform for developing new verification algorithms as it consists of 18 packages that supply a set

of routines for manipulating data structures and a set of related functions that can be performed.

Some industrial designs and sequential circuits have been verified with VIS in order to test its

capabilities.

2.7.2 Tools of the automata-theoretic approach

Tools for the automata-theoretic approach include: SPIN, COSPAN, FDR [Ros98].

SPIN

SPIN [HP96, Hol97] is a model checking tool that was mainly developed for simulating and verify-

ing distributed systems. It has an imperative modelling language called PROMELA that resembles

C. The semantic model of PROMELA is based on finite automata. The properties to be verified are

expressed as LTL formulas (known as “correctness claims”) that are converted to negative claims

and converted into Büchi automata. The intersection of a claim and the automaton representing

the system model is computed and if it is empty, then the positive claim is satisfied for the given

system. PROMELA assigns to each state a label of the possible two: “progress” and “accept”,

which are hidden from the user. These labels are required for SPIN to ensure that a cycle in the

system contains at least one progress state and no accept states. The progress state ensures that

a useful step will be performed in any infinite execution of a system. The accepting states are

used in the verification procedure of LTL formulas and assist the generation of a counterexample

when a system does not satisfy a claim. Also, SPIN checks automatically some basic properties

such as absence of deadlock.

An optimised nested depth-first search algorithm is used to compute SPIN’s verification pro-

cedure. It is compatible with all modes of verification available with the tool for dealing with

large state spaces such as exhaustive search, bit-state hashing and partial order reduction tech-

niques. The conversion of LTL formulas to Büchi automata is based on on-the-fly construction as

described in [GPVW95].

COSPAN

COSPAN [AK95, HHK96] adopts the automata-theoretic approach for model checking. It has a

modelling language called S/R (selective/resolution). Several widely used notations for hardware

description, such as Verilog, have developed front-end interfaces for COSPAN as a way of inte-

grating the model checker. Its semantic model is based on ω-automata. A system to be verified

is modelled as a collection of such automata. Properties are expressed as ω-automata and to

facilitate their construction a library of parameterised automata is provided. COSPAN provides a

top-down development process through successive refinements. The performance of the algorithm

is improved by either symbolic or explicit state-enumeration algorithms. The former uses BDDs,

while the latter uses caching and bit-state hashing options in addition to minimisation algorithms.

Moreover, COSPAN supports other reduction strategies such as automated localisation reduction

(computes the cone of influence of a property) and symmetry reduction.

2.7 Overview of Model Checking Tools 52

2.7.3 Model checking real-time and hybrid systems

Model checking has been used to verify real-time and hybrid systems. Real-time systems are

systems that must react to stimuli from the environment within a strict time limit. UPPAAL

[LPY97, BDL+01] is a tool for modelling and verifying real-time systems and is based on constraint-

solving and on-the-fly techniques. Recently, it has been extended with more efficient algorithms

and its modelling notation describes hierarchical structures, similarly to those in UML statechart

diagrams, for better system design. Kronos [DOTY96, Yov97] is another tool for model checking

real-time systems. It implements the symbolic model checking algorithm and verifies properties

expressed in the real-time temporal logic TCTL [ACD93]. Both tools model the real-time systems

as timed automata, that is finite-state machines extended with real variables (clocks) for expressing

the timing constraints on the delays between events.

Hybrid systems are digital systems that express both discrete and continuous change. They

interact with each other as well as with an analog environment. The hybrid automaton is a

finite automaton with a finite number of real-valued variables that change continuously. It is

commonly used for modelling the mixed discrete-continuous behaviour. HyTech [HHWT97] is a

symbolic model checker for verifying linear hybrid automata. It takes as input a set of linear

hybrid automata given in a textual form and then computes subsets of the global state space. As

a result of this computation, HyTech provides information on the behaviour of the system and

provides error diagnostics. It can also handle parametric analysis i.e. the analysis can give the

parameter values for which the property holds.

According to the survey of tools described in [BBF+01], Kronos allows the verification of

liveness properties for TCTL formulas and is not restricted, as UPPAAL and HyTech are, to the

verification of reachability properties. HyTech in particular, does not apply model checking to

temporal logic. Instead, subsets of states are built by the user to be computed by combinations

of basic constraints. UPPAAL has a very friendly graphical user interface, unlike Kronos, but its

main weakness concerns its specification language as it allows only binary synchronisations to be

described.

2.7.4 Applying a combination of model checking approaches

Model-checking Kit

There are a number of modelling languages and model checkers available that are geared towards

certain applications and have certain strengths and weaknesses. In [SSE03], a number of model

checkers are applied to the same system to determine which model checker is best suited, as there

is no single model checker that is ideal. This resulted in the development of the Model-checking

Kit that provides a variety of petri net modelling notations for specifying finite-state systems, and

a variety of model checkers (such as PEP tool [Pep], PROD [Pro], SMV and SPIN) for verification.

The basic language of the Model-checking Kit is 1-Safe Place/Transition Petri nets as they are

simple, with no variants, and can be dealt with by a number of verification techniques. Potentially,

the performance of the different model checkers can be compared. However, there are losses in

performance as the optimisations of the model checkers in the Kit are based on their specific

modelling language and are usually impaired during translation.

2.7 Overview of Model Checking Tools 53

2.7.5 Model checking programs

Some tools model check programs written in a given programming language. These include:

Bandera [CDH+00, HD01] and SLAM [BR01]. They do not require that the system model be

represented in their specific modelling language. They might extract a model from the code, and

this is usually done automatically.

BLAST

Berkeley Lazy Abstraction Software (BLAST) [HJM+02] is a tool that uses lazy abstraction to

construct correctness proofs for temporal-safety properties of proof-carrying code (PCC). PCC is

a certification mechanism that ensures the correctness of the code. This consists of the code being

annotated with loop invariants, pre- and post-conditions, and proof of correctness of a verification

condition. From these annotations and code, the user can construct a verification condition and

checks the supplied proof of correctness. Model checking is used to guide the generation of proofs.

VeriSoft

VeriSoft [God97a, God97b] is a tool for model checking systems made up of several concurrent

processes that are implemented in programming language such as C or C++. Every process in

the system is mapped to a UNIX process and the execution of these processes is controlled by a

scheduler, which is an external process. The scheduler selects to view the visible operations of a

process and can explore one transition in the state space. The depth of the search is limited to

avoid state-less searches lost in cycles. If a violation is detected for the deadlock or/and assertions,

the search is stopped and a trace is displayed. VeriSoft checks for deadlock, assertions, divergences

and livelocks. A divergence occurs when no visible operation is executed within a time limit. A

livelock occurs when no transition of a process is enabled (i.e. a process is blocked) during a

sequence of successive states where the number of successive states in this sequence is greater than

that defined by the user.

2.7.6 Methods that embed existing model checkers

Many development methods [BH99, Win01] and verification systems [Sha96, LB03] have realised

the importance of model checking for debugging and verification purposes. Thus they also want

to exploit the “push button” (hiding the details from the user) approach to detecting errors. We

provide a brief overview of some of the key methods that are comparable to RSDS and that use

model checking. These either use existing model checkers or have developed new ones.

Model checking with STeP

The Stanford Temporal Prover (STeP) [MtSg96, BBC+96] is a tool for verifying the temporal

properties of reactive systems as well as real-time and hybrid systems. It combines model checking

with deductive methods to provide verification support to a wide variety of systems such as

parameterised programs and circuit design, but also systems with infinite data domains. Model

checking is restricted to finite-state systems of a reasonable size (that is, not too large as to

make model checking infeasible). Therefore, to model check an infinite-state system it must be

2.7 Overview of Model Checking Tools 54

defined as a finite-system by limiting the number of instances, as well as constraining the size of

the array and parameters. The deductive methods consist of verification rules that reduce the

temporal properties to first-order conditions, and verification diagrams that visually assist with

the organisation and management of the proofs. STeP also provides techniques for automatically

generating invariants. These invariants are used to facilitate the verification process with an

interactive theorem-prover.

Model checking with STATEMATE

I-Logix’ Statemate MAGNUM [HLN+90, Sta] is a graphical modelling and simulation tool for

developing large and complex reactive systems. The modelling language includes the following

standard engineering diagrams: data and control flow diagrams, structure diagrams, statecharts,

truth tables and control law block diagrams. It informally ensures correctness of the specification’s

behaviour by exploring “what if” scenarios.

Statemate has recently been extended [Sta, BDK+02] with model checking based techniques

that are grouped into two parts: the ModelCheckerTM component for robustness checks and the

ModelCertifierTM component for certification. Robustness checks are performed at the early stages

of development, ensuring that states are reachable or not, depending on the requirements, and

that there are no non-deterministic situations. The ModelCertifier has primarily two roles. The

first role is to assist the user with expressing properties by selecting and substituting a pattern

from a pattern library. These patterns are invariants of typical requirements from the automotive,

rail and aerospace application domains. The second role of the ModelCertifier is to check these

properties by applying if necessary advance techniques such as abstraction and cone of influence.

The model checking techniques use the VIS model checker as its core engine and automatically

translate the Statemate specification into the VIS input language.

ProB: a model checker for the B method

ProB [LB03] is a model checker that has been recently developed to provide additional support

for the verification of B specifications. B specifications are made up of B machines. When

developing specifications with the B method, there are two types of proof checks that must be

made: consistency checking that consists of formally showing that the operations of the machine

preserve the invariants, and refinement checking that ensures the refinements produced are valid.

ProB performs consistency checking of B machines automatically by exploring the state space of

the B machines exhaustively or non-exhaustively to detect property violations. Counter-examples

are displayed graphically.

The restriction of finite-state space still applies for ProB and thus the range of values for vari-

ables must be limited as well as that of sets. Also, ProB cannot model check temporal properties.

However, it is a useful visual tool that assists debugging of B specifications.

MOCHA

MOCHA [AHM+98, dAAG+00] is an environment for interactively developing concurrent systems.

It provides a language (Reactive Modules [AH99]) for defining system specifications in a modular

2.8 Discussion 55

way and supports hierarchical structuring and reasoning. A specification can contain synchronous

modules, asynchronous modules, some modules specifying hardware and others software, and

some modules can be time-critical. The simulator visualises the behaviour of the specification.

MOCHA’s main aim is to use the modular design structure to enhance model checking. It supports

symbolic model checking (based on VIS) and enumerative search. The logic used to express

the properties is Alternating Temporal Logic (ATL) [AHK02] that makes it possible to describe

that a module can achieve a goal regardless of changes to its environment. Model checking is

complemented with automated refinement checking for supporting hierarchical design and for

decomposing verification tasks. Compositional and assume-guarantee rules are used for this.

2.8 Discussion

We have already explained that a plethora of model checkers and methods integrated with model

checkers are available to use for this work. We have also briefly described some of those model

checkers that could possibly be used for model checking RSDS specifications. From these, we have

decided to use SMV. In this section, we present a justification for our choice by considering the

model checkers presented in turn.

The model checkers for verifying the properties of real-time and hybrid systems are too spe-

cialised to be used for RSDS systems as RSDS only considers discrete control systems without

any timing constraints. Furthermore, Kronos expresses properties using real-time temporal logic

TCTL, HyTech does not apply model checking to temporal logic at all and UPPAAL only con-

siders reachability properties and not a full temporal logic [BBF+01]. COSPAN [AJKV97] also

model checks properties of real-time systems. RSDS specifications do not currently define real-time

constraints.

In order to apply the Model-Checking Kit to RSDS specifications, translations must be defined

for each model checker included and its correctness shown. This is an enormous task and the

benefits are not obvious as applying several model checkers does not necessarily mean that more

errors will be found [ME03]. It is important to focus on capturing errors that are of interest.

With the addition of extra steps in the verification process, more errors can be unintentionally

introduced and it could be difficult to map back to the original model (for example, the RSDS

specification).

Tools that model check programs cannot be used to model check RSDS specifications as there

is a wide gap between the level of the representations. RSDS specifications describe the behaviour

of systems in an abstract manner, omitting implementation detail, while programs provide specific

implementation detail based on the particular programming language used.

Methods that embed existing model checkers usually do so by defining translations from their

modelling notation to the input language of the chosen model checker. This process is hidden from

the user. In order for these methods to support the verification of RSDS specifications via model

checking, they must be able to model RSDS specifications according to the semantics of RSDS.

The semantics of the modelling notations of methods differ from that of RSDS, for example, the

semantics of the statechart notation of Statemate is different from that used in RSDS. Therefore,

a translation from RSDS to the modelling language of the method must be defined if possible.

2.8 Discussion 56

However, it is better to translate from RSDS directly to the input language of the model checker as

the two sets of translations that would occur could lead to the loss of precision of the description

of the RSDS specification. We believe that there are advantages in developing systems using

the RSDS method, the main one being that RSDS provides a simple and abstract language for

specifying systems with invariants and statemachines (where the statemachine notation is simpler

with respect to the other statemachine/statechart notations) and automatically translates input

lanugages for theorem-proving, model checking and execution (code). Therefore, there is some

kind of platform independence at the specification level.

Some verification systems provide model checking as well as theorem proving. Since we want

to complement the verification support of the B method for RSDS specifications, the most natural

choice would be to use ProB for model checking. However, ProB has only been recently developed

and is currently not as sophisticated as existing model checkers. Also, it does not model check

temporal properties.

Another tool that combines model checking and thoerem proving is STeP, that has been used

for verifying reactive systems. Its main contribution is a deductive tool that can verify infinite-

state and parameterised systems. Its model checker uses symbolic model checking on finite-state

systems only and uses explicit-state model checking on infinite-state systems but provides no

guarantee for its termination. Since it allows for the description of parameterised systems, it

seemed initially to be preferable for verifying RSDS/UML specifications. However, STeP model

checks only a finite number of instances of a system that cannot be determined at run-time,

meaning that the parameterisation can be compared to module definitions in SMV (i.e. no better

than SMV). Also, it cannot model check all programs or properties accepted by STeP, for example,

a property that has quantifiers with temporal operators in their scope cannot be model checked.

The model checking tool is not robust or very powerful [MtSg96], some unexpected anomalies can

occur. We prefer to use SMV as it has better tool support and it is actively maintained.

MOCHA is also a verification system for analysing models of reactive systems that seems

suitable to be used for RSDS specifications. It is capable of modelling the environment in detail;

for example, variables are defined according to their visibility by the environment or system, or

both. RSDS specifications are presented at a more abstract level of detail, especially with respect

to the environment which is modeled by underspecification. Therefore, we prefer closed model

checking that views the complete system in isolation. Moreover, MOCHA provides automated

refinement checking and we choose to stick to the RSDS semantic views rather than introduce

refinement steps. MOCHA is based on the VIS model checker that has a Verilog (a hardware

description language) front end. VIS is therefore more geared towards hardware systems and thus

we prefer the input language of SMV.

SPIN is a good candidate for model checking RSDS specifications. Although it model checks

LTL formulas as opposed to CTL (used to define RSDS properties), it is easy to use and provides

many reduction techniques for handling the state space explosion problem. Nevertheless, we

prefer SMV’s input language rather than Promela as it is simpler for describing the behaviour of

statemachines. Moreover, the counter-example produced by SPIN when a property is violated is

often longer than that produced by SMV [BH99]. This is because of the former uses a depth-first

2.9 Summary 57

algorithm, while the latter uses a breath-first algorithm. Long counter-examples can be difficult

for users to read and can slow down the process of correcting the model.

Table 2.3 summarises the model checking tools discussed with respect to the issues concerning:

the the logic used to describe the properties to be model checked; the techniques used for ensuring

the efficiency of the tool; the input lanugage used for describing the model, and the level of

abstraction with which the model is described.

2.9 Summary

In this chapter, we introduced the model checking problem that is classified in two ways. Global

model checking checks whether a given formula is satisfied in a set of states. Local model checking

checks whether a given state of a model satisfies a given formula. There are three common

approaches for implementing model checking. The first two approaches are chosen depending on

how the algorithm expresses the properties to be verified. If the properties are expressed using

temporal logic, then the temporal logic approach is used for model checking. Alternatively, if

the properties are expressed as automata, then the automata-theoretic approach is used for model

checking. The third approach is the tableau approach used for implementing local model checking.

In this work, we use a model checker that implements the temporal logic approach for global model

checking. The properties we want to verify are expressed in CTL, but the model checker we use

also checks LTL properties.

A major limitation inherent in all model checking approaches is the state space explosion

problem. We have presented numerous ways that have been developed in order to minimise it:

symbolic representation, on-the-fly verification, reduction and compositional reasoning. Particular

emphasis was given to symbolic model checking as this is the technique that is used by the model

checker that we have chosen to use. Symbolic model checking uses OBDDs, a symbolic method,

for representing the state variables and transitions of a transition system. The desired properties

can be model checked directly on the OBDDs rather than on the state space. The issue of concern

is no longer the size of the state space but rather the size of the OBDDs.

Finally, we gave a brief overview of the model checking tools available and the recent imple-

mentation trends. A popular strategy is to integrate model checkers with verification systems

and with development methods for debugging purposes or for further verification. We adopt this

strategy for improving the verification support of RSDS specifications. The SMV model checker

is integrated into the RSDS method by translating the RSDS specifications into the SMV input

language. However, in order to present this work, we need to introduce the RSDS method and

provide details of the syntax and semantics of an RSDS specification, which is explained in the

next chapter.

2.9 Summary 58

Table 2.3: Summary of some model checking tools

Logic Used Tool Efficiency Input Language Level of
Abstraction

SMV CTL Symbolic model checking Modular, similar to Low level
finite state machines

VIS CTL Symbolic model checking Verilog Low level
with further techniques
e.g. abstraction,
equivalence checking,
structural pruning

SPIN LTL On-the-fly techniques PROMELA that Low level
resembles C

COPSAN LTL On-the-fly techniques Selective/resolution Low level
language

UPPAAL Only On-the-fly techniques Supports hierarchical Low level
reachability structures like in
properties UML statecharts

and has friendly GUI

Kronos TCTL Symbolic model checking Timed-automata Low level

HyTech No temporal logic. Symbolic model checking Expressed both Low level
Only reachability discrete and
properties continuous change

Model- CTL, LTL Various techniques 1-Safe Place/ Low level
checking Transition Petri
Kit nets

BLAST Temporal-safety Lazy abstraction Proof-carrying code High level
properties

VeriSoft No logic. Depends on the amount C or C++ High level
Uses of nondeterminism in the
assertions system being analyzed.

They claim that they
can reduce this problem
with some ingenuity.

STeP Temporal logic. Symbolic model checking Parameterised finite Low level
Formulas have no -state systems. Not all
temporal operators properties accepted
in the scope of can be model checked.
binding operators.

I-logix CTL VIS used as STATEMATE Low level
Statemate core engine
MAGNUM

ProB No temporal Explicit state model B machines Fomal method
properties checking - uses High-level model

hashing function (less states)

MOCHA CTL Based on VIS Reactive Modules Low level

CHAPTER 3

Modelling of Reactive Systems with RSDS

RSDS [LCA02b] is a method for supporting the systematic development of reactive systems start-

ing from the formulation of abstract requirements and resulting in code generation and verification.

Its main objectives are to define a language that expresses the requirements in the simplest terms

possible and to provide as much automated support as possible for analysis, design and code gen-

eration. The emphasis in development is shifted to the earlier stages where more attention can

be paid to the correctness and safety properties of the system. The RSDS development process

consists of the following phases, as illustrated in Figure 3.1:

decomposition
Design

System architecture

Ladder Logic
Generation PLC Ladder Logic

Controller
synthesis

C code

Java
Generation

Java Code

B AMN
generation B AMN modules

Code Generation Animation

Control system structure
and algorithms

Consistency &
completeness
checking

Statemachines &
invariants

Specification

Design

Analysis and Verification

Figure 3.1: The RSDS development steps

3.1 Specification in RSDS 60

1. Requirements analysis and specification development: An RSDS specification is com-

posed of a set of invariants and a set of Structured Reactive Systems (SRS) statemachines.

Invariants are used to concisely and precisely characterise the system behaviour. These are

derived as a result of the requirements analysis. The SRS statemachine notation is a vari-

ation of classical statemachines, designed to take advantage of characteristic structures of

reactive systems and to eliminate problems associated with traditional statechart semantics.

An SRS statemachine is produced for each system component that describes its dynamic

behaviour. The dynamic behaviour of the system shows how components move between

states. The specification is validated by the tool automatically checking completeness and

consistency of the invariants given.

2. Design: Data control flow diagrams (DCFD) [Wie03] are used to devise the system struc-

ture. Large systems can be decomposed into smaller subsystems, that can be independently

developed and tested. A number of decomposition approaches have been defined [LAC00]

that can be applied automatically to define the system architecture. The user, however,

needs to decide which decomposition approach to apply.

3. Analysis and Verification: An explicit control algorithm is produced by using the in-

variants as input to the code synthesis process. The control algorithm is used to generate:

ladder logic [Com93, LCA+02e] for application to process control systems, B [LCA02b] for

verifying the static properties and for animating the specification and Java [Jav, LFA02] for

automatic code generation.

This chapter presents the details of what is described in each phase of the RSDS development

process. Also, the syntax and semantics of RSDS specifications are defined. An example is used

to illustrate how RSDS develops reactive systems.

3.1 Specification in RSDS

From a given set of requirements, the specification for an RSDS system is developed using invari-

ants and SRS statemachines.

Definition 6 (RSDS system). An RSDS system Sys is a tuple (Sens, Invs, Conts,Acts) where:

1. Sens is a set of named statemachines representing the sensor components,

2. Invs is a set of invariants,

3. Conts is a set of named statemachines representing controllers, and

4. Acts is a set of named statemachines representing actuator components.

We consider the notation used for the invariants and statemachines separately.

3.1 Specification in RSDS 61

3.1.1 Invariants

The RSDS method uses invariants mainly for specifying reactive systems but they also play a key

role in formal synthesis of programs [LBA99], formal design decomposition strategies [LAC00] and

in critical applications of formal methods.

There are two main types of invariants used for specifying systems : system constraints that

describe the behaviour of the system and environmental constraints that describe assumptions

that are true about the environment. In RSDS, system constraints are used by the tool to syn-

thesise the appropriate control code as these are required to be true of the system. Moreover, the

developer needs to show formally that the invariants are properties of the system. Environmental

assumptions can be used by the developer as hypotheses for verification of system constraints.

When developing fault-tolerant systems, the environmental assumptions are regularly checked by

a dedicated controller in the system architecture to ensure that the system is put in a safe state

if these fail.

For safety critical systems, invariants are classified as being critical and non-critical. Critical

invariants are necessary for safe behaviour of the equipment under control (EUC). The RSDS tool

adds comments in the generated code in order for the user to trace the critical invariants. Both

critical and non-critical invariants are interpreted formally in the same way.

Syntax

Definition 7 (Invariant). An invariant I ∈ Invs of an RSDS system Sys, is any formula in the

following CTL sub-language:

1. Atomic formulae:

(a) propositional constants true and false;

(b) action symbols α for each event of an element Sm ∈ Sens∪Conts∪Acts where Sm is

a statemachine;

(c) equality formulae sm = v where sm is an attribute symbol representing the state

variable of an element Sm ∈ Sens ∪Conts ∪Acts, and v is a constant representing an

element of the state set of Sm.

2. If φ and ψ are formulae, so are φ⇒ ψ, φ ∨ ψ, φ ∧ ψ.

3. If φ is a formula, so are: AXφ, EXφ, AGφ, EGφ, AFφ, EFφ.

Semantics

The semantics for CTL are given in Section 2.3.3 and also apply to this CTL sub-language used

for RSDS invariants. The meaning of each temporal operator used in this sub-language is:

If φ is a formula, then:

1. AXφ, φ is true for the next state along all paths;

2. EXφ, there exists a path where φ is true for the next state;

3.1 Specification in RSDS 62

3. AGφ, φ is true for all future states along all paths;

4. EGφ, there exists a path where φ is true for all future states;

5. AFφ, φ is true for some future state along all paths; and

6. EFφ, there exists a path where φ is true for some future state

The RSDS tool currently processes formulae of the form A ⇒ S where A is a disjunction of

atomic formulae, and S is a conjunction of atomic formulae or S is of the form Ops P where Ops

is a non-empty sequence of temporal operators and P is a non-temporal formula not involving ⇒.

Form of invariants

The invariants of RSDS specifications of discrete systems can be of the forms:

1. Static (or single state) invariants: P ⇒ Q where P and Q consist only of constraints of

current states of sensors and actuators in the system. No temporal operators or event names

are used. This form of invariant is used to describe a system’s normal and safety behaviour.

An example of such an invariant is: swstate = on ⇒ gvstate = open ∧ avstate = open,

which is part of the description of the behaviour of the gas burner system that is described

in section 3.5. It means: if the state of the switch sensor is on then the states for the

actuators gas valve and air valve are open.

2. Operational (or action) invariants: α & P ⇒ AX(Q) where P and Q are state con-

straints on sensors and actuators, α is a sensor event, and AX is the temporal operator that

denotes “next state on every path”. These invariants are usually generated automatically

by the RSDS tool, by converting the static invariants into this form. For example, the static

invariant for the gas burner swstate = on ⇒ gvstate = open ∧ avstate = open is converted

to:

swstate = off ∧ swon ⇒ AX(gvstate = open ∧ avstate = open)

where swon is the sensor event for the switch sensor. Invariants of this form are used to

synthesise the control algorithm. It is also possible to use this form of invariants to describe

the system behaviour, however this is not recommended as it is very easy to miss out cases

in the specification (see the Autopilot specification in Chapter 6).

3. Temporal invariants: P ⇒ M(Q) where M is some temporal operator such as AF and

AG (except for U), and P and Q are state constraints on sensors and actuators. These

invariants are used to describe the following properties : reachability, safety and liveness,

which should be checked to be true in the system specification. Each of these types of

properties can be expressed in different ways. The form that occurs commonly in RSDS for

each is:

• Reachability: AG(EFφ) states that from any state, φ is reachable, where φ consists of

constraints of current states of sensors or actuators (usually actuators). An example

of a reachability property for the gas burner example is: AG(EF (fdstate = present)),

which states that eventually a state is reached where the flame is present.

3.1 Specification in RSDS 63

• Safety: AG(P ⇒ Q) which is a also a static invariant. Violation of safety invariant

can lead to a hazard. For example, in the gas burner system, a safety invariant is

AG(gvstate = open ⇒ avstate = open), which states that the gas valve cannot be

opened unless the air valve is. This reduces the chance of a large build up of gas that

could lead to a potentially dangerous initial flame.

• Liveness: AG(P ⇒ AF (Q)) states that for any path, if P holds then eventually Q will

hold. P and Q are constraints on sensor or actuator states. An example of a liveness

property for the gas burner is: AG(swon ⇒ EF (swstate = on ∧ fdstate = present)),

which states that if event swon occurs at any state, then eventually some state will be

reached where the switch is on and the flame is present.

Two other property types that are often checked for reactive systems are: fairness prop-

erties and deadlock-freeness. These properties are not checked on RSDS specifications for

the following reasons. Communication is unidirectional, therefore there is no possibility of

deadlock. Also, the assumption that each event terminates and that the reaction to each

event terminates means that the system is always live, so there won’t be issues of fairness

because of the simplicity of the architecture.

The RSDS tool carries out consistency checks on the invariants. These check whether invariants

A ⇒ B and C ⇒ D are consistent by checking if B and D are contradictory when A and C are

not. B and D are contradictory if for a particular component a, B ⇒ a = v and D ⇒ a = v′

where v and v′ are distinct.

3.1.2 SRS Statemachines

The SRS statemachine notation is a modular specification notation for reactive systems. It is

based on finite state machines (FSMs) [HU79] with the additional capability of modularisation

adopted from statecharts [PS91, HN96], which gains the advantage of structuring.

The main features of SRS statemachines are illustrated in Figure 3.2. There are three basic

ingredients that are used to construct statemachines: states, that are represented by (rounded)

rectangles; transitions, that are represented by labelled arrows, and modules, that are AND com-

positions of OR states separated by a dashed line. Each state has a name and can be of three

types: AND, OR (nested), or basic. Basic states are states with no internal structure. OR states

are states that have an enclosed statemachine, drawn as a rectangle, for example state B2 in

Figure 3.2. AND states are pair or tuple of OR states in a parallel (AND) composition (each OR

state in parallel is called a module). In Figure 3.2, the AND states are A and B.

A transition consists of two parts: a trigger and a sequence of generated action(s). The trigger

is a single event and a logical guard whose default expression is true. The guard is a logical

condition on component states that is combined using the logical connectives ∧,∨,¬. Negation

of events and logical combinations of events are not allowed. Usually when specifying reactive

systems in RSDS, sensor transitions have no guards, controller transitions have guards that can

refer to both sensor and actuator states, while actuator transitions have guards that refer to other

actuator states.

3.1 Specification in RSDS 64

A1

A2

B

B1 B2

B21

B22

B23

A

t1: e1/a1

t2:e2

t3:a1

t4

t5

t6

t7

Figure 3.2: An example of SRS statemachines.

The sequence of generated actions correspond to events. Some transitions may not generate

any events. Visually, transitions are labelled arrows connecting two states: the source state where

the transition starts from, and the target state where the transition ends (the state where the arrow

head is found). In Figure 3.2, transition t1 is triggered by event e1 and generates event a1 and its

source state is A1 and its target state is A2 which is written as: tr1 : A1 →e1 A2 (the generalised

form is tr : s[G] →α t to indicate that tr is a transition with the source s, guard G, target t and

event α). The initial state of a statemachine is depicted as the target of a virtual transition arrow

with no source, for example, in Figure 3.2 the initial states for A|B are {(A1, B1)} and the initial

state for the OR state B2 is B21 .

There are two types of events: external events that are sensor events and internal events that

are generated events. Transitions are classified as: uncontrollable transitions that are triggered

by external events and are represented by dashed lines. Controllable transitions are triggered by

internal events and are represented by solid lines. The RSDS system processes only one external

event at a time, that is at each step.

A reactive system developed using RSDS, is modelled by an SRS statemachine that is an AND

composition of a set of modules, where each module represents a system component: that is, one

module for each sensor, controller, subcontroller and actuator. In Figure 3.3, a SRS statemachine

describing a reactive system is illustrated that consists of a module for each sensor (SwitchA and

SwitchB) , controller (Controller) and actuator (Actuator). SRS modules are organised in a strict

hierarchy of receiving modules where a module transition may only generate events that trigger

transitions in modules that are lower in the hierarchy. This strict hierarchy prevents cycles of

receiving and sending. In Figure 3.3, the Controller receives events from the sensors (SwitchA

and SwitchB), and the Actuator receives events from the Controller, i.e. the actuator cannot

receive events directly from the sensors nor send events to any other module. The DCFD illus-

trates the flow of events between the system components (discussed in detail in section 3.3) which

consequently visualises the hierarchy of receiving modules. Therefore, in the DCFD illustrated in

Figure 3.4 it is clear which system components will be receiving events.

3.1 Specification in RSDS 65

off

on

A on
B off

A off
B on

A off
B off

A on
B on

onoff

off on

Switch A

Switch B

Controller

Switch_onA

Switch_onB

Switch_offB

Switch_offA

Actuator

Go_offGo_on

Switch_offA

Switch_onA/
Go_on

Switch_offA/
Go_off

Switch_onB/Go_on

Switch_offB
Switch_onA

Switch_onB

Switch_offB/

Go_off

Figure 3.3: An example of a SRS statemachine for a reactive system.

Switch_onA
Switch_offA

Go_on
Go_off

Switch B

Controller

Switch A

Actuator

Switch_onB
Switch_offB

Figure 3.4: The DCFD for the reactive system in Figure 3.3.

Syntax

Definition 8 (SRS statemachine). A SRS statemachine for each system component in RSDS is

defined as a tuple A = (initA, StatesA, T ransA, EventsA, sourceA, targetA, eventA, guardA, generationsA)

where:

1. initA ∈ StatesA is the initial state,

2. StatesA is the non-empty set of states of A,

3. TransA is the set of transitions of A and EventsA is the set of (input/sensor) events of A.

4. sourceA : TransA → StatesA gives the source states of transitions,

5. targetA : TransA → StatesA gives the target states of transitions,

6. eventA : TransA → EventsA gives the triggering events of transitions,

7. guardA : TransA → BooleanExpression gives the guard (which is optional) of a transition,

and

8. generationsA : TransA → seq(EventsB1∪EventsB2∪ ...∪EventsBn) gives the generations

(output events) of a transition, where EventsB1, EventsB2, ..., EventsBn refer to the events

of statemachine B1, B2, ..., Bn which are in parallel with A.

Remark 1. We assume that only one transition can occur from a source state in order to avoid

non-determinism. Let

3.1 Specification in RSDS 66

tr1 ∈ TransA,
tr2 ∈ TransA

then, the source of tr1 cannot be equal to the source of tr2, unless the events of tr1 and tr2

are different. Similarly for all transition of statemachine A.

Definition 9 (OR state). An OR state s of a statechart A has an enclosed statemachine

smachA(s) and otherwise has the same properties as a statemachine state. StatessmachA(S)
are

included in StatesA and similarly TranssmachA(S)
are included in TransA and EventssmachA(S)

in EventsA.

Consider the example in Figure 3.5. S2 is an OR state with nested states {S21, S22, S23}.
When the transition with source S1 and event α occurs, the target state is the initial state in S2,

that is, S21.

αS1

S21

S23

S22

S2

A

Figure 3.5: An example of an OR state S2.

Definition 10 (AND state). The AND state s is a parallel (AND) composition A|B of two or

more OR states. The states of A|B are effectively pairs or tuples (a, b) of states a of A and b of

B.

If s = A|B then transitions t : TransA in A may refer to the state of B via guard conditions of

the form in x or not(in x) and logical combinations of these, where x is a state of B. The condition

of t is given by conditionA(t) : LB, where LB is the language of B. They may also possess genera-

tions of the form e1 _ ... _ en, where the ei are events of B and _ means sequential invocation.

The generations of t are given by generationsA(t) : seq(EventsB) StatesA|B = StatesA×StatesB

and similarly for TransA|B and EventsA|B. The collection of all generated events of a statechart

M is GenM =
⋃

t:TransM ran(generationsM (t)). Figure 3.6 illustrates an example of AND composition

A|B with basic parallel states

(A1, B1), (A1, B2), (A1, B2), (A2, B1), (A2, B2), (A2, B3)

.

Definition 11 (Modules). A module M is an OR state containing only basic states.

Definition 12 (A module system). A module system is a system description S specified by the

AND composition M1|...|Mm of all the modules contained in it, modules(s) = {M1, ...,Mm}.

3.1 Specification in RSDS 67

B

A1

A2

B1

B2

B3

A

Figure 3.6: An example of AND composition A|B.

Definition 13 (Module receivers). Each moduleM in S has a set of receivers receiversS(M) of

modules in S. It can only send events to receiversS(M) modules or refer to them in the conditions

of its transitions. receiversS is acyclic: M /∈ receivers∗S [{M}] where receivers∗S is the transitive

closure of receiversS considered as a relation. For each module, M , the set of receivers∗S [{M}] is

termed the subsystem S′ defined by M . M is the outer module of S′.

Additional constraints may be placed on the form of receiversS , for example, requiring that

it is a tree: no two modules have a common receiver. This corresponds to the purely hierarchical

structure of subsystems within a B development.

Definition 14 (Controllers set of receivers). In addition, the controller statemachine C has

a set of receivers: receiversSys(C) ⊆ Conts ∪Acts; and, generations on its transitions:

generationsC : TransC → seq(EventsR1 ∪ ... ∪ EventsRP
)

where receiversSys(C) = {R1, ..., RP }. No event of any sensor component can occur in any

generation.

The receivers hierarchy is illustrated by the DCFD diagram. For example, the DCFD diagram

in Figure 3.4 depicts the receivers hierarchy for the SRS statemachines of the system illustrated

in Figure 3.3. The actuator modules are the set of receivers for the controller, while the controller

is the set of receivers for the sensor modules.

Definition 15 (Consistency). A statemachine Sm is consistent if there is at most one transition

for each event from each state of the component:

∀tr, tr′ : TransSm

eventSm(tr) = eventSm(tr′) ∧ sourceSm(tr) = sourceSm(tr′) ⇒ tr = tr′

Components in an RSDS system are required to be consistent.

Definition 16 (Completeness). Sm is complete if there is a transition for each event from each

state of the component:

∀α : EventsSm; s : StatesSm·
∃tr : TransSm · sourceSm(tr) = s ∧ eventSm(tr) = α

These properties of SRS statemachines are checked by the RSDS tool.

3.2 Semantics of RSDS Specifications 68

3.2 Semantics of RSDS Specifications

The semantic foundations of RSDS specifications are given in terms of Object Calculus theo-

ries. First we will describe what Object Calculus theories are and provide enough background to

understand how we have used them. Then, we present the semantics of RSDS as theories.

3.2.1 Describing components as temporal theories

In [FM91, FM92, FSMS92], a formal framework is presented for describing component based sys-

tems as temporal theories that are combined using categorical constructs. This consists of defining

temporal theories for components as modularisation units for specification, and structuring them

by defining categorical morphisms [Pie91] for connecting the theories. A (static) configuration of a

system is then characterised by a categorical diagram. It is possible to collapse the interconnected

components into a theory through the colimit of the corresponding diagram, which represents the

joint behaviour of the components.

Each theory consists of a signature and a collection of formulae (axioms) of the language

generated from the signature. A signature is used to define the distinct vocabulary symbols that

are used by the axioms to describe the object behaviour. It consists of at least three different

parts: the universe, the attribute structures and the action structures. The universe provides

information on the data context of the object, that is, its sets of types. The attribute structures

are symbols that are used to record data and are state dependent. The action structures are

symbols denoting atomic operations that define transformations on attributes and for interacting

with other components. The axioms are usually defined in LTL, but any logic can be used. It

is assumed that time begins at a certain point and the predicate BEG is true at that point in

time. Encapsulation is logically enforced by an implicit axiom that is built into the logic, called

the locality axiom, as part of each component definition.

Theories can be used to describe more complex systems by arranging the instances of the

theories as nodes in a diagram, and using morphisms as edges between the nodes to express their

interconnections. Morphisms are the structural mechanisms that define the relationship 1 that

must exist between two object descriptions to ensure that one of them is considered as a component

of another. The definition of morphism for these temporal theories, is that in order for two

objects to interact, they must have a common sub-component in which they synchronise (pushout).

This sub-component can be an action or an attribute. If the sub-component is an attribute, the

interconnected objects must also share all the actions that update the shared attribute, to preserve

encapsulation.

A theory that describes the joint behaviour of two interconnected objects is produced by

taking the colimit of the corresponding diagram. The colimit is a generalised operation based

on the pushout operation that is a “minimal” combination of the components that respects the

morphisms (also called “amalgamation sum”). A pushout of an arbitrary category diagram, as

described in [FM92], is the colimit of a diagram as expressed in Figure 3.7 that consists of another

object b |= ac together with two morphisms (h : b→ b |= ac and k : c→ b |= ac) such that the diagram

1”...this relationship consists of a translation between the languages of the description (a signature morphism)
such that the theorems of one of them are translated to theorems of the second one.” [FM91]

3.2 Semantics of RSDS Specifications 69

commutes2 h ◦ f = k ◦ g as in Figure 3.8; and, for every other commutative diagram (see Figure

3.9 there is a unique morphism (illustrated in Figure 3.10) j : b |= ac→ d such that j ◦ h = h’ and

j ◦ k = k’.

a

b

g
c

f

Figure 3.7: The form of an arbitrary categorical diagram that the colimit is applied to.

b ca

a

b

g
c

f

h

k

Figure 3.8: The morphisms h and k are added
to show how the diagram commutes.

a

b

g
c

f

h’

k’

d

Figure 3.9: Every other commutative dia-
gram.

b ca

a

b

g
c

f

dh’

k’h
k

Figure 3.10: There is a unique morphism j such that j ◦ h = h′ and j ◦ k = k′.

The fact that the colimit of these theories can be taken, means that these theories can be con-

sidered as specification modules as they are finitely cocomplete. A category is finitely cocomplete

if the category has an initial object and every finite diagram has a pushout (i.e. then every finite

diagram has a colimit).

Let us consider an example of a simple system whose behaviour consists of incrementing a

counter variable by 1 each time a given variable is set. The system can be decomposed into two

components: a cell component that sets its variable to a given value and a counter component

that increments its local variable by 1. Each component is described using a temporal theory with

first order CTL axioms. The cell component has an attribute v of sort INT and an action symbol

set used in the axioms to describe how v is set to a given value (provided by the parameter).

The counter component has an attribute symbol c of sort INT and an action symbol inc that is

used in the axioms for describing how the counter is incremented. Note that inc has a parameter

2If the diagram commutes, then only one copy of a is obtained in b |= ac as b and c share a. An arbitrary
categorical diagram is said to commute [LS97] if for each pair of categories (nodes) x, y in the diagram, all paths
in the diagram from the x to y are interpreted as the same map.

3.2 Semantics of RSDS Specifications 70

that is never used. It is required as we want to synchronise inc with set when the components

are combined, and synchronisation definitions must have the same type in this formalism. The

theories for the cell and counter components are as follows.

CELL

Universe signature:

sorts: INT
operations: A number of operations are defined

for INT which include 0, +, - etc.
Attribute symbols:

v : INT
Action symbols:

set(x:INT)
Axioms:

BEG ⇒ v = 0
AG(∀x ∈ INT. set(x) ⇒ AX (v = x))
Also, some axioms characterising INT.

COUNTER

Universe signature:

sorts: INT
operations: A number of operations are defined

for INT which include 0, +, - etc.
Attribute symbols:

c : INT
Action symbols:

inc(x:INT)
Axioms:

BEG ⇒ c = 0
AG(∀x, y ∈ INT.inc(x) ∧ c = y ⇒ AX (c = y + 1))
Also, some axioms characterising INT.

So far, the two signatures and behaviours of the components are totally independent from

each other. To define a more complex system with global properties, the independent components

must be combined, that is the cell and counter components are combined to define the component

system that describes the joint behaviour of the counter and the cell. The components are linked

by morphisms drawn as edges in a diagram and are combined by taking the colimit of the diagram.

Combining components requires them to synchronise via a common sub-component. In the cell and

counter system the sub-component that it synchronises via is a with the morphisms: f : act 7→ set

and g : act 7→ inc where act is the action symbol of component a. Figure 3.11 shows with a

categorical diagram how component a is shared by the cell and counter components.

Figure 3.12 is the diagram for the cell and counter system where system is the colimit of cell

and counter components via component a and is represented formally as cell |= a counter. The

two morphisms introduced with system are: h: cell → system and k: counter → system.

The system theory, produced by taking the colimit, is as follows.

3.2 Semantics of RSDS Specifications 71

a counter

cell

g

f

Figure 3.11: The cell and counter components share attribute act of component a

cell a countersystem =

a counter

cell

k

h’

g

f

h
system

d

j

k’

Figure 3.12: system is the colimit of the cell and counter system diagram.

SYSTEM

Universe signature:

sorts: INT
operations: A number of operations are defined

for INT which include 0, +, - etc.
Attribute symbols:

c : INT
v : INT

Action symbols:

act(x:INT)
Axioms:

BEG ⇒ c = 0 ∧ v = 0
AG(∀x ∈ INT.act(x) ⇒ AX (v = x))
AG(∀x, y ∈ INT.act(x) ∧ c = y ⇒ AX (c = y + 1))
Also, some axioms characterising INT.

It consists of two attributes (they are given the same name as in cell and counter, however,

different names could be given) and a single action symbol act that synchronises inc and set.

Therefore, the axioms in the cell and counter theories that characterise inc and set, are used in

system to characterise act.

We use this Object Calculus for defining the two semantic views of SRS statemachines because

its modularity can be used to describe elegantly the SRS modules. Also, the notion of locality

is similar to that of RSDS: locality arises in SRS statemachines because if no transition of the

statemachine occurs, then the state remains unchanged. In the Object Calculus, only actions3

declared for a theory can change the values of its attributes. Therefore, if no action occurs the

values of a theory’s attributes remain unchanged.

3.2.2 Semantic views of SRS statemachines

There are two distinct RSDS semantic views for statemachines as illustrated in Figure 3.13:

3The occurance of an action in Object Calculus corresponds to a transition in SRS statemachines.

3.2 Semantics of RSDS Specifications 72

1. Coarse-grain semantics describe “computations” of the system as sequences of steps. Each

step consists of a single sensor event and the system’s reaction to that event as a finite

number of actuator events, or it consists of no events. The steps lead from one stable state

to the next. This corresponds to the machine descriptions at the specification level of the B

method. At this level we can reason about global system behaviour like liveness properties.

2. Fine-grain semantics describe computations of a system at a finer level of granularity: the

intermediate steps in a reaction cycle between stable states are explicitly represented. Each

event that occurs simultaneously within a coarse-grain step, corresponds to a separate step

in the fine-grain. Thus, a specific ordering of the actuator commands within the reaction

cycle is defined. As in the coarse-grain view, a step can consist of no events. At this level,

we can reason about constraints local to the reaction to an event. This level corresponds to

the implementation level descriptions in the B method.

e a1 a2 a3

stable state stable state
Fine−grain steps

Coarse−grain step

Figure 3.13: In RSDS statemachines, one coarse-grain step corresponds to a finite number of
fine-grain steps.

Definition 17 (System states). A system state of an RSDS specification S is a tuple (s1, ..., sp)

of elements si ∈ StatesSmi
where Sm1, ...,Smp are all the sensor, controller and actuator statema-

chines of the RSDS specification, which satisfies all the invariants of S.

System states are the only states in the coarse-grain semantic view and correspond to stable

states which are the endpoint states in a reaction cycle in the fine-grain semantics.

The semantics for each view of the SRS statemachines is given in terms of temporal Object

Calculus theories [FM91] using CTL. This formalism is appropriate for specifying the behaviour

of RSDS statemachines because of its modularity where each component is specified by a separate

theory which consequently allows for modular verification, that is a property local to a module

can be verified independently from the rest of the system. The semantics that we present in this

work is a variant of that in [LCA01] as we focus on the meaning of a controller that is derived

automatically from its sensor components. The semantics presented in [LCA01] is more general,

allowing for the user to define the controller.

3.2.3 Coarse-grain Semantics

Sensors

Each sensor component statemachine Sm in RSDS is considered as an object description defined

by a theory ΓSm using CTL. The object signature consists of:

3.2 Semantics of RSDS Specifications 73

• an attribute sm ranging over StatesSm (set of possible besic states for Sm),

• action symbols for each element of EventsSm.

• action symbols for each element of TransSm.

The object description consists of axioms for:

CG1 The initial state of Sm:

BEG ⇒ sm = initSm

where initSm is the initial state of Sm.

CG2 That at most one event of Sm can occur in a step:

¬(α ∧ α′)

for each pair of distinct events of Sm.

CG3 The state transition behaviour of Sm:

sm = s ∧ α ⇒ tr
tr ⇒ α
sm = s ∧ tr ⇒ AX(sm = t)

for each transition tr of Sm with source s, target t and trigger event α. The first axiom

describes the conditions that enable a transition: a transition occurs only if its trigger event

occurs and the system is in a particular state (source state). A transition cannot occur if its

trigger event does not occur. The final axiom describes the effect of a transition that changes

a state from the source to the target in the next step. We use the notation tr : s →α t to

describe the state transition behaviour.

CG4 That at most one transition of Sm can occur in a step:

¬(tr ∧ tr′)

for each pair of distinct transitions of Sm. A step in a coarse-grain view consists of a single

sensor event occurring and the system’s response as a finite number of actuator commands.

CG5 That a transition can only occur if Sm is in its source state:

tr ⇒ sm = sourceSm(tr)

CG6 The locality notion [FM91] requires that there is no visible change to the value of the

attribute sm when no transition is taken:

¬tr1 ∧ ... ∧ ¬trn ∧ sm = s⇒ AX(sm = s)

for each s ∈ StatesSm, where the tri are all the transition action symbols of Sm.

3.2 Semantics of RSDS Specifications 74

THEORY ΓSm

Attribute symbols:

sm : StatesSm

Action symbols:

Action symbols for each element of EventsSm.
Action symbols for each element of TransSm.

Axioms:
[CG1]
[CG2]
[CG3]
[CG4]
[CG5]
[CG6]

Contollers

In RSDS, a controller statemachine and algorithm is derived automatically if the developer does

not specify one explicitly. The controller is derived from the sensor components by taking the

cartesian product of the sensor states from their statemachines. Some states might never be

reached and we can use the invariants to identify these and remove them from the statemachine

to keep the state space small. The environmental assumptions are particularly good at identifying

these. Let us consider an example of a simple system with two sensors: Sensor1 and Sensor2.

Figure 3.14 shows how the controller statemachine is derived from the sensor components.

This controller consists of a set of states:

StatesC = {S1 S3, S1 S4, S1 S5, S2 S3, S2 S4, S2 S5}

that is derived by taking the cartesian product of the sensor states, and a set of events:

EventsC = {α, β, γ}

that corresponds to the union of all sensor events and a set of transitions:

TransC = {T 1 S3, T 1 S4, T 1 S5, T 2 S1, T 2 S2, T 3 S1, T 3 S2}

where the sensor transitions are combined with the cartesian product of the sensor states that are

left unchanged when the transition is taken. Note that because of how the controller is derived,

controller transitions do not explicitly express the sensor transition guards as they are implicitly

represented by the controller state. For example, the controller state S1S3 means that the sensor

transition for Sensor1 would have a guard in(s3).

The meaning of the controller behaviour is obtained when the sensor theories are combined

to form a theory that is the colimit of its categorical diagram. This theory is extended with an

attribute and additional axioms to form the controller theory. For the example system in Figure

3.14, the categorical diagram in Figure 3.15 illustrates the amalgamation sum of the sensor theories

where ΓSensor1 and ΓSensor2 are interpretations of theory ΓSm and ΓSens is the amalgamation

3.2 Semantics of RSDS Specifications 75

The controller is derived from the sensors.

S3

S4 S5

S1_S5

S2_S5

T3:β
T1: α

S1

S2

S1_S3

S2_S3 S2_S4

S1_S4

T1_S5T1_S4T1_S3

T2: γ

Controller

Sensor2Sensor1

T3_S2

T2_S2

T3_S1

T2_S1

Figure 3.14: Example of how the sensors are flattened to derive a controller statemachine.

Γ

SensΓ

Sensor1 Γ Sensor2Γ

Cont

Figure 3.15: The categorical diagram of the example system illustrated in Figure 3.14.

3.2 Semantics of RSDS Specifications 76

sum of the sensors, while ΓCont extends ΓSens with further axioms for formalising the guard of

the transitions. Therefore, the controller is modelled in the theory ΓCont.

In general, a theory ΓSens is derived from the amalgamation sum of all the sensor theories that

is ΓSm1 , ..., ΓSmn
where n is the number of sensors. This theory is extended further by ΓCont

that contains the additional axiom:

CG7 We assume that only one sensor event can occur in each step:

¬(α ∧ α′)

for each pair of events α of Sm and α′ of Sm′ where Sm and Sm′ are distinct sensor

components. We assume that there are no common events EventsSm ∩ EventsSm′ = ∅
between sensor components (extra-logical constraint). Similarly, the set of transitions of

statemachines of different sensor components are disjoint.

THEORY ΓCont

Attribute symbols:

All attributes (without duplicates) of the sensor theories (interpretations of ΓSm).

Action symbols:

All action symbols (without duplicates) of the sensor theories.

Axioms:
All axioms from the (interpretations of) sensor theories and:
[CG7]

Actuators

Each actuator component statemachine Asm in RSDS is defined by a theory ΓAsm that is similar

to the theory ΓSm for sensors. The main difference lies with the definition of the state transition

behaviour of actuators that considers guards. The following attribute is added to the object

signature to represent the guard of a transition:

• a boolean attribute gtr for each transition that will later be identified with the actual con-

dition

With this attribute, the following axioms are defined:

CG8 The state transition behaviour of Asm:

sm = s ∧ α ∧ gtr ⇒ tr
tr ⇒ α ∧ gtr

sm = s ∧ tr ⇒ AX(sm = t)

for each transition tr of Sm with source s, target t and trigger event α.

3.2 Semantics of RSDS Specifications 77

THEORY ΓAsm

Attribute symbols:

The same attributes as those of the sensor theory ΓSm.
gtr : Boolean

Action symbols:

The same action symbols as those of the sensor theory ΓSm.

Axioms:
The same axioms as those of the sensor theory ΓSm, except
that the axiom [CG3] is replaced by axiom [CG8].

We combine (by taking the colimit of the diagram as visualised in Figure 3.16) all of the

actuator theories in a system in order to define an additional attribute and axioms for the guard

of transitions. The resulting theory ΓAct is extended to ΓActuators with:

Γ Actuator2Γ

ActsΓ

ActuatorsΓ

Actuator1

Figure 3.16: The colimit for the categorical diagram of a system with two actuators.

• a boolean attribute G for each transition

Moreover, similar additional axioms are defined:

CG9 The axiom

AG(gtr ⇔ Gtr)

is defined once the symbols in G are available. Since guard conditions of actuator transitions

usually refer to the states/attributes of other actuators, and, the actuator theories cannot

see the attributes of other actuator theories (e.g. in Figure 3.16, ΓActuator1 cannot see the

attributes or action symbols of ΓActuator2), the guard conditions for the actuator theories

must be given in the theory resulting from taking the colimit of the actuator theories (e.g.

in Figure 3.16, theory ΓActuators). Therefore, the axiom states that if there is a guard for

an actuator transition, then there must be a corresponding condition for that transition in

the resulting theory ΓAct and vice versa.

We assume that the set of transitions of statemachines of different actuator components are

disjoint, that is for any pair of actuator components TransSm ∩ TransSm′ = ∅ (extra-logical

constraint).

3.2 Semantics of RSDS Specifications 78

THEORY ΓActuators

Attribute symbols:

All attributes (without duplicates) from the interpretations of ΓASm.
G : Boolean for each transition.

Action symbols:

All action symbols from the interpretations of ΓASm.

Axioms:
All axioms from the interpretations of ΓASm and,
the axioms:
[CG9]

Subcontrollers

In RSDS, large systems can be divided into subsystems by applying decomposition approaches to

improve its manageability. Each subsystem has at least a single subcontroller, which is ultimately

part of the controller. The definition of subcontrollers is just a convenience and does not introduce

any new behaviour. Formally, each subcontroller statemachine is an object description defined by

a theory ΓSm. A subsystem is defined by the amalgamation sum of the subcontroller theories and

actuator theories and also by copies (identical set of attributes and axioms) of the sensor theories

that make up that subsystem. Figure 3.17 illustrates a DCFD of a system with a single controller,

three sensors and three actuators. Figure 3.18 shows how the theories for the components in

the system are combined in the categorical diagram. Note that guards of transitions of actuator

components in a subsystem cannot be composed of states from other actuator components in other

subsystems. Thus, the theories of actuators A1 and A2 are combined independently of the theory

for actuator A3.

Complete system

The coarse-grain semantics ΓSys of an RSDS system specification Sys is an extension of ΓSys0 (the

amalgamation sum of the controller theory with the actuator theories and with the subsystem

theories) together with the semantic interpretation AG(I) for each invariant I and the global

axioms.

These global axioms are additional axioms that are defined at the system level and consist of:

CG10 A “system locality” principle states that each actuator event occurs as a response to some

sensor event:

β ⇒ α1 ∨ ... ∨ αn

for each β which is an event of some actuator component, and where the αi are all events of

the set of sensor components.

CG11 The axiom for the guard is defined:

trC ∧ GA ⇒ trA

3.2 Semantics of RSDS Specifications 79

whereGA is the guard for an actuator transition, and, trC and trA are controller and actuator

transitions respectively.

CG12 An axiom that asserts that each controller transition generates events received by subcon-

troller or actuator components:

AG(trC ⇒ ρ1 ∧ ρ2 ∧ ... ∧ ρp)

where trC is a controller transition and {ρ1, ..., ρp} are the subcontroller or actuator events

that it generates.

THEORY ΓSys

Attribute symbols:

All attributes from the interpretations of the theories for the controller,
subsystems and actuators.

Action symbols:

All action symbols from the interpretations of the theories for the controller,
subsystems and actuators.

Axioms:
All axioms from the interpretations of the theories for the controller,
subsystems and actuators, and, the axioms:
[CG10]
[CG11]
[CG12]

Figure 3.17 illustrates the DCFD for an example system specified using RSDS. For each compo-

nent in the system, a theory is defined and these are added as labels next to the components. This

system contains a single subsystem (grouped using a rectangle) which has a corresponding theory

i.e. ΓSSys1. The theory corresponding to the entire system is ΓSys. The categorical diagram for

this system is illustrated in Figure 3.18. The sensors are combined to form the controller theory

ΓC . The subsystem theory ΓSSys1 is formed as a result of the amalgamation sum of subcontrollers,

actuators and sensors (only those that apply to this subsystem). The symbol ≈ is introduced to

mean “an exact copy” of the theory and is used to make copies of sensor theories to be included

as part of various subsystems. At the system level ΓSys, any duplicates will be removed because

of the definition of pushout. There is only one actuator ΓA3 which is not part of the subsystem

and it is directly combined with the subsystem and controller to form the system theory.

3.2.4 Fine-grain Semantics

For an RSDS system FSys consisting of sensors S1...Sp, controllers C1...Cq and actuators A1...Ar,

the fine-grain semantics is given in terms of theories for each component, as for the coarse-grain.

An additional attribute is introduced at the system level:

event queue : seq(EventToken)

3.2 Semantics of RSDS Specifications 80

C

SC1

A1

A2

A3

ΓSSys1

ΓA1

ΓA2

ΓA3

ΓC

ΓSC1S1

S2

S3

ΓS1

ΓS2

ΓS3

ΓSys

Figure 3.17: The DCFD for a system with theories for the corresponding components.

ΓS1 ΓVS1

ΓC

ΓSC1

ΓSSys1

ΓSys

ΓA3

ΓActuators

ΓA1 ΓA2

ΓActs

ΓS3

ΓSens

ΓS2

Figure 3.18: The categorical diagram for entire system illustrated in Figure 3.17.

3.2 Semantics of RSDS Specifications 81

that holds a sequence of tokens representing pending events. EventToken is some set that is

bijective to the set EventsFSys of all events of the system:

EventsFSys =
⋃

i:1..p

EventsSi
∪

⋃

i:1..q

EventsCi
∪

⋃

i:1..r

EventsAi

Let name : EventsFSys → EventToken be this semantic bijection. The external events of the

FSys are the sensor events received from the environment:

ExtFSys =
⋃

i:1..p

EventsSi

All other events of FSys are internal: IntFSys = EventsFSys − ExtFSys

The axioms of the components are the same as those for the coarse-grain, as are the system

axioms, except that for the “system locality” principle, for the coverage of actuator events, is

dropped. (Thus, these axioms are CG1-CG10, CG12 and CG13.) Instead, the following axioms

on event queue are defined.

FG1 Initially the event queue is empty:

BEG ⇒ event queue = []

FG2 An external event α ∈ ExtFSys that triggers a transition t may only be responded to if the

queue is empty:

t⇒ event queue = []

FG3 When an external event α is received by the system and it triggers a sensor or controller

transition t, its generations become the new event queue:

t⇒ AX(event queue = generations(t))

The generated events must all be internal. If several transitions in different components are

triggered by α then some interleaving of their generations becomes the new event queue.

Normally, this case would arise when a transition is triggered in some Si (and has no gen-

erations) as well as a transition in the outermost controller, so no non-determinism actually

features. We assume for the purpose of consistency that each component has at most one

transition for an event from each component state.

FG4 An internal event found in the queue can only be processed if it is at the head of the queue:

β ⇒ event queue 6= [] ∧ name(β) = head(event queue)

where β is the event at the head of the queue and name is defined above.

FG5 The head of the queue is removed when the corresponding event is processed and replaced

with some interleaving ρ of the generations (set of internal events) of all the transitions

triggered by the occurrences of β, the event at the head of the queue:

β ∧ q = event queue⇒ AX(event queue = ρ _ tail(q))

If there are no generations (ρ = []), then the event β at the head of the queue is simply

removed. This models the “run to completion” semantics of statecharts in UML [UMLa].

3.3 Design 82

THEORY ΓF Sys

Attribute symbols:

All attributes from the theory ΓSys.
event queue : seq(EventToken)

Action symbols:

All action symbols from the theory ΓSys.
However, events are divided into external and internal events.

Axioms:
All axioms from theory ΓSys, except for [CG11],
and the axioms:
[FG1]
[FG2]
[FG3]
[FG4]
[FG5]

There are two properties that should be proved for a system, instead of being assumed as

axioms:

FG6 If the event queue is not empty, the event at the head of the queue must eventually be

processed:

event queue 6= [] ∧ name(e) = head(event queue) ⇒ AF (e)

for each event e of FSys.

FG7 Eventually all events in the event queue will be processed:

event queue 6= [] ⇒ AF (event queue = [])

A stable state is a configuration of FSys where event queue = []. Therefore, a specification

formula φ that is valid in the coarse-grain semantics of FSys will be valid in the fine-grain semantics

in the form:

event queue = [] ⇒ φ∗

where φ∗ is a relativisation of φ to the stable states of the fine-grain model. Relativisation

means building a model of one theory inside another theory, such as taking 0, 1 as a model of Bool

inside the theory Nat with 1− x as logical negation. Not all elements in the big theory appear in

the small theory, i.e. for RSDS specifications, only stable states are used as the interpretation of

the course-grain semantics inside the fine grain theory.

3.3 Design

DCFDs are used in the design phase for describing the system architecture. They are not part of

the formal model of an RSDS specification. They are simple diagrammatical representations of

the system structure. In reactive systems they depict the communication flows from the sensor

components in the form of sensor device signals (sensor events) to the controller which then reacts

to the sensor signals by issuing commands to the actuators. Square nodes are used for representing

3.3 Design 83

sensor and actuator components, and oval nodes for representing the controllers. The edges

represent the flow of events between these elements. There are two types of communication flows:

input event flows that are illustrated by dashed arrowed lines from sensor nodes to controller nodes;

output command flows that are illustrated by solid arrowed lines from controller or subcontroller

nodes to subcontroller or actuator nodes. The notation for the edges is adopted from the convention

used for finite statemachines [San96]. The uncontrollable transitions in a finite statemachine

correspond to the input event flows in the DCFDs, while the controllable transitions correspond

to the output command flows. The simplest form of a DCFD for reactive systems consist of all

the sensors and actuators and their connections to a single controller as in Figure 3.19.

S1

Sn

A1

Ap

Controller

ActuatorsSensors

input events

output commands

Figure 3.19: Basic DCFD for representing reactive system with RSDS

For most systems, it is necessary to decompose the controller further in order to reduce the

complexity of the control algorithm. This results in a modularised specification of the control

algorithm with manageable and analysable descriptions. There are a number of controller decom-

position approaches that have been identified and invariants are used, for example as in [LAC00],

to decide which approach to apply. The invariants are initially attached to the controller and

when decomposed they are separated and those that apply to the subsystems are attached to the

respective subcontrollers. Different decomposition approaches can be applied together to define

complex systems. These are:

• Hierarchical (vertical) decomposition of controllers: input events e sent by the sensors

S1..Sn are handled first by an overseer controller C which manages certain interactions

between components as illustrated in Figure 3.20. Derived events de are then forwarded

from the overseer controller to subordinate controllers (subcontrollers) C1..Cp responsible

for handling the individual behaviour of subcomponents A1..Am.

For a disjoint group A1..An of actuators, that is actuators that are not shared by controllers,

if there are few invariants in the requirements relating the states of actuatorsAi to those in Aj

when i 6= j, then the hierarchical approach is applied. The coordinator (overseer) controller

invokes the controllers for the actuators Ai and Aj in such a way that the invariants that

link them are maintained.

New invariants are generated that must be satisfied by the subcontrollers. These are obtained

by selecting the invariants that refer only to the actuators that the subcontroller monitors.

The invariants that refer to two or more actuators controlled by different subcontrollers

remain as obligations on the overseer controller.

3.3 Design 84

S1 Sn

C1

A1 A2

C

Cp

Am

e

de de

e

Figure 3.20: Hierarchical decomposition of controllers.

This design approach is suited to systems where some control aspects are managed at an

aggregate level, separately from the control aspects that can be dealt with at an individual

component level. For example, in [LAC00] a train control system is decomposed hierarchi-

cally with two subcontrollers, namely the Motor/Brake controller and the Door controller,

that are responsible for issuing commands to their respective group of actuators, that is mo-

tor and brake, and door. Interaction between these subcontrollers is required as there is one

safety invariant and one operational invariant that link the states of these groups. The coor-

dinator controller is responsible for coordinating the interaction between the subcontrollers.

Figure 3.21 gives the DCFD for the train control system.

Brake

Motor

Door
Button

Motion
SensorDoor

Coordinator

Motor/Brake
Controller

Door
Controller

Switch

Figure 3.21: Hierarchical decomposition applied to the train control system.

The hierarchical decomposition is of particular interest for systems that include fault detec-

tion mechanisms [LCAK00], where separate controllers are used for detecting and responding

to inputs that indicate failure of components. This approach is based on the physical de-

composition of the actual system.

• Horizontal decomposition: input events e are copied to separate control algorithms (at

least two) C1..Cp, which compute their reaction independently of each other as illustrated

in Figure 3.22. The controllers compute their reactions in any order to ensure a coherent

control algorithm and therefore the responses cannot be time-critical in relation to each

3.3 Design 85

other. This design approach is also based on the physical decomposition of a system.

S1

C1

A1 A2

Cp

Am

Sn

e e

Figure 3.22: Horizontal decomposition of controllers.

Unlike in the hierarchical decomposition, for disjoint groups A1..An of actuators, if there are

no invariants in the requirements relating the states of actuators in Ai to those in Aj when

i 6= j, then the horizontal approach is applied. A subcontroller includes as obligations only

the invariants that refer to the actuators in their subgroup.

• Phase decomposition (decomposition by control mode): this structuring is based on

a conceptual division of the system. The DCFD for a system decomposed by control mode

is similar to that of a system decomposed hierarchically as illustrated in Figure 3.20. A

separate controller is specified to compute reactions for each mode or phase of the system.

To determine whether this decomposition is appropriate: identify an invariant of the form

P1 ∨ ... ∨ Pn of the system, where each Pi involves at least one sensor variable, the Pi are

logically disjoint Pi ⇒ ¬Pj for i 6= j, and the phases of the system are taken as those sets of

states corresponding to the truth of each particular Pi.

As in the hierarchical decomposition approach, new invariants are generated which must be

satisfied by the subcontrollers. Contrarily, these refer to actuator states in that system phase

only. It is possible for each phase to refer to the states of all actuators if they are involved

in a specific system phase. The invariants that refer to the states of actuators involved in

different system phases become obligations in the overseer controller. An example of such

invariants is one that describes the order in which the phases occur.

• Annealing: repeated groups of actuator commands issued by the controller, are identified

and packaged into a single module, so that the controller only needs to issue single commands

to this module instead of sets of specific commands to particular actuators. This design

approach aims to make the controller more manageable, so that if the precise set of actuators

are changed, only these are changed and there is no need to traverse the specification to find

which controllers issue these commands. Invariants are removed from the main controller

and attached to this controller in order to improve verifiability in B.

• Recognition of standard controllers: In some systems, simple control mechanisms occur

frequently and a list of ready-built controllers have been identified in [LAC00] to be used

and adapted to particular sensors and actuators by renaming or chaining them together to

3.3 Design 86

define more elaborate functions. To decide which standard controller is appropriate for the

control problem, the invariants are examined for patterns that are similar to those defined

in the standard controllers. Two such standard controllers have been identified:

1. The AND controller that takes inputs from two switches (sensors) and if both have

been set to on, the actuator is set to on, otherwise the actuator is set to off.

Switch_onA
Switch_offA

Go_on
Go_off

Switch B

Controller

Switch A

Actuator

Switch_onB
Switch_offB

Figure 3.23: The DCFD for the AND controller system.

off

on

A on
B off

A off
B on

A off
B off

A on
B on

onoff

off on

Switch A

Switch B

Controller

Switch_onA

Switch_onB

Switch_offB

Switch_offA

Actuator

Go_offGo_on

Switch_offA

Switch_onA/
Go_on

Switch_offA/
Go_off

Switch_onB/Go_on

Switch_offB
Switch_onA

Switch_onB

Switch_offB/

Go_off

Figure 3.24: The SRS statemachine for the AND controller system.

2. The priority controller that sets actuator A to on when switch A is pressed and likewise

actuator B is set to on when switch B is pressed. However, actuator A has priority over

actuator B so that actuator B cannot be set to on until switch A is on.

Switch A

Switch B Actuator B

Actuator A
Go_offA
Go_onASwitch_onA

Switch_offA

Switch_onB
Switch_offB

Go_onB
Go_offB

Controller

Figure 3.25: The DCFD for the priority controller system.

3.4 Analysis and Verification 87

off on

onoff

Switch B

onoff

Actuator B

off on

Actuator A

A off
B off

A on
B off

A on
B on

Switch A

Switch_offA

Switch_onB

Switch_offB

Controller

Go_offA

Go_onB

Go_offB

Go_onA

Switch_onB/Go_onB

Switch_onA/Go_onA

Go_offA

Switch_offB/
Go_offB

Switch_offA/
Switch_onA Switch_offA

Switch_offB

Figure 3.26: The SRS statemachine for the priority controller system.

3.4 Analysis and Verification

The analysis and verification phase consists of automatically synthesising a control algorithm from

the invariants of an RSDS specification and translating it into B machines for verification. The

RSDS tool also automatically generates Java code from the control algorithm. However, the Java

code generated cannot be guaranteed as being correct (i.e. the desired properties hold) unless: the

RSDS specification has been verified in B, and any corrections required are traced back and made

to the RSDS specification before translating, and there is a proof of correctness of the translation

to Java. At the moment, there is no proof of correctness of the translation to Java, therefore we

cannot guarantee that the Java code generated accurately represents the RSDS specification even

if the specification has been proved correct in B.

A control algorithm for a discrete system describes the system’s reaction given in response

to each sensor event received from the sensors. The controller computes the system’s reaction

which is then given in terms of commands to the actuators. Invariants, in particular operational

invariants, are used to derive the control algorithm. However, the system behaviour is usually

defined by static invariants. Therefore, the RSDS tool must be able to automatically convert

the static invariants into operational invariants, which will then be used to derive the control

algorithm. Safety invariants are used to (automatically) determine the exact order in which the

actuator commands are issued, which is very important when specifying the fine-grain view of a

system.

The following static invariant that is used to describe the behaviour of a reactive system has

the typical form:

sstate = s1 ∧ G ⇒ astate = on

where sstate is some sensor state, G is a guard involving other sensor or actuator states and astate

is some actuator state. In particular, this represents the obligation that the actuator state is set

to on if the triggering sensor state is s1 and the guard is true. This form of invariant can be

automatically converted to an operational invariant of the form:

sstate 6= s1 ∧ set s1 ∧ G ⇒ AX(astate = on ∧ sstate=s1)

where set s1 is the sensor event that when triggered sets the sensor state to s1 and if G is true,

3.4 Analysis and Verification 88

the actuator state is set to on in the next step. Also, any event that when triggered results in

making G true while sstate=s1, sets the actuator state to on.

The control algorithm can be used to:

• Synthesise abstract B specifications: The B method is the formal approach used by

RSDS to verify static invariants. In RSDS, the B specification is generated automatically

from the control algorithm defined by operational invariants. A B machine is created for each

component in the system and the DCFD defines the structuring of the machines where the

arrowed lines represent the INCLUDES construct. In B, no cycles are allowed or Directed

Acyclic Graph (DAG) with the INCLUDES structuring of machines as two machines are not

allowed to change the state of a shared machine at the same time (single writer, multiple

readers only). This restriction arises to enforce non-interference with compositionality and

to preserve independent refinement of machines. In [BPR96, BB99, DBMM00, Lec02, Rod]

ways of overcoming these limitations are discussed but unfortunately have not yet been

implemented in the available B tools. When specifying reactive systems with RSDS, a DAG

structure arises in the following cases:

1. Controllers sharing actuators: In Figure 3.27, the LHS illustrates a common DCFD

structure of a reactive system that when translated to B using the INCLUDES construct

for defining the structure of the machines, a DAG4 is produced because of the sharing

of actuator A2 by the two subcontrollers. Since this DAG structure occurs frequently

in reactive systems, the authors in [LK98] describe a method for “tricking” the B

Toolkit into accepting it. Dummy specifications are defined that do not INCLUDE

any actuators and whose operations are defined as skip. The controller machine will

INCLUDE these dummy specifications instead of the subcontroller machines. The

original subcontroller machines remain and are refined. Once the implementations

have been defined and code has been generated, the code generated for the dummy

specifications is replaced by that generated for the subcontrollers. However, with this

trick we would need to manually prove any invariants in the controller that refer to the

states of both subcontrollers, thus limiting the benefits of using a theorem prover for

development.

2. Controllers sharing sensors: This problem arises with the sharing of sensors by separate

controllers as defined by the horizontal decomposition approach. Ordinarily controllers

are described in B as machines that include the B machine for the sensor component

for updating its state, as shown on the LHS of Figure 3.28. To overcome this problem,

a copy of the shared sensor machine is made and each controller has access to its own

copy of the sensor, as shown on the RHS of Figure 3.28. The duplicated sensors must

have identical state at all times.

Generally, because of these sharing violations in B, the decomposition approaches are re-

stricted accordingly to allowing the controllers to manage separate sets of actuators and only

4Also known as the shared violation problem caused by the inclusion of an actuator shared by two or more
controllers.

3.4 Analysis and Verification 89

Controller

includes

includes

includes includes
includes

includes

Controller

Sub−controller 1 Sub−controller2

A3A2A1
A1 A2 A3

Sub−controller 1 Sub−controller2

Figure 3.27: A DCFD structure where controllers share an actuator that produces a DAG structure
in B.

Controller2Controller1

Sensor C2_SensorC1_Sensor

Controller2Controller1

includesincludes
includesincludes

Figure 3.28: A DAG structure in B produced by controllers sharing a sensor and how to reconfigure
it.

sharing few sensors.

Each sensor event corresponds to an operation of the controller in B. The body of the

operation is determined from the operational invariants, for example, the invariant: sstate 6=
s1 ∧ set s1 ∧ G ⇒ AX astate = on is specified in B as follows:

set_s1 =

PRE sstate /= s1

THEN

sstate := s1 ||

IF G

THEN

astate := on

END

END

Details of the translation of RSDS to B are defined formally in [LBA99, LAC00].

• Generate Java code: A direct translation, without prior verification, exists from RSDS

specifications to Java. Since B has limiting structuring constructs and Java allows for true

object-oriented representation, other systems besides critical reactive systems can be devel-

oped in RSDS and have Java code generated.

For applying RSDS to process control systems, static invariants can be used to generate ladder

logic code. Ladder logic is one of four standard languages for specifying the behaviour of PLC

defined in [Com93]. Currently the RSDS tool does not support an automatic translation even

though it has been theoretically defined in [LCA+02e].

3.5 The Gas Burner System 90

3.5 The Gas Burner System

The gas burner system [LFA02] is a simple reactive system used to demonstrate how an RSDS

specification is defined in practice. Its components are shown in Figure 3.29. The behaviour of the

gas burner is described as follows: when the switch is pressed, the controller should aim to move

the system into a state where the air valve and the gas valve are open, the flame is ignited and the

igniter is off. The system is shut down when the switch is turned off. While the switch is off, the

air valve should be opened if the flame appears. All the sensors and actuators have binary states:

for the sensors sw : {on, off} represents the states of the switch and fd : {present, absent} the

states of the flame detector; for the actuators av : {open, closed} represents the states of the air

valve, gv : {open, closed} are the states of the gas valve and ig : {on, off} are the states of the

igniter.

� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

Switch (on|off)
Flame Detector (present|absent)

Igniter (on|off)

Air Valve (open|closed)

Gas Valve (open|closed)

Figure 3.29: The gas burner elements

The DCFD diagram in Figure 3.30 is simple enough for this system and no further decompo-

sition of the controller is required.

Flame Detector

Igniter

Air Valve

Gas Valve

Switch

Controller

Figure 3.30: The DCFD for the gas burner

The control invariants that describe the operational behaviour are:

3.5 The Gas Burner System 91

swstate = on ⇒ gvstate = open ∧ avstate = open (3.1)

swstate = on ∧ fdstate = absent ⇒ istate = on (3.2)

fdstate = present ⇒ avstate = open ∧ istate = off (3.3)

swstate = off ⇒ gvstate = closed ∧ istate = off (3.4)

swstate = off ∧ fdstate = absent ⇒ avstate = closed (3.5)

Also, an operation constraint is that the igniter cannot be on unless the gas valve is open:

istate = on ⇒ gvstate = open (3.6)

A required safety invariant is that the gas valve cannot be open unless the air valve is:

gvstate = open ⇒ avstate = open (3.7)

These two properties need to be verified to ensure that the system is operating correctly and

safely. Also, they describe the strict order in which the reactions must occur when both actuators

are set. That is, the air valve must be switched on first, then followed by the gas valve and finally

by the igniter. Also, the igniter is the first to be switched off and then the gas valve and finally

the air valve.

The control invariants are converted into action invariants in order to synthesise the controller

statemachine. The form of the action invariants is P ⇒ AX(Q) where P and Q are state con-

straints on the sensors and actuators and AX is a CTL operator that means “in the next state”.

swon ∧ swstate = off ⇒ AX(gvstate = open ∧ avstate = open) from 3.1 (3.8)

swon ∧ swstate = off ∧ fdstate = absent ⇒ AX(istate = on) from 3.2 (3.9)

fdoff ∧ swstate = on ∧ fdstate = present ⇒ AX(istate = on) from 3.2 (3.10)

fdon ∧ fdstate = absent ⇒ AX(avstate = open ∧ istate = off) from 3.3 (3.11)

swoff ∧ swstate = on ⇒ AX(gvstate = closed ∧ istate = off) from 3.4 (3.12)

swoff ∧ swstate = on ∧ fdstate = absent ⇒ AX(avstate = closed) from 3.5 (3.13)

fdoff ∧ swstate = off ∧ fdstate = present ⇒ AX(avstate = closed) from 3.5 (3.14)

Figure 3.31 illustrates the SRS statemachine Sys for the gas burner. The statemachine for the

controller is derived automatically from the operational invariants and its state is the tuple

state: {off absent, off present, on absent, on present}

which is an amalgamation of the sensor states switch and flame detector.

In the fine-grain semantic view of the gas burner, the order of the events generated is very

important as it ensures the safe operation of the system actuators. For example, if the gas valve is

opened before the air valve and the igniter, then this can cause a hazard: the gas build up could

lead to a large and potentially dangerous initial flame; or if the air valve and igniter fail to open,

the leakage of gas produced is dangerous for humans to breathe.

3.5 The Gas Burner System 92

open

closed

Sys

open

closed

on

off

off_present

off_absent

on_present

on_absent

Air Valve

Switch Flame Detector

AT1:av_close

Gas Valve Igniter

AT3:gv_close AT5:ig_close AT6:ig_openAT4:gv_openAT2:av_open

Controller

on

off absent

present

ST1: swon ST2: swoff ST3: fdon ST4: fdoff

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

CT5:fdoff/ig_open

Figure 3.31: The SRS statemachine Sys for the gas burner example

3.6 Summary 93

Therefore, as the safety invariants impose, the air valve is opened first, then followed by the gas

valve and the igniter is switched on. In [LBA99] rewriting techniques for invariants are proposed

in order to obtain a number of ordering possibilities of actuator commands. For example, a safety

invariant of the form astate = x ⇒ sstate = s can be rewritten as sstate 6= s ⇒ astate 6= x.

These rewriting techniques have been used to produce the ordering of generated events for the

fine-grain representation of the gas burner.

Temporal invariants cannot be verified using B. For the gas burner, an example of a temporal

invariant (liveness) that cannot be verified is:

swon ⇒ EF (swstate= on ∧ fdstate = present) (3.15)

which states that if the switch is on, then eventually there is a path where a flame will be detected.

We verify the weaker form of this liveness invariant (i.e. EF instead of AF) because the environment

is not controlled and events occur nondeterministically. Besides the temporal operators that cannot

be expressed in B, it is also not possible to express properties with events in the B language as

events are represented as operations in B machines and these cannot appear in the description of

an invariant.

3.6 Summary

The RSDS method aims to facilitate the modeling process of reactive systems and to improve

communication between control engineers, who are interested in developing control systems and

know the details of how they work, and software engineers that actually develop the software for

these systems. These aims are achieved by the familiar graphical user interface (statemachines)

provided by RSDS for defining the dynamic behaviour of the system as well as by the high level

of automation provided by RSDS for generating as much of the source code as possible.

This chapter has presented the development phases of the RSDS method for the development

of reactive systems. We briefly summarise the steps involved from a user’s perspective and indicate

which are automated and which require user interaction.

1. Requirements analysis and specification development:

(a) The user formalises: (i) the safety, operation and liveness invariants that are associated

with the main controller, (ii) the required reactions to events in the SRS modules. The

RSDS tool automatically checks the completeness and consistency of the invariants.

(b) The user produces a statemachine module for the sensor and actuator components.

The invariants can be used by the RSDS tool to generate the statemachine for the

controller. Moreover, templates of statemachines that are commonly used for control

systems are provided by RSDS thus reducing the interaction required with the user.

Any non-standard statemachine for a component must be provided by the user.

(c) The RSDS tool produces automatically the DCFD for the entire control system.

2. Design:

3.6 Summary 94

(a) A number of decomposition approaches are provided by the tool that can be automat-

ically applied to the main controller to decompose it into subsystems. If a different

decomposition approach is required, it must be defined by the user.

3. Analysis and verification:

(a) A control algorithm is automatically produced by the RSDS tool from the invariants.

The control algorithm is then used by the RSDS tool to automatically generate a B

specification, ladder logic or Java code.

(b) The control system is verified with the B method, but this usually relies on user inter-

action.

In addition, we defined formally the meaning of an RSDS specification and demonstrated how

RSDS is used to develop reactive systems with the gas burner system.

CHAPTER 4

Applying Model Checking to the Coarse-grain View of RSDS

When developing reactive systems with RSDS, it is essential to capture errors as early as possible

in the development process. Some syntax and consistency errors are captured by the RSDS tool

when formulating the specification. The remaining errors are identified by the B method through

verification of the system properties for both semantic views of RSDS specifications. However,

temporal properties cannot be proven easily in B.

To overcome this problem, we have extended the RSDS method to verify temporal properties by

using model checking. Model checking is suitable for incorporation into the collection of techniques

in RSDS as it verifies automatically the temporal properties without the assistance of the user.

Thus, its behaviour is appropriate with respect to the objectives of RSDS. The only requirement is

that a system model is produced in the language of the model checker together with the properties

to be verified expressed in the temporal logic used by the model checker. We have chosen to use

SMV which has its own tool support. In order to reduce the user interaction with the model

checker, we define a translation, that can be automated, from the RSDS specification into the

input language of SMV. The translation that is defined must preserve the semantics of RSDS

specifications.

RSDS statemachines have two semantic views: the coarse-grain and the fine-grain view. In this

chapter we are concerned with applying model checking to the coarse-grain view. The coarse-grain

semantic view describes the system computations as a sequence of steps. Each step consists of a

transition triggered by a sensor (external) event and a finite sequence of transitions triggered by

internal events.

In this chapter, we define the translation from the coarse-grain view of a RSDS specification

to SMV by describing a number of translation rules and SMV schemas. Before we present the

translation, we introduce the SMV model checker and give an account of the SMV language. Only

a subset of the SMV language constructs are used in the translation, and we give an axiomatic

semantics for this subset. This is required for the proof of correctness of the translation that

certifies that the translation preserves the semantics of RSDS specifications. Also, we show how

4.1 The SMV Model Checker 96

to apply the decomposition approaches of RSDS to the SMV models in a natural way that helps to

reduce the state space. We end this chapter with a comparative discussion of related translations.

4.1 The SMV Model Checker

SMV is a BDD-based model checker introduced by McMillan in [McM92b, McM93] that is used

for automatically checking the validity of CTL formulas. The original SMV tool [McM92a] is

maintained by Carnegie Mellon University (CMU). Another SMV tool is developed by Cadence

Berkeley Laboratories [McM98a] that is also authored by McMillan. It provides some new features

such as modular verification and compositional verification that are not backward compatible with

the original version. Furthermore, a third tool exists called NuSMV [NuS, CCGR00] which is a

re-implementation of the original SMV tool but with added features. It was developed as a joint

project between ITC- IRST (Centre for scientific and technological research), CMU, the University

of Genova and the University of Trento. A useful feature of NuSMV is that it can model check

LTL properties as well as CTL. In this work, we mainly use NuSMV but we have also checked our

models with the Cadence SMV model checker.

Counter−example

Resource Information

SMV model

CTL formulae

SMV Tool

Inputs
Outputs

Figure 4.1: The SMV model checker.

The main constituents of the SMV tool are illustrated in Figure 4.1. It takes as input a

system model described in the SMV language and CTL formulas to be verified. The SMV tool

automatically checks the model against the CTL formulas and produces a counter-example in the

form of a trace if the truth-value of the formula is false. The trace details the sequence of steps that

lead to making the formula false. Each step in the trace only illustrates the values of the states that

have changed. The counter-example is used for debugging a specification. A recent trend involves

using the counter-examples produced by the SMV model checker for automatic test generation

[HLSC01, GH99], thus emphasising the importance of counter-examples for debugging purposes. A

further output of the SMV tool that can be requested is the resource information that provides the

performance statistics of the model checker. This is useful for comparing the efficiency of different

modelling approaches as well as for evaluating the efficiency of various techniques addressing the

state space explosion problem.

4.1 The SMV Model Checker 97

4.1.1 The SMV language

The SMV specification language is used for describing the system model and the CTL formulas

to be verified. It provides for modular system descriptions and for the definition of reusable

components. The systems that it models can be deterministic or nondeterministic, synchronous

or asynchronous. Since SMV was originally aimed at modelling finite transition systems, the

language is limited to only boolean, scalar or fixed array data types. We only make use of a subset

of the SMV language for defining RSDS specifications. This subset is explained as follows:

1. An SMV program is composed of modules with a mandatory module called main. Each

module can declare variables and assign values to them. They can have parameters of any

data type but also of module type. A module can be passed as a parameter to another

module in SMV, in order for all of its variables and definitions to be visible (read-only

access). The variables contained in the parameter modules can be used in the definition of

a CTL formula under the SPEC clause, on the LHS of an assignment and on the RHS of a

DEFINE clause.

2. A step in SMV corresponds to a a single tick of the global clock. However, for modules,

the meaning of a step depends on how the modules are composed. SMV modules can be

composed in two ways: synchronously or asynchronously. For modules that are composed

synchronously, a step corresponds to a single step in each of the modules i.e. all assignments

from all of the modules are executed in parallel. For asynchronous composition of modules, a

step corresponds to a step by exactly one module i.e. the execution of modules is interleaved.

We only use synchronous composition of modules for defining RSDS specifications.

3. Variable declarations in modules are defined under the VAR clause and can be of type

module, boolean, scalar or fixed array or two-dimensional (2D) array. The variables that we

define frequently are those of enumerated type, module instances and arrays.

4. DEFINE clauses characterise boolean variables without increasing the state space, whose

values are given at all time points by the evaluation of the RHS of the clause. These are

used for readability and re-usability purposes.

5. There are two types of assignments for a variable v: init(v) := e that sets its initial value

to the evaluation of the expression e and next(v) := e sets the next value of a variable in

terms of an expression e involving the current values of variables. The expressions e on the

RHS include VAR and DEFINE variables of the module as well as those respective variables

of parameter modules and no next expressions or other temporal operators, and at most

one use of a case statement, at the outer level in e. Each assignment in each module is

simultaneously executed at each time point for synchronously composed modules.

6. SPEC clauses introduce the definition of CTL formulas. In SMV, CTL formulas are expressed

using a combination of the temporal operators (X, F, G, U) and path quantifiers (A, E),

as well as &, |,− >,< − > and ! for the respective propositional operators ∧,∨,→,↔ and

¬. The propositional atoms in these formulas are simple boolean expressions composed of

4.1 The SMV Model Checker 98

variables (local and those from other modules that are visible), the boolean constants true

or false, symbolic and numerical constants, and comparative operators.

Other SMV constructs exist for describing asynchronous interleaving of modules, such as the

keyword process that is used to declare a module and allows SMV at each step to nondetermin-

istically decide whether to select it for execution. Also, a fairness constraint, defined with the

FAIRNESS clause, restricts the search tree to execution paths along which an arbitrary CTL for-

mula φ is true infinitely often. However, we do not use these when we model RSDS specifications

in SMV.

4.1.2 Axiomatic semantics for a subset of SMV

In order to prove the correctness of our translation from an RSDS specification to an SMV model,

we need to show that the meaning of the interpretation of an RSDS specification is preserved by

the interpretation of the SMV model of the RSDS specification. Therefore, we require the formal

definition of the meaning of the interpretation of the SMV model. McMillan in [McM92b] assigns

a denotational semantics to the SMV specification language. In fact, the semantics is given in

two parts: first for a subset of the language without the process keyword (similar to the subset

we are interested in) and secondly for the language that includes the process keyword. However,

since the semantics of RSDS is given using object calculus (see section 3.2), we need an axiomatic

semantics for the subset of SMV. Such a semantics is given in [CH00]. We adapt this semantics

and use the same formalism as that used for the RSDS semantics.

An SMV moduleM based on the form described in section 4.1.1 is given an axiomatic semantics

in an object calculus theory ΛM defined as follows:

1. Variable declarations can be of the following different types: either a boolean, an enumerated

set, an array or 2D array where each element is a boolean, or a module instance. We consider

each separately.

(a) Each VAR declaration var: Type; in M, where Type is either a boolean or an enumerated

set, gives an attribute var of sort Type in ΛM .

(b) Each VAR declaration q: array x..y of Type; in M, where Type is an enumerated set,

gives an attribute q of INDEX → ITEM , where the sort INDEX = x..y being

scalar and finite and the sort ITEM is the representation of Type in ΛM .

(c) Each VAR declaration qq: array x..y of array m..n of Type; (2D array) in M, where

Type is an enumerated set, gives an attribute qq of INDEX → INDEX → ITEM ,

where the sort INDEX = x..y and INDEX = m..n being scalar and finite and the

sort ITEM is the representation of Type in ΛM .

(d) Each module is defined in an object calculus theory. Therefore, if C : CM(M1,...,Mn);

is a module variable declaration in M, then each axiom ϕ of ΛCM is included in ΛM ,

in the renamed form defined by replacing each local variable v or d of CM in ϕ by C.v

and C.d, and by replacing each parameter variable Pi.x of CM used in ϕ by Mi.x.

4.1 The SMV Model Checker 99

2. Each DEFINE clause d := e; in M gives a boolean attribute d : {0,1} in ΛM with the axiom

AG((d=1) ≡ e’) where e’ is the translation of expression e into the language of ΛM (see

later).

3. (a) If v is a variable, each init(v) := e; clause is expressed by the axiom

BEG ⇒ v = e′

if e is not a case expression. As for DEFINE, e’ is the translation of e into the language

of ΛM (see later). If e is a case expression,

case
p1 : e1;
...
pn : en;
1 : en+1;

esac;

where 1 stands for true, then the initial state is defined by the axioms

BEG ∧ p′1 ⇒ v = e′1
BEG ∧ ¬ p′1 ∧ p′2 ⇒ v = e′2
...
BEG ∧ ¬ p′1 ∧ . . . ∧ ¬ p′n ⇒ v = e′n+1

(b) If v is an array then init(v[i]) := e; is expressed by the axiom BEG ⇒ v(i) = e’.

(c) If v is a 2D array then init(v[i][j]) := e; is expressed by the axiom BEG ⇒ v(i)(j) = e’.

4. (a) Each next(v) := e; clause is expressed by the axiom

AG(v = x ⇒ AX(v = e′[x/v]))

if e is not a case expression. Similar axioms are defined for each value of v. If e is a

case statement:

case
p1 : e1;
...
pn : en;
1 : en+1;

esac;

then by the axioms

AG(v = x ⇒
(p′1 ⇒ AX(v = e′1 [x/v])) ∧
(¬ p′1 ∧ p′2 ⇒ AX(v = e′2 [x/v])) ∧
...
(¬ p′1 ∧ . . . ∧ ¬p′n ⇒ AX(v = e′n+1 [x/v])))

Similar axioms are de-

fined for each possible value of v.

4.1 The SMV Model Checker 100

(b) Similarly for each next(v[i]) := e; clause where v is an array and for each next(v[i][j]) := e;

clause where v is a 2D array.

5. Each SPEC ϕ; clause is expressed by the axiom ϕ′ where ϕ′ is the translation of ϕ into the

language of ΛM (see later).

The translation of expressions and predicates of M into ΛM is defined by:

1. The translation d’ for a local DEFINE variable d is d=1.

Similarly for N.d if N : MOD(Q1, ..., Qk) is a module variable of M with d a DEFINE

variable of MOD. If P.x is a parameter variable, it is treated as a DEFINE variable if

• it does not appear on the RHS of a case clause, and

• it occurs directly on its own as the LHS of a case clause or as a sub-formula within

a logical expression e&f , e|f , !e, e → f without being an argument of an equality

expression P.x = val or val=P.x.

2. The translation v’ of local VAR variable v:

• (e)′ is e

• (0)′ is 0

• (1)′ is 1

Even though in SMV you can define variables of type BOOL, we choose to express booleans

in terms of enumerated sets1. The reason for this is that we want to ensure that only one

of the boolean values can be true at a time. The variable types declared in the coarse-grain

translation are: enumerated type, boolean, module instance.

3. (e = f)′ is e′ = f ′

4. (e > f)′ is e′ > f ′

5. (e < f)′ is e′ < f ′

6. (e >= f)′ is e′ >= f ′

7. (e <= f)′ is e′ <= f ′

8. (e & f)′ is e′ ∧ f ′

9. (e | f)′ is e′ ∨ f ′

10. (e − > f)′ is e′ ⇒ f ′

11. (e < − > f)′ is e′ ⇔ f ′

1In section 4.3 that describes the translation from RSDS to SMV, all of the variables are defined in terms of
enumerated sets i.e. variables representing current state (Rule 4) and current sensor event (Rule 7). This is also
true for the fine-grain translation defined in Chapter 5.

4.2 Translation Issues 101

12. (!e)′ is ¬e′

13. (AGe)′ is AGe′ and similarly for all the other CTL temporal operators.

ΛM has a single action symbol stepM which may modify any of the variables local to M . There

is the axiom

AG(stepM)

4.2 Translation Issues

A translation between notations involves finding a suitable model for the source notation in the

target language that preserves the meaning of the source. It must guarantee a close relationship

between the properties true in the source with those in the target. It is often the case that some

modelling aspects in one notation are not available in another and a translation aims to find

an acceptable solution [KG02]. We consider, in this section, the key issues that either make it

difficult or easy to translate. These issues are identified at a low-level by comparing the languages

associated with the translation and at a high-level by discussing the general modelling problems

associated with the notations.

4.2.1 RSDS vs SMV

SMV was chosen for model checking the properties of RSDS specifications because of similarities

between the RSDS and SMV notations that simplify the translation. Their underlying semantics

are based on transition systems. We discuss the similarities and differences of these specification

languages.

• Both SMV and RSDS describe the system in terms of modules. A module in RSDS is

conceptually similar to a module in SMV as they both describe all the possible changes of a

given state or variable. Moreover, the way that modules are composed in SMV and in SRS

statemachines is similar, i.e. synchronous composition and AND composition respectively.

They both execute assignments (or fire transitions) in parallel.

• The structuring mechanism in SMV promotes readability by breaking up the system into

modules. These modules are instantiated by declaring a variable of type module. The

modules can be flattened into a single module. RSDS provides several structuring techniques

(decomposition techniques) that are based on conceptual or physical properties of the system.

They were developed to reduce the complexity of the control algorithm and simplify proof

in B. Since SMV code is generated automatically by the RSDS tool and the user does not

need to know any SMV, the benefit of translating these techniques for improving readability

is not required. However, it would be greatly beneficial if these techniques could be used to

exploit the modularity of systems in order to reduce the state space by verifying properties

locally, for example. In section 4.5, we present a natural way of applying these decomposition

techniques to SMV models to obtain the benefits discussed.

4.3 Coarse-grain Translation from RSDS to SMV 102

• The locality principle is important in RSDS and should be respected in the SMV model

generated. For each module, the locality principle states that if no transition occurs, then

the states should remain the same. In SMV, the locality principle can be easily modelled

with a case statement, where each transition is given as a possible case, and otherwise”

nothing happens.

• RSDS provides a particular model template for implementing reactive systems while SMV

does not. SMV was originally devised for hardware verification and therefore its language is

very low level.

• The granularity of “next” in the coarse-grain view of RSDS is different to that in the fine-

grain. The SMV model must implement correctly the granularity for each case.

• The behaviour of RSDS systems is deterministic as SRS statemachines do not allow any

nondeterministic transitions. However, the environment generates sensor events nondeter-

ministically i.e. any sensor event can occur and an RSDS specification should be able to

respond accordingly. SMV can model both deterministic and nondeterministic behaviour.

For example, the deterministic transitions of SRS statemachines can be modelled exactly in

SMV by defining which transition should be taken at each step (there is no choice). Nonde-

terminism is modelled in SMV by “under-specification”, i.e. by not specifying a particular

behaviour, it considers all possible cases. For example, sensor events in RSDS specifications

can be defined as variables of an enumerated set. By not defining in SMV which sensor event

is true in which step, the SMV model considers all the possible sensor events in each step.

• There is no straightforward way of representing environmental assumptions in SMV. This

is because environmental assumptions are not part of the system specification. We have to

somehow restrict the environmental behaviour that the system deals with and in SMV this

consists of restricting some of the branches of the system model produced.

• The state space of an SMV model is fixed. A state space is fixed if the universe does not

change during a run. Likewise, RSDS specifications describe systems whose state space does

not change during a run.

4.2.2 The state space explosion problem

Owing to the state space explosion problem, the state space of the SMV model produced for an

RSDS specification must be small and finite. If a SMV model for a large reactive system has a large

state space, the model checking tool will spend hours or days verifying it. The slow performance

of the model checker makes verification impossible.

4.3 Coarse-grain Translation from RSDS to SMV

A single step in the coarse-grain grain semantics must be modelled in a single SMV step because

we want to check that the system properties hold at each step. Therefore, if a sensor event occurs,

the system’s reaction to that event must be carried out in a single SMV step. Besides ensuring that

4.3 Coarse-grain Translation from RSDS to SMV 103

the translation is semantics-preserving, our aim is to keep the state space of the SMV program

produced as small as possible, by avoiding the unnecessary introduction of variables.

In this section, we describe the rules for translating from the coarse-grain semantic view of

RSDS to SMV. These translation rules are used to derive the algorithm for the automatic genera-

tion of SMV modules. SMV schemas are used to describe the generalised form of the SMV program

produced from the translation that can be substituted for particular system specifications. The

translation schemas for the coarse-grain have been published in [AL01].

4.3.1 Translation of SRS statemachines

Translations are usually described as direct mappings between elements in the source to elements

in the target language. However, in our translation we consider all the information provided to

us by the statemachines and provide an optimised translation into SMV. This is because we know

how a controller is synthesised, and the standard forms of sensors and actuators and we can use

this prior knowledge of the system to make decisions concerning the translation. For example, for a

reactive system whose controller is generated automatically, we know that the controller state and

transitions are an AND-composition of the sensor states and transitions. Thus, the sensor state

can be determined from the controller state and does not need to be explicitly modelled in SMV

which consequently reduces the state space. Also, we decide not to model explicitly the generation

of events because it is not possible to do so in a single SMV step. Instead, our approach is to

synchronise in SMV the transitions and events within the modules, thus avoiding the introduction

of new variables for each event generated that would increase the state space immensely.

First, we show the translation rules that are applied to all SRS modules to obtain the respective

SMV definitions. Then, we show the details of how specific features of controller, sensor and

actuator modules are translated into SMV modules.

In order to preserve the modular structure of SRS statemachines, each module for each compo-

nent is translated into an SMV module. An SMV module is defined by declaring an SMV variable

of type module in the main module. Since the controller module is composed from sensor modules

(see semantics in section 3.2.3), the sensor modules do not need to be translated.The main mod-

ule in SMV is used to compose the modules synchronously and to define with parameters which

modules have read-only access to the states of other modules. The parameters are modules and

are determined from the structure of the DCFD. Usually, the actuator modules require read-only

access to the controller modules responsible for managing them in the structuring hierarchy. The

translation rules below describe how the component modules are defined in the main module of

SMV and what modules’ variables they can access.

Rule 1: For each controller component C in Sys
VAR

C : Controller;

Rule 2: For each actuator component A in Sys
VAR

A : Actuator(C, OA);

where C is the controller responsible for managing actuator A and

4.3 Coarse-grain Translation from RSDS to SMV 104

OA are any other actuator components that it will need to refer to
(see translation rule 9).

The translation schema in Figure 4.2 can be expanded for any number of components in a

reactive system. Actuator components have read-only access to the controller module because of

the module parameter.

A2A1

A2: Actuator2(C);

 C: Controller;
 A1: Actuator1(C);

MODULE main
VAR

C

S

Figure 4.2: The translation schema for the main module and DCFD of a simple reactive system.

In Figure 4.3, the SMV code is given for the gas burner system illustrating the system com-

ponents and how they are linked together. The actuator modules have read-only access to the

controller module.

Air ValveGas Valve Igniter

Controller

Switch Flame Detector

 Av: GasValve(C);
 Gv: GasValve(C);
 Ig: Ignitor(C);

MODULE main
VAR
 C: Controller;

Figure 4.3: The main module for the gas burner system.

All SRS statemachine modules share common elements: they all consist of states with tran-

sitions for moving between the states. The translation rules below describe how these common

elements of statemachine modules are defined in SMV modules. These include: a declaration of

a variable for representing the current state and assignments for defining its initial value and the

values of states that are true in the next SMV step based on a transition occurring.

4.3 Coarse-grain Translation from RSDS to SMV 105

Rule 3: For a state st in a module that ranges over the set of possible states (s1, s2, ..., sm) :
VAR

st : {s1, s2, ...,sm};

Rule 4: The initial state of st:
ASSIGN

init(st) := init s;

Rule 5: For each state st:
ASSIGN

next(st) :=

case

–For each transition tr with target state s2
tr : s2;

–For the default case
1 : st;

esac;

where tr is a controller or actuator transition

The definitions of transitions differ for various component types. The controller transition is

defined in terms of its state and sensor event, while the transitions for the actuators are defined

in terms of controller transitions. We consider each component type in turn.

Controller

For an automatically synthesised controller we can assume that the controller states and transitions

are an amalgamation of states and transition of all sensor modules. Therefore, for a system

with a set of sensors S1, . . . , Si and actuators A1, . . . , Aj , the controller statemachine C contains

states (x1, . . . , xi) that are tuples of sensor states x1 ∈ StatesS1, . . . , xi ∈ StatesSi
. The variable

stable state is defined (using translation Rule 3) in the SMV module for the controller state and

ranges over a set of these possible system states that are described using the following notation:

x1 x2 ... xi. The external event that occurs nondeterministically from the environment is modelled

by the declaration of the variable sensor event of enumerated type ranging over the set of all

possible external events.

The transitions of C are the transitions of the AND composition of the sensors S1, . . . , Si with a

set of generated events. Guards are not explicitly expressed in the SMV definition of the controller

transitions because the guard is a condition on the sensor states and the controller state provides

information on all of the sensor states. Therefore, to express a guard in the controller transition

the appropriate controller state must be chosen.

Controller transitions CT1 . . . CTm are expressed using the DEFINE clause in SMV as a com-

bination of sensor events, and the current stable state. The following translation rules show how

events are defined in the controller module and the transitions in terms of these.

4.3 Coarse-grain Translation from RSDS to SMV 106

Rule 6: For a sensor (external) event sensor event that occurs:
VAR

sensor event : {e1, e2, ...,en};
where sensor event ∈ ExtEvents and e1, e2, ...,en are all possible events.

Rule 7: For each controller transition CT1,...,CTk :
DEFINE

CT1 := ex = e1 & stable state = x1;

Similarly for all controller transitions

The translation schema for the controller is as follows.

MODULE Controller

VAR

stable state : {x1,...,xn};
sensor event : {e1,...,ek};

DEFINE

CT1 : sensor event = e1 & stable state = x1;

...

ASSIGN

init(stable state) := c init;

next(stable state) :=

case

CT1 : x2;

...
1: stable state;

esac;

The controller transition CT1 defined in the translation schema consists of e1 : x1 → x2. In

SMV, the execution of this transition is expressed with a case statement in the next clause. Only

one sensor state can change in each step. The generated events are not explicitly expressed in the

controller module, instead the controller transition is synchronised (because of the synchronous

composition of modules) with the sensor and actuator transition to ensure that the sensor and

actuator states are updated in the same step.

Figure 4.4 illustrates the statemachine for the controller of the gas burner from which the

following SMV code is generated.

MODULE Controller

VAR

stable state : {Off Absent, On Absent, Off Present, On Present };
sensor event : {swon, swoff, fdon, fdoff};

DEFINE

CT1 : sensor event = swon & stable state = Off Absent;

CT2 : sensor event = swoff & stable state = On Absent;

CT3 : sensor event = swoff & stable state = On Present;

CT4 : sensor event = swon & stable state = Off Present;

CT5 : sensor event = fdoff & stable state = On Present;

CT6 : sensor event = fdon & stable state = On Absent;

CT7 : sensor event = fdon & stable state = Off Absent;

4.3 Coarse-grain Translation from RSDS to SMV 107

CT8 : sensor event = fdoff & stable state = Off Present;

ASSIGN

init(stable state) := Off Absent;

next(stable state) :=

case

CT1 | CT5 : On Absent;

CT2 | CT8 : Off Absent;

CT3 | CT7 : Off Present;

CT4 | CT6 : On Present;

1: stable state;

esac;

off_present

off_absent

on_present

on_absent

CT8:fdoff/av_close CT7:fdon/ig_open^av_open

CT6:fdon/ig_close^av_open

CT1:swon/av_open^gv_open^ig_open

CT2:swoff/ig_close^gv_close^av_close

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT5:fdoff/ig_open

Figure 4.4: The SRS statemachine for the controller of the gas burner.

The controller state stable state is a composition of the sensor states for the switch and flame

detector components. The controller transitions are described in terms of sensor events and source

states of the controller. By using the DEFINE clause to declare the transitions with boolean

variables, the transitions can be accessed (read-only) by actuator modules that are parameterised

with the controller module. This allows for the actuator modules to define their state change as

a reaction to a controller transition.

Actuators

Actuators are subordinate to controllers and receive commands from them. Their transitions

are synchronised with the controller transitions to ensure that actuator changes occur in a single

SMV step. This synchronisation is expressed with the definition of actuator transitions in terms of

controller transitions. The following translation rule shows how actuator transitions are translated.

Rule 8: For each actuator transition AT1,...,ATy:
DEFINE

AT1 := C.CT1 & G & a state = a1;

where C.CT1 refers to controller transition and G is
the guard and a state is the actuator state.

Moreover, actuator transitions can contain guard conditions that are boolean terms composed

of other actuator states that can be evaluated. These are defined explicitly in SMV as a collection

4.3 Coarse-grain Translation from RSDS to SMV 108

of actuator states from any actuator in the system. For example, if G in translation rule 10 refers

to the states of actuator A1, then it would have the form of A1.a state = s1 where s1 is some

value of the state of actuator A1. Since the guard is given as actuator states, the actuator modules

that house those states must be passed as a parameter in order for them to be referred to. This

is illustrated in the translation schema for the controller where A1 is an actuator whose state is

referred to in the actuator transition AT1 of Actuator module. If no guard is given, then it is

assumed to be true.

The translation schema for an actuator is as follows.

MODULE Actuator(C, A1)

VAR

a state : {a1,...,ar};

DEFINE

AT1 : C.CT1 & A1.a state = aa1 & a state = a1;

...

ASSIGN

init(a state) := a init;

next(a state) :=

case

AT1 : a2;

...
1: a state;

esac;

The gas burner system consists of three actuators: an air valve, a gas valve and an igniter.

Figure 4.5 illustrates the statemachine for the air valve and the SMV module generated by applying

the translation rules. The current state for air valve is represented by the SMV variable av where its

type corresponds to all the possible states of air valve (Rule 4). The variables under the DEFINE

clause represent the actuator transitions (Rule 10). There are more definitions of transitions in the

SMV code than in the statemachine because the transitions in the SMV code are given in terms

of controller transitions in order to represent controller transitions generating actuator events (see

next paragraph for a detailed example). The initial state of air valve is closed, which is defined

in SMV with the init clause (Rule 5), and the possible state changes that occur as a result of a

transition being taken, are defined using a case statement within the next clause (Rule 6). The

locality of the module is maintained because of 1:av; which means that if no other transition is

true (i.e. AT1..AT12) then the current state remains the same. The SMV modules for the other

actuators in the system are generated similarly.

There is a discrepancy between the transitions defined in the statemachines and those in the

SMV code. This is because in the statemachine, the controller transitions generate the events

that trigger transitions in the actuator statemachine, and in SMV there is no way of implementing

this in a single step. Instead, the actuator state changes are defined in terms of the controller

transitions and this synchronisation ensures that the reaction to a sensor event occurs in a single

SMV step. For example, in the gas burner system the controller transitions CT2 and CT8 are the

only transitions that generate the action av close. In Figure 4.5, the actuator transition AT1 in

the statemachine is triggered when av close is true (the event has been generated by a controller

4.3 Coarse-grain Translation from RSDS to SMV 109

Air Valve

AT1 : av_close AT2 : av_open

open

closed

MODULE AirValve(C)

VAR

av : {closed, open};

DEFINE

AT1 : C.CT1 & av = closed;

AT2 : C.CT1 & av = open;

AT3 : C.CT2 & av = closed;

AT4 : C.CT2 & av = open;

AT5 : C.CT4 & av = closed;

AT6 : C.CT4 & av = open;

AT7 : C.CT7 & av = closed;

AT8 : C.CT7 & av = open;

AT9 : C.CT6 & av = closed;

AT10 : C.CT6 & av = open;

AT11 : C.CT8 & av = closed;

AT12 : C.CT8 & av = open;

ASSIGN

init(av) := closed;

next(av) :=

case

AT1 | AT2: open;

AT3 | AT4: closed;

AT5 | AT6: open;

AT7 | AT8: open;

AT9 | AT10: open;

AT11 | AT12: closed;

1: av;

esac;

Figure 4.5: The statemachine and SMV code for the air valve component.

transition) and the state of the air valve actuator becomes closed. The actuator transition AT1

in the statemachine corresponds to AT4 and AT12 in the SMV model. Additionally, AT3 and

AT11 are the implicit self-transitions on the closed state that are explicitly defined in the SMV

model. The self-transitions are only expressed explicitly for completeness as the model represents

them with 1 : a state that means that “otherwise” (part of the case statement) the state stays

the same.

4.3.2 Translation of the invariants

The system properties to be verified are described as CTL formulas under the SPEC clause in

the main SMV module and are expressed in terms of the variables of the modules defined. The

general form of the properties is: AG(AG(Env) → T) where Env is an environmental assumption

that is used to impose a filter on the system to be model checked, and T is any invariant that

requires verification.

Rule 9: For each temporal invariant T:
SPEC

AG(AG(Env) -> T)

where Env is the environmental assumptions.

4.3 Coarse-grain Translation from RSDS to SMV 110

SMV verifies the following properties for the gas burner system that have no environmental

assumptions:

SPEC

AG(Gv.gv = open -> Av.av = open)

SPEC

AG(Ig.ig = on -> Gv.gv = open)

SPEC

AG(C.event = swon -> EF(C.state = On Present))

There is a direct mapping between the action invariants and the SMV code generated. For

example, the action invariant 3.1 for the gas burner system:

swon ∧ swstate = off ∧ fdstate = absent ⇒ AX(istate = on)

is expressed in the SMV code by the controller transitions CT1.

4.3.3 Interpreting the results of SMV

For each property described in an SMV model, the SMV model checker outputs: true if the

property holds in the model; or false and a counter-example if the property does not hold in the

model. It is clear from the construction of the SMV from RSDS, that any counter-example trace

in RSDS can be translated into a counter-example in SMV. This means that if property Q holds

in the SMV model, it also holds in the RSDS model.

The counter-example is a sequence of SMV steps of a path that leads to a violation of a

property. All the values of variables and define variables (under the DEFINE clause) are given at

each step. Therefore, the SMV steps are mapped to history states in SRS statemachines, where

the sensor event is mapped to the sensor event in the statemachines, the variables representing

component states map to states in the statemachine modules, and the defined variables map to

transitions in the corresponding statemachines. This mapping is very easy to automate as there

is a direct correspondance between RSDS and SMV counter-examples (see Figure 4.6).

Lets consider the counter-example produced when checking the false property

AG(C.event = swon → AF C.state = On Present)

of the gas burner system. It consists of three steps which are stuck in a loop. Figure 4.6 shows how

the counter-example is mapped to elements in the SRS statemachines. The variables for each step

in the counter-example (on the LHS of figure) correspond to the highlighted states and transitions

in the snapshot of the statemachines (on the RHS of the figure). The property must be corrected

to be

AG(C.event = swon → EF C.state = On Present)

4.3 Coarse-grain Translation from RSDS to SMV 111

Sys

Sys

Sys

 C.CT2 = 1

 C.CT1 = 0

 C.event = swoff

 Av.av = open

 Gv.gv = open

−> State 1.2 <−

 Ig.ig = on

 C.state = On_Absent

 C.CT6 = 0

 C.CT5 = 0

 C.CT4 = 0

 C.CT3 = 0

 C.CT2 = 0

 C.CT1 = 1

 C.state = Off_Absent

 C.event = swon

 Av.av = closed

 Gv.gv = closed

 Ig.ig = off

−> State 1.1 <−

 C.CT7 = 0

 C.CT8 = 0

−> State 1.3 <−

 C.CT2 = 0

 C.CT1 = 1

 C.state = Off_Absent

 C.event = swon

 Av.av = closed

 Gv.gv = closed

 Ig.ig = off

Air Valve

AT1:av_close

Gas Valve Igniter

AT3:gv_close AT5:ig_close

Controller

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

Air Valve

AT1:av_close

Gas Valve Igniter

AT3:gv_close AT5:ig_close

Controller

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

Air Valve

AT1:av_close

Gas Valve Igniter

AT3:gv_close AT5:ig_close

Controller

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

AT2:av_open AT4:gv_open
AT6:ig_open

CT2:swoff/ig_close^gv_close^av_close

AT2:av_open
AT4:gv_open

AT6:ig_open

AT2:av_open AT4:gv_open AT6:ig_open

Counter−example SRS statemachine

CT5:fdoff/ig_open

CT5:fdoff/ig_open

CT5:fdoff/ig_open

Figure 4.6: An example of how a counter-example maps to SRS statemachines.

4.4 Proof of Correctness for the Coarse-grain Translation 112

4.4 Proof of Correctness for the Coarse-grain Translation

We need to show that the translation defined preserves the coarse-grain semantics of RSDS spec-

ifications. The semantics of SMV and RSDS are given in the same semantic domain (i.e. object

calculus theories), so we can relate these semantics directly. We need to prove that everything

that is true in the RSDS system theory ΓSys, is also true in the SMV interpretation of that theory

ΛM(Sys) (soundness), and vice versa (completeness). In order to prove this, we must first prove

the following lemma.

Lemma 1. The axioms of ΓSys hold in ΛM(Sys) under the interpretation ξ of an RSDS system

theory ΓSys as a SMV interpretation of that theory in ΛM(Sys).

Γ Sys

Γ

M(Sys)Sys
M

Λ M(Sys)

Λ

ξ

Apply SMV translation

Preserve the meaning

M

Λ

ξ

Γ
Derive the meaning of RSDS specification

Derive the meaning of SMV specification M(Sys) SMV specification of a RSDS specification

Λ M(Sys) Interpretation of the theory of the SMV specification

Γ Sys Interpretation of the theory of RSDS specification

Sys RSDS specification of a system

Figure 4.7: A sketch of the correctness proof for coarse-grain RSDS specifications.

Proof. We first define the interpretation of an RSDS system theory ΓSys into the theory ΛM(Sys),

and then show that the axioms hold under this interpretation. The theory ΛM(sys) of the inter-

pretation of an RSDS specification Sys is defined to be the theory Λmain of the main module of

M(Sys). Figure 4.7 illustrates the relationship between these theories.

The interpretation of an RSDS system theory ΓSys into the theory ΛM(Sys) is defined by:

1. α : Eventss for a sensor S is interpreted by C.sensor event = αtok where αtok is the name

for α listed in the enumerated type of sensor event.

2. tr : Transs for a sensor S is interpreted as the disjunction C.CT1 = 1 ∨ ... ∨ C.CTn = 1

where the CT 1, ..., CTn represent all the controller transitions which depend on tr (in the

RSDS model). We will use the shorthand given in SMV for C.CT1 to mean C.CT1 = 1,

similarly for all boolean or DEFINE variables found on the RHS of assignments.

3. s, the sensor state variable of S, is the i-th projection proji(C.stable state) of the controller

state, if S is Si.

4. A transition tr of the controller is interpreted by the predicate C.CTj = 1 where CTj is the

corresponding DEFINE variable of the controller module.

5. The state attribute st of the controller is interpreted by C.stable state.

4.4 Proof of Correctness for the Coarse-grain Translation 113

6. A transition tr of an actuator is interpreted by the predicate A.AT i = 1 where ATi is the

corresponding DEFINE variable of the actuator module.

7. Actuator events ρ1, ..., ρj are not explicitly represented in SMV. Each event ρ is inter-

preted by the disjunction of controller transitions C.CT1 = 1 ∨ ... ∨ C.CTj = 1, where

CT 1, ..., CT j represent all the controller transitions which generate ρ.

8. The state attribute state of an actuator is interpreted by A.state.

9. The guard g of an actuator transition is interpreted by the predicate G = 1, which is

described in the definitions of actuator transitions A.AT i. It is composed of a conjunction

of references to other actuator states, for example : A2.state = g1 & A3.state = g2, which

refers to the state of actuator A2 and A3.

The axioms of ΓSys hold in ΛM(Sys) under this interpretation:

Controller

CG1 The axiom defining the initial state of Sm:

BEG ⇒ sm = initsm

where Sm is a controller statemachine and sm is its current state, is interpreted in ΛM(Sys)

as

BEG ⇒ C.stable state = initstable state

which is immediately true. C.stable state is a tuple of sensor states, which means that its

initial state corresponds to the initial values of all the sensor modules initS1 ... initSn, where

S1, .., Sn are the sensor modules of a system.

CG2 That at most one event of Sm can occur in a step:

¬(α ∧ α′)

for each pair of distinct events of Sm. This axiom is interpreted as

¬(C.sensor event = α ∧ C.sensor event = α′)

which holds because of the definition of sensor event: C.sensor event :Type, where Type is

an enumerated set, and C.sensor event can have only one value at a time.

CG3 The state transition behaviour of Sm:

sm = s ∧ α ⇒ tr (4.1)

tr ⇒ α (4.2)

sm = s ∧ tr ⇒ AX(sm = t) (4.3)

4.4 Proof of Correctness for the Coarse-grain Translation 114

for each sensor transition tr of Sm with source s, target t and trigger event α. Sensor

transitions are interpreted as the disjunction of controller transitions. Therefore, axiom 4.1

is interpreted as

(C.stable state = s1∨ ...∨C.stable state = sn)∧C.sensor event = α ⇒ C.CT1∨ ...∨C.CTn

were s1, ..., sn are all the controller states where one of the elements in the tuple is the same

i.e. corresponds to the sensor source of the sensor transition, and C.CT1, ..., C.CTn refers to

the controller transitions that are depended on tr. This axiom holds because of the definition

of controller transitions:

C.CTj := stable state = si & C.sensor event = α

which are in terms of C.stable state values and sensor events.

The axiom 4.2 is interpreted as

C.CT1 ∨ ... ∨C.CTn ⇒ C.sensor event = α

which holds, because of the definitions of the controller transitions.

The axiom 4.3 is interpreted as:

(C.stable state = s1 ∨ ... ∨ C.stable state = sn) ∧ (C.CT1 ∨ ∨ C.CTn) ⇒
AX(C.stable state = t1 ∨ ... ∨ C.stable state = tn)

whereby s1, ..., sn are the controller state values that contain the sensor state s in their tuple,

and t1, ..., tn are the controller state values that contain t in their tuple. This axiom follows

from the definition of next for C.stable state:

ASSIGN

next(stable state):=

case

CT1 : t1;

...

CTk : tn;

1: stable state;

esac

which is interpreted as:

AG(C.stable state = s1 ⇒ (¬C.CT1 ∧ ... ∧ ¬C.CTk ⇒ AX(C.stable state = t1)))

and similarly for all values of C.stable state.

CG4 That at most one sensor transition of Sm can occur in the step:

¬(tr ∧ tr′)

4.4 Proof of Correctness for the Coarse-grain Translation 115

for each pair of distinct transitions of Sm. This axiom is interpreted as:

¬((C.CT1 ∨ ... ∨ C.CTn) ∧ (C.CTj ∨ ... ∨C.CTk))

where (C.CT1∨ ...∨C.CTn) are the controller transitions invoked by tr, and (C.CTj ∨ ...∨
C.CTk) are the controller transitions invoked by tr′. An assumption of RSDS specifications

is that the events are unique, and each sensor transition is defined in terms of events.

Therefore, this axiom is true because each sensor transition will invoke a different set of

controller transitions depending on the sensor event.

CG5 That a sensor transition can only occur if Sm is in its source state:

tr ⇒ sm = sourceSm(tr)

This axiom is interpreted as:

C.CT1 ∨ ... ∨ C.CTn⇒ C.stable state = s1 ∨ ... ∨ C.stable state = sn

where the source state is an element in the tuple of controller states s1, ..., sn. Since the

controller state is an amalgamation of sensor states, a sensor transition can correspond to a

number of controller transitions (maximum number = number of sensor modules) because

although the event and the source state are the same, the states of the other sensors can be

different. This axiom is true because of the definition of a controller transition:

C.CT i := C.stable state = s & C.sensor event = α;

which is in terms of the source state for C.stable stable.

CG6 The locality notion [FM91] requires that there is no visible change to the value of the

attribute sm when no transition is taken:

¬tr1 ∧ ... ∧ ¬trn ∧ sm = s⇒ AX(sm = s)

for each s ∈ StatesSm, where the tri are all the transition action symbols of Sm.

This axiom is interpreted as:

¬C.CT1 ∧ ¬C.CTk ∧ C.stable state = s⇒ AX(C.stable state = s)

This is true because of the default case in the case statement within the next clause that

defined the state changes to C.stable state:

ASSIGN

next(stable state):=

case

CT1 : s2;

...

CTk : sk;

1: stable state;

esac

4.4 Proof of Correctness for the Coarse-grain Translation 116

which is interpreted as:

AG(C.stable state = s0 ⇒ (¬C.CT1 ∧ ... ∧ ¬C.CTk ⇒ AX(C.stable state = s0)))

and similarly for all values of C.stable state.

CG7 We assume that only one sensor event can occur in each step:

¬(α ∧ α′)

for each pair of events α of Sm and α′ of Sm′ where Sm and Sm′ are distinct sensor

components. This axiom is interpreted as:

¬(C.sensor event = α ∧C.sensor event = α′)

which holds because the type of C.sensor event is an enumerated set, and by definition only

one value of this set can be true in each SMV step (which corresponds to a coarse-grain

step).

Actuators

CG1 The initial state of the actuator statemachine Sm:

BEG ⇒ sm = initSm

where initSm is the initial state of Sm. This axiom is interpreted as

BEG ⇒ A.state = initSm

so is immediately true.

CG2 That at most one actuator event of Sm can occur in a step:

¬(α ∧ α′)

for each pair of distinct events of Sm. Actuator events are not explicitly represented in SMV.

We know from CG12 that actuator events are generated from controller transitions and are

interpreted as a disjunction of controller transitions. Therefore, this axiom is interpreted as:

¬((C.CT1 ∨ ... ∨ C.CTx) ∧ (C.CTy ∨ ... ∨ C.CTz))

where α is generated by C.CT1 ∨ ... ∨ C.CTx and α′ is generated by C.CTy ∨ ... ∨ C.CTz.
This axiom is true because of CG4 of the controller theory.

CG4 That at most one actuator transition of Sm can occur in a step:

¬(tr ∧ tr′)

4.4 Proof of Correctness for the Coarse-grain Translation 117

for each pair of distinct transitions of Sm. This axiom is interpreted as:

¬(A.AT 1 ∧A.AT 2)

for each pair of distinct transitions of actuator Sm. This axiom holds because actuator tran-

sitions are defined in terms of controller transitions, and we know that controller transitions

are unique (i.e. only one of them occurs during a step) because of CG4 of the controller

theory.

CG5 That a transition can only occur if Sm is in its source state:

tr ⇒ sm = sourceSm(tr)

This axiom is interpreted as:

A.AT i⇒ A.state = a1

where a1 is the source state of transition A.AT i and is immediately true because of the

definition of an actuator transition:

A.AT i := A.state = a1 & C.CT i & G;

where G is the guarding condition whose default value is true.

CG6 The locality notion [FM91] requires that there is no visible change to the value of the

attribute sm when no transition is taken:

¬tr1 ∧ ... ∧ ¬trn ∧ sm = s⇒ AX(sm = s)

for each s ∈ StatesSm, where the tri are all the transition action symbols of Sm. This axiom

is interpreted as:

¬A.AT 1 ∧ ¬A.AT 2 ∧ ... ∧ ¬A.ATn ∧A.state = s⇒ AX(A.state = s)

This is true because of the default case in the case statement within the next clause that

defined the state changes to A.state, the actuator state:

ASSIGN

next(state):=

case

AT1 : a2;

...

ATn : ak;

1: state;

esac

which is interpreted as:

AG(A.state = a1 ⇒ (¬A.AT 1 ∧ ... ∧ ¬A.ATn ⇒ AX(A.state = a1)))

and similarly for all values of A.state.

4.4 Proof of Correctness for the Coarse-grain Translation 118

CG8 The state transition behaviour of Asm:

sm = s ∧ α ∧ gtr ⇒ tr (4.4)

tr ⇒ α ∧ gtr (4.5)

sm = s ∧ tr ⇒ AX(sm = t) (4.6)

for each transition tr of Sm with source s, target t and trigger event α. The first axiom is

interpreted as:

A.state = s ∧C.CT i ∧G ⇒ A.AT i

where G is the guard. This axiom is immediately true because of the definition of the

actuator transition which is given in terms of the controller transition, actuator state and

guard.

Axiom 4.5 is interpreted as:

A.AT i⇒ C.CT i ∧G

which is immediately true because of the definition of the actuator transition.

The final axiom 4.6 is true because of the next assignment for the actuator state:

ASSIGN

next(state):=

case

AT1 : a2;

...

ATn : an;

1: state;

esac

which is interpreted as:

AG(A.state = a1 ⇒
(A.AT 1 ⇒ AX(A.state = a2)) ∧

(¬ A.AT 1 ∧ A.AT 2 ⇒ AX(A.state = a3)) ∧
...

(¬ A.AT 1 ∧ . . . ∧ ¬A.ATn ⇒ AX(A.state = a1))))

showing that the cases when an actuator transition occurs brings about a change to the

actuator state.

CG9 The axiom

AG(gtr ⇔ Gtr)

4.4 Proof of Correctness for the Coarse-grain Translation 119

is defined once the symbols in G are available. This axiom is required in order to obtain the

exact value of the guard (references to the state of other actuator modules) which are not

visible from the actuator theory. Therefore, the interpretation of this axiom is:

AG(gtr ⇔ A2.state = g)

if, for example, the guard is A2.state = g. Similarly for other guarding conditions.

Complete System

CG10 A “system locality” principle states that each actuator event occurs as a response to some

sensor event:

β ⇒ α1 ∨ ... ∨ αn

for each β which is an event of some actuator component, and where the αi are all events of

the set of sensor components. In the SMV code, actuator events are represented by controller

transitions. Therefore, the interpretation of this axiom is:

C.CT1 ∧ ... ∧ C.CTn⇒ C.sensor event = α1 ∨ ... ∨ C.sensor event = αn

where C.CT1 ∧ ... ∧ C.CTn are the controller transitions that generate β. This axiom is

immediately true because of the definitions of the controller transitions (CG3 of the controller

theory).

CG11 An axiom for the guard is defined:

trC ∧ GA ⇒ trA

where GA is the guard for an actuator transition, and trC and trA are controller and actuator

transitions respectively. This axiom is interpreted as:

C.CT i ∧G⇒ A.AT i

which is immediately true because of the definition of A.AT i that contains both C.CT i and

G.

CG12 The axiom that asserts that each controller transition generates events received by sub-

controller or actuator components:

AG(trC ⇒ ρ1 ∧ ρ2 ∧ ... ∧ ρp)

where trC is a controller transition and {ρ1, ..., ρp} are the subcontroller or actuator events

that it generates. This axiom is interpreted as:

AG(C.CT i⇒ ((C.CT1∨ ...∨C.CT i∨ ...∨C.CTx)∧ ...∧(C.CTy∨ ...∨C.CT i∨ ...∨C.CTz)))

where each disjunction representing ρi (on the RHS of the implication) includes C.CT i, and

therefore the axiom is is immediately true.

4.4 Proof of Correctness for the Coarse-grain Translation 120

• All system invariants are valid in the RSDS controller module, so remain true in the SMV

translation.

Theorem 1. The translation is sound if we can show that: if ΓSys ` ϕ then ΛM(Sys) ` ξ(ϕ)

Proof. The theorem follows because the rules of deduction are the same in the theories (quantifier

free CTL in object calculus) and deduction steps [Eme90] in ΓSys are preserved by ξ. For example,

for Modus Ponens:

If

ΓSys ` ϕ
and

ΓSys ` (ϕ =⇒ ψ)

then by induction on the length of the proof

ΛM(Sys) ` ξ(ϕ)

and

ΛM(Sys) ` ξ(ϕ =⇒ ψ)

which means

ΛM(Sys) ` ξ(ϕ) =⇒ ξ(ψ)

so

ΛM(Sys) ` ξ(ψ)

Therefore, with this theorem we proved the soundness of the translation. In order to show the

completeness of the translation, we use the following lemma.

Lemma 2. For each trace h of the SMV model M(Sys) there is a corresponding trace r(h) in

the RSDS model Sys which satisfies the same formulae with respect to the translation ξ.

Proof. If h consists of a sequence h1, ..., hn of n Kripke nodes (where RSDS states and events are

represented by variables), then r(h) is defined as a sequence of n states and events as follows.

The settings of the sensors at state i of r(h) are given by the value of C.stable state in hi. The

settings of other components are given by their values in hi. The sensor event which occurs to

move from node i to node i+1 is given by C.sensor event in hi. The response actuator events and

transitions are given by those disjunctions of conditions used in M(Sys) to define their occurrence,

which are true (i.e. their value is 1) in hi.

These two traces have the property that:

h `ΛM(Sys)
ξ(ϕ) ⇔ r(h) `ΓSys

ϕ

Hence, if h is an SMV counter-example to an RSDS property ψ, i.e.

h `ΛM(Sys)
¬ξ(ψ)

the r(h) is an RSDS counter-example to ψ:

r(h) `ΓSys
¬(ψ)

4.4 Proof of Correctness for the Coarse-grain Translation 121

Let us consider a simple RSDS system with two sensors: S1 with states {s11, s12}, and S2

with states {s21, s22, s23}; a controller C and an actuator A1 with states {a1, a2, a3}. If

ϕ = C.stable state = s11s21 & C.sensor event = α ⇒ AX(C.stable state = s11 s22)

then a possible counter-example h produced for this system could be:

h1 C.stable state = s11 s21
C.sensor event = α
A.state = a1
C.CT1 = 1 (where CT1 is defined in terms of this particular stable state and event)
A.AT1 = 1 (where AT1 is defined in terms of CT1)

h2 C.stable state = s12 s21
C.sensor event = β
A.state = a2
C.CT2 = 1 (where CT1 is defined in terms of this particular stable state and event)
A.AT2 = 1 (where AT1 is defined in terms of CT1)

where in h2 C.stable state = s12 s21 instead of C.stable state = s11 s22. The corresponding

counter-example r(h) in the RSDS model Sys is:

r(h1) S1 = s11
S2 = s21
stable state = s11 s21
sensor event = α
A1 = a1
trC = α/ρ1 (where ρ1 is the generated event of trC)
trA = ρ1

r(h2) S1 = s12
S2 = s21
stable state = s12 s21
sensor event = β
A1 = a2
trC = β/ρ2 (where ρ1 is the generated event of trC)
trA = ρ2

This example illustrates the close correspondence between h and r(h).

The same reasoning as in 6 also shows the completeness of the translation.

Theorem 2. The translation is complete if we can show that: if ΛM(Sys) ` ξ(ϕ) then ΓSys ` ϕ.

Proof. We prove the contra-positive: if not(ΓSys ` ϕ) then not(ΛM(Sys) ` ξϕ) For every trace s

of an RSDS system it is simple to construct a trace h of the corresponding SMV system for which

s = r(h). If

not(ΓSys ` ϕ)

there is a counter-example trace

s `ΓSys
¬ϕ

But then

h `ΛM(Sys)
¬(ξ(ϕ))

and

not(ΛM(Sys) ` ξϕ) which proves completeness.

4.5 Applying Decomposition Techniques to SMV Models 122

4.5 Applying Decomposition Techniques to SMV Models

The RSDS method uses a number of decomposition techniques for dividing large systems into

manageable subsystems and simultaneously structuring them. Each subsystem consists of a sub-

controller and a set of actuators. In order to apply the decomposition approaches to the SMV

model generated, the subcontroller components must be translated into SMV as well.

Translating to SMV more than one level of controllers in a system at the coarse-grain level

has no benefits, neither for improving readability or maintainability. This is because of the re-

quired synchronisation of the controller and actuator transitions for ensuring the coarse-grain step

corresponds to a single SMV step. If an RSDS specification at the coarse-grain level, that has

been decomposed and contains a second layer of controllers (known as subcontrollers), were to

be translated into SMV, then the subcontroller transitions must synchronise with the controller

transitions. The actuator transitions cannot synchronise with their subcontroller’s transitions as

this would require two SMV steps and that would not correspond to the coarse-grain semantics.

Therefore, they would still have to synchronise with the controller transitions, making the sub-

controller module redundant. Therefore, we translate into SMV a system with only one level of

controllers.

In this section we propose some natural ways in which decomposition approaches can be ap-

plied to the SMV generated in order to reduce its state space. Where possible, subsystems are

represented in separate SMV programs and model checked independently.

4.5.1 Hierarchical composition of controllers

The hierarchical decomposition approach divides the system into subsystems, as illustrated in

Figure 4.8. Each subsystem consists of a subcontroller and a set of actuators, with an overseer

controller known as the supervisor who is responsible for providing state information between its

subcontrollers.

SCs

Sn

C

A1 A2 Am

SC1

S1

Figure 4.8: The DCFD for a hierarchical system.

For some large hierarchical systems (have more than 1020 states), model checking is infeasible.

To make model checking feasible, we want to exploit the modular structure of RSDS specifica-

tions by verifying the subsystems independently, as separate SMV programs. However, there is

usually a strong dependency of information between the subsystems of a hierarchical system. A

supervisory controller is required to inform the subcontroller of one subsystem about the state of

4.5 Applying Decomposition Techniques to SMV Models 123

another. Moreover, global properties to be verified often refer to states of distinct subsystems. It

is impossible to verify these global properties automatically if the hierarchical system is defined in

separate SMV programs. Therefore, verifying subsystems independently is not straightforward.

To overcome this problem, we introduce a virtual sensor for each subsystem that depends on

information from another. The virtual sensor acts as an interface between one subsystem and

another and is treated as a sensor in one subsystem and as an actuator in the other. Its state is a

boolean whose value is the truth or falsity of a condition composed of states of the subsystem that

it depends on. The condition is determined by looking at the LHS of the invariants of the local

subsystem, for sensor states of other subsystems that influence the change of a local actuator. The

RSDS tool could determine this condition automatically.

Model checking this system consists of defining a separate SMV program for each subsystem

that may contain virtual sensors. The global properties are split into local properties expressed

in terms of the virtual sensor state and states local to the subsystem. These local properties are

proven automatically using SMV. Some manual work is required for splitting the global property

into local properties that are proven automatically, and also for combining them to prove the

global property.

Deposit belt

Robot

Feedbelt Elevating Rotary table

Press 2

Press 1

Figure 4.9: The main components of the fault-tolerant production cell.

As an example, let us consider the fault-tolerant production cell [Lot96] that is illustrated in

Figure 4.9. This is a manufacturing system that processes metal pieces (blanks) that enter the

system via a feedbelt. An elevating rotary table, found at the end of the feedbelt, receives a single

blank at a time. There are two robot arms for moving a blank from the table (when the table is

in the right position) to one of the presses, and for moving a blank after it is pressed from the

press to the deposit belt. The system is fault-tolerant as it has two presses. If one of the presses

fails, the system continues to operate. The RSDS specification for this system has been developed

in [LCAK00, LCA02b]. Two main decomposition approaches have been applied: the horizontal

and the hierarchical. Figure 4.10 highlights these decomposition approaches in the DCFD for

the complete system. We will consider only part of this system, namely the “Introducing blank”

4.5 Applying Decomposition Techniques to SMV Models 124

subsystem that manages the control of the feedbelt and table.

Outer
Level

Alarm

Main
Failure
Detection

Robot

Press
System

Press

Press 1 Press 2

Robot
Base

Robot
Arm 1

Robot
Arm 2

Table

Introducing
Blank

Feedbelt
Motor

Horizontal
Motor

Vertical
Motor

Feedbelt
Traffic Light

Hierarchical
Decomposition

Horizontal
Decomposition

Figure 4.10: The DCFD for the fault-tolerant production cell.

Figure 4.11 visualises the table and feedbelt components with the sensors, {isOnTable,atTop,atBottom}
and {sw,atStart,atEnd} respectively. All of these devices have two possible states: true and false;

except for sw which has the states: on and off. We only consider the vertical motor {vertMotor}
as the actuator of the table that has three states (up, down, off) and the beltmotor {beltMotor}
as the actuator of the feedbelt that has two states (on, off). The control invariants for the table

are:

isOnTable = true ∧ atBottom = false ⇒ vertMotor = down (4.7)

isOnTable = true ∧ atBottom = true ⇒ vertMotor = off (4.8)

isOnTable = false ∧ atTop = false ⇒ vertMotor = up (4.9)

isOnTable = false ∧ atTop = true ⇒ vertMotor= off (4.10)

The control invariants for the feedbelt are:

sw = off ⇒ atBottom = false(4.11)

atEnd = false ∧ sw = on ⇒ atBottom = true(4.12)

atEnd = true ∧ (atTop = false ∨ isOnTable = true) ⇒ atBottom = false(4.13)

sw = on ∧ atEnd = true ∧ atTop = true ∧ isOnTable = false ⇒ beltMotor = on(4.14)

4.5 Applying Decomposition Techniques to SMV Models 125

sw

atStart atEnd

atTop

atBottom

isOnTable

sw: feedbelt switch
atStart: detects blank at start of belt
atEnd: detects blank at end of belt

Feedbelt Sensors:

Feedbelt Table

isOnTable: detects blank on table
atBottom: detects if table at bottom position
atTop: detects if table at top position

Table Sensors:

Figure 4.11: The sensors for the feedbelt and table components.

Blanks are transferred from the feedbelt to the table only when the table is in the top position

and clear of a blank. Therefore, the behaviour of the feedbelt subsystem cannot be described

without considering the state of the table sensors. The feedbelt needs to know whether it is safe

for it to move and to deposit a blank on the table:

atTop = true & isOnTable = false (4.15)

that is, the table is in the top position and empty of blanks (table is ready to receive a blank).

We call this condition stm (“safe for feedbelt to move”). A virtual sensor Stm is thus introduced

into the feedbelt subsystem as illustrated by the DCFD in Figure 4.12. The value of the state stm

of Stm is the evaluation of the condition in 4.15. The invariants 4.13 and 4.14 are rewritten using

stm as follows:

atEnd = true & stm = false ⇒ atBottom = false

sw = on & atEnd = true & stm = true ⇒ atBottom = true

Stm

Table

Feedbelt Feedbelt
Motor

Motor
Vertical

Introducing
Blank

s3

ts

bs

s2

sw

s1

Figure 4.12: The DCFD of the feedbelt with the virtual sensor STM

We show how to model check the following global liveness property that involves both the

feedbelt and the table sensors:

AG(AF(isOnTable = false)) ⇒ AG(AF(atEnd = false)) (4.16)

4.5 Applying Decomposition Techniques to SMV Models 126

which means that if blanks are infinitely often removed from the table then, they are infinitely often

removed from the feedbelt. We use the following environmental assumptions, that are assumed to

be true in SMV for the respective subsystems, to help prove the global property 4.16.

AG(vertMotor = up ⇒ AF(atTop = true)) (4.17)

AG(onTable ⇒ atTop = true) (4.18)

AG(atEnd = true & stm = true ⇒ AF(atEnd = false)) (4.19)

These environmental assumptions describe the basic physical properties for the behaviour of the

table and feedbelt. Property 4.17 means that if the table motor is set to up, the table will

eventually reach the top position. Property 4.18 means that blanks are only added when the table

is in the top position i.e. if the event onTable occurs then the table is in the top position. Finally,

property 4.19 means that if it is safe for the feedbelt to move (table is ready to receive a blank)

and it is currently moving, then eventually it will stop.

From assumptions 4.17 and 4.18, we can prove, using SMV, the following local property in the

table subsystem.

AG(isOnTable = false ⇒ AF(isOnTable = false & atTop = true)) (4.20)

which states that if there is no blank on the table, then eventually the table will be in the top

position, i.e. it is ready to receive a blank.

Therefore, the complete property to be verified, defined under the SPEC clause in SMV, is:

SPEC

AG(AG(C.event = onTable -> Mts.atTop = true) &

AG(Mvm.vertMotor = up -> AF(Mts.atTop = true)) ->

(Ms3.isOnTable = false -> AF(Ms3.isOnTable = false & Mts.atTop = true)))

The environmental assumption 4.19 states that if a blank is detected at the end of the feedbelt

and the table is in the position ready to receive a blank, then eventually there will be no blank

detected at the end of the feedbelt.

We show mechanically that the global property 4.16 for this system is true by using environ-

mental assumptions and the local property discussed. If infinitely often isOnTable = false is true

(we assume LHS of implication of 4.16), then according to 4.20 sometime in the future

isOnTable = false&atTop = true

If atEnd = false then local property 4.19 is true. Otherwise, if atEnd = true, then because

of 4.19, sometime in the future atEnd = false. Since AG(AF(atEnd = false)) is stronger than

AG(atEnd = true & stm = true ⇒ AF(atEnd = false)), we have shown that the global property

4.16 is true. Figure 4.13 illustrates a model that satisfies the global property. The SMV code

generated for the table and feedbelt can be found in the appendix.

4.5.2 Horizontal composition of controllers

The horizontal decomposition approach divides the system into subcontrollers that process the

sensor events independently from each other as illustrated in Figure 4.14. Each controller is

4.5 Applying Decomposition Techniques to SMV Models 127

isOnTable = false &
atTop = true &

atEnd = false

(table
local
property)

isOnTable = false &
atTop = true &
atEnd = true

(feedbelt local
property)

(LHS of global
property) isOnTable = true

atEnd = false

isOnTable = false

Figure 4.13: A Kripke model showing the intuition for proving global property.

considered as a separate subsystem that can be decomposed further if required. The controllers

of this decomposed system can share sensor components but not actuator components and this is

because it models real devices that are physically decomposed in this way. There are no invariants

relating the state of one subsystem to the state of another.

S1

C1

A1 A2

Cp

Am

Sn

Figure 4.14: The DCFD for a horizontal system.

When model checking large systems that are decomposed horizontally, each subsystem can

be represented as a separate SMV program and all verification is done locally. There are no

properties that refer to states in both subsystems. The controller and actuator modules have the

same schema as those presented. If the controllers share sensors, the sensor state will overlap in

the definition of the controller state. For small systems, all of the subsystems are represented in

the same SMV program as follows.

MODULE main

VAR

C1 : Controller1;

...

Cn : Controllern;

A1 : Actuator1;

...

Ak : Actuatorm;

4.5 Applying Decomposition Techniques to SMV Models 128

4.5.3 Phase composition of controllers

For the phase decomposition (or decomposition by control mode), a separate controller is specified

for the control reactions to be carried out in each mode or phase of the system. The structure of

the system components is like the hierarchical one. The difference is that only one subcontroller

will be active at a time, so the system could be divided into separate SMV programs for each

active controller and verify properties of active controllers. There are therefore restraints on the

overseeing controller to send events at each step to only one subcontroller (assumption). However,

for liveness properties and if the controllers depend on each other in any way, they need to be either

implemented in the same SMV program or make use of virtual sensors as mentioned in section

4.5.1. Furthermore, only one level of controllers can be modelled for coarse-grain specifications

that are to be model checked.

b)

C1

A2A1

C

S1 S2

C3

A4

C2

A3

SubSys1 SubSys2 SubSys3

S1

A2A1

S2

C1

SubSys1

VS2

A3 A4

S2S1

C3

SubSys3

S1

A3

S2

C2

SubSys2

a)

Figure 4.15: The DCFD for a system with a phase composition of controllers.

Lets consider the example system visualised in a) of Figure 4.15. It consists of three distinct

modes where controller C2 and C3 share actuator A3. This system can be represented as three

separate SMV programs, each with a DCFD as illustrated in b) of Figure 4.15. This is a valid

representation as only one controller is ever active at a time. A virtual sensor VS2 is introduced in

subsystem SubSys3 as it requires information from subsystem SubSys2 to make a decision about

controlling the shared actuator A3. It is sufficient for each subsystem to implement only one

controller (the second is redundant) which makes it possible to model check the RSDS coarse-

4.5 Applying Decomposition Techniques to SMV Models 129

grain specification of this system.

4.5.4 Annealing

Annealing is when a separate subcontroller is created to encapsulate repeated control sequences as

a single operation. Its aim is to encourage maintainability, that is, it allows updates to the current

system specification to be made easily. For example, it would be used for specifying a chemical

plant system where a single operation is defined for opening a number of valves and pumps to

open one flow between vessels.

This decomposition approach is only applicable to B specifications as they are described in

terms of operations. In SMV the use of annealing is counterintuitive. When translating to SMV,

the modules make use of the synchronisation capabilities of SMV and don’t need to explicitly call

operations as in B. SMV is a low level language and cannot implement the high level concepts in

B. If this approach was to be implemented in SMV, then it would result in complicating the SMV

modules and increasing the state space unnecessarily with the introduction of a separate module,

with more variables.

4.5.5 Standard controllers

This decomposition approach consists of recognising common control patterns in a system and

chaining together suitable versions of these standard controllers to achieve a more complex control

function. There are two standard controllers: the AND controller and the priority controller. We

present the translation of the controller and actuator modules for systems described in Figures

4.16 and 4.17 that can be generated by applying the translation rules.

off

on

A on
B off

A off
B on

A off
B off

A on
B on

onoff

off on

Switch A

Switch B

Controller

Switch_onA

Switch_onB

Switch_offB

Switch_offA

Actuator

Go_offGo_on

Switch_offA

Switch_onA/
Go_on

Switch_offA/
Go_off

Switch_onB/Go_on

Switch_offB
Switch_onA

Switch_onB

Switch_offB/

Go_off

Figure 4.16: The SRS statemachine for the AND controller system.

The AND controller sets the actuator state to on only if both the sensor states are set to

on, that is, it works like the logical “and” connective. The SMV modules for the controller and

actuator generated are displayed below, where only controller transitions CT1 and CT5 can change

the actuator state to on.

4.5 Applying Decomposition Techniques to SMV Models 130

MODULE Controller

VAR

stable state : {Aon Boff, Aon Bon, Aoff Boff, Aoff Bon};
sensor event : {swonA, swonB, swoffA, swoffB };

DEFINE

CT1 := sensor event = swonA & stable state = Aoff Bon;

CT2 := sensor event = swonA & stable state = Aoff Boff;

CT3 := sensor event = swoffB & stable state = Aoff Bon;

CT4 := sensor event = swoffB & stable state = Aon Bon;

CT5 := sensor event = swonB & stable state = Aon Boff;

CT6 := sensor event = swonB & stable state = Aoff Boff;

CT7 := sensor event = swoffA & stable state = Aon Bon;

CT8 := sensor event = swoffA & stable state = Aon Boff;

ASSIGN

init(stable state) := Aoff Boff;

next(stable state):=

case

CT1 | CT5 : Aon Bon;

CT2 | CT4 : Aon Boff;

CT3 : Aoff Boff;

CT6 | CT7 : Aoff Bon;

CT8 : Aon Boff;

1:stable state;

esac;

MODULE Actuator(C)

VAR

act : {on, off};

ASSIGN

init(act) := off;

next(act):=

case

CT1 | CT5 : on;

CT2 | CT3 | CT4 | CT6 | CT7 | CT8 :off;

1 : act;

esac;

The system with the priority controller has the same SMV controller module generated as that

of the system with the AND controller. The priority controller manages two actuators and ensures

that actuator A has priority over actuator B, that is, actuator B cannot be set to on if switch A

is on. This is enforced by ensuring that the actuator states change according to the appropriate

controller transition.

MODULE Controller

VAR

stable state : {Aon Boff, Aon Bon, Aoff Boff, Aoff Bon};
sensor event : {swonA, swonB, swoffA, swoffB };

DEFINE

CT1 := sensor event = swonA & stable state = Aoff Bon;

CT2 := sensor event = swonA & stable state = Aoff Boff;

4.6 Related Work 131

off on

onoff

Switch B

onoff

Actuator B

off on

Actuator A

A off
B off

A on
B off

A on
B on

Switch A

Switch_offA

Switch_onB

Switch_offB

Controller

Go_offA

Go_onB

Go_offB

Go_onA

Switch_onB/Go_onB

Switch_onA/Go_onA

Go_offA

Switch_offB/
Go_offB

Switch_offA/
Switch_onA Switch_offA

Switch_offB

Figure 4.17: The SRS statemachine for the priority controller system.

CT3 := sensor event = swoffB & stable state = Aoff Bon;

CT4 := sensor event = swoffB & stable state = Aon Bon;

CT5 := sensor event = swonB & stable state = Aon Boff;

CT6 := sensor event = swonB & stable state = Aoff Boff;

CT7 := sensor event = swoffA & stable state = Aon Bon;

CT8 := sensor event = swoffA & stable state = Aon Boff;

ASSIGN

init(stable state) := Aoff Boff;

next(stable state):=

case

CT1 | CT5 : Aon Bon;

CT2 | CT4 : Aon Boff;

CT3 : Aoff Boff;

CT6 | CT7 : Aoff Bon;

CT8 : Aon Boff;

1:stable state;

esac;

MODULE ActuatorA(C)

VAR

act : {on, off};

ASSIGN

init(act) := off;

next(act):=

case

CT1 | CT2 : on;

CT7 | CT8 : off;

1:act;

esac;

MODULE ActuatorB(C)

VAR

act : {on, off};

ASSIGN

init(act) := off;

next(act):=

case

CT6 : on;

1:act;

esac;

4.6 Related Work

Model checking has been applied to various variants of statemachine and statechart notations

that are used to describe the behaviour of either software or hardware. In this section, we discuss

approaches that have defined translations from such notations (excluding UML statecharts as

4.6 Related Work 132

this is presented in section 5.5) into SMV in order to apply model checking as they are directly

comparable to our work. Moreover, we only consider translations that are applied to statechart

variants that specify software. There have been two such significant translations: a translation

[CAB+98] from RSML [LHHR94] to SMV and a translation [CH00] from STATEMATE [HN96]

to SMV.

The translation from RSML to SMV was defined to investigate the scalability of model checking

large RSML specifications. RSML is a variant of Harel statecharts [HN96], that adopts the notions

of OR states, AND states and the broadcast mechanism used for communicating from statecharts,

and has some additional features such as directed communication between statecharts. Compared

to RSDS statemachines, the RSML notation is more expressive, for example, it allows multiple

transitions to occur from a state (i.e. non-deterministic transitions), and it allows for OR states

to include AND states. A step in RSML is defined by the system’s reaction to external events

as a succession of microsteps from the point when they occur until the system is stable. A

microstep consists of the state change for each interim. The system is stable at the point where no

transitions are generated, after a cascading of events initiated by the occurrence of sensor events.

The synchrony hypothesis assumes that once a step is initiated, no sensor events can arrive until

the system is stable. This hypothesis is similar to that of RSDS, although RSDS receives and

processes only one sensor event at a time, while RSML can receive and process many.

Despite the differences between the semantics of RSML statecharts and SRS statemachines,

we decided to implement the gas burner system using the translation algorithm in [CAB+98] in

order to compare its performance with that of RSDS. The SMV code (manually generated) can

be found in Appendix B.1. We describe the general rules for translating from RSML to SMV and

we also describe which were used for translating the gas burner system:

1. The state hierarchy, inputs and events are translated into SMV variables. OR states are

translated into variables of enumerated type which ranges over the substates of the OR-

states. Events are translated into boolean variables, meaning that more than one event can

be true during an SMV step. Since RSDS specifications only receive one sensor event at a

time, we model this assumption in SMV by translating the sensor event into a variable of

enumerated type, while the rest of the events are translated into boolean variables. Input

variables are translated into variables with an enumerated or integer subrange type. The

gas burner system does not have any input variables.

2. Variables under the DEFINE clause (that do not increase the state space) are defined to

indicate the conditions under which a particular state is in. For example, for the gas burner

system, the conditions under which SwOn is true are:

DEFINE

in-Sys := 1;

in-Switch := in-Sys;

in-SwOn := in-Switch & Switch = On;

3. The transitions are translated into variables under the DEFINE clause. They are composed

of: the source state, the trigger event and the guarding condition. All these must be true in

order for a transition to occur.

4.6 Related Work 133

4. The state changes are defined using the next clause of SMV with an inner case statement

that ranges over all the transitions in defined. Also, the next clause is used to define the

events that are generated from transitions. For example, the event av open in the gas burner

system is generated by transitions CT 1, CT 4, CT 6, CT 7 as is defined as follows:

ASSIGN

next(av open):= CT1|CT4|CT6|CT7;

The states and events are initialised using the init in SMV.

5. Sensor events are modelled in SMV non-deterministically, i.e. any event can happen. How-

ever, in order to satisfy the synchrony hypothesis, the sensors only occur when the system is

stable and do not change while the system is not stable. Therefore, a variable, called stable,

is defined under the DEFINE clause which is the conjunction of the negation of all events.

For the gas burner system, since we have defined the sensor event as an enumerated type,

we add the additional value of none. The stable state can be defined as follows:

DEFINE

stable := event=none & !av close & !av open & !gv close &

!gv close & !ig close & !ig open;

The key differences concerning the syntax and semantics of the translation with respect to our

translation are:

1. The events are translated differently in the RSDS translation. The sensor events are trans-

lated into a variable of enumerated type. This is to ensure that only one event occurs at a

time. In RSML many events can occur at a time. The generated events are not explicitly

represented in the SMV model for RSDS specifications, while they are in the SMV model for

RSML specifications. This is because we want a coarse-grain step to correspond to a single

SMV step. In the RSML translation, each microstep corresponds to an SMV step, and also,

the system is stable for one SMV step.

States are similarly translated.

2. RSDS does not explicitly represent the state hierarchy with variables (and conditions) defined

under the DEFINE clause.

3. Transitions are translated in the same way for both RSDS and RSML.

4. The state changes are modelled in the same way for both RSDS and RSML, as well as the

initial state values.

5. Both RSDS and RSML define the sensor events non-deterministically, i.e. any event can

happen. However, the RSML model allows for many events to happen at a time, while

the RSDS translation allows only one sensor event to occur. The synchrony hypothesis of

RSML states that the sensor events cannot change during a step, and can only occur when

the system is stable. Since an RSML step corresponds to a number of SMV step, additional

4.6 Related Work 134

SMV code is added to ensure that the environment only changes when the system is stable.

Therefore, a variable is added under the DEFINE clause that does not increase the state

space, and it is used as a condition when defining the change of an event. For the coarse-grain

translation of RSDS, a step corresponds a single SMV step and sensor events can occur at

every step.

6. The translation [CAB+98] does not generate a modular SMV model. In general, this is

not a limitation because the SMV structure is flat, that is, all the modules are eventually

flattened. Modularity in SMV only enhances readability and maintainability of models.

7. A proof of correctness of the RSML translation has not been given.

The following table presents the resources used for executing both SMV models of the gas

burner system generated by the translations:

nuSMV resources used RSDS translation [CAB+98] translation

User time: 0.06 seconds 0.31 seconds
System time: 0.04 seconds 0.06 seconds
Virtual data size (bytes allocated): 6357K 6901K
BDD nodes allocated: 733 27669
BDD cluster size: 59 18459

The performance of model checking the SMV programs generated by both translations is

equally good. Since the values for the performance time are very small and thus not accurate

enough, we cannot assert that the results of model checking the one SMV model is indeed better

than the other. What is interesting however, is that the number of BDD nodes allocated for the

SMV model generated by the RSML translation is much higher than that of the SMV model

generated by the RSDS translation. Therefore, we believe that potentially large systems whose

SMV model is generated by the RSML translation that cannot be model checked due to the state

space explosion problem, might still be model checked if translated using the RSDS translation.

The second translation [CH00] adopts a modular approach for translating a fragment of the

STATEMATE language into SMV that has been automated. The approach is modular because

the hierarchical structure, AND-charts and OR-charts, of statecharts is preserved in SMV where

possible. The top level statechart is represented directly in the main module, which also contains

declarations for all global variables for events and conditions. Subcharts are translated into sep-

arate SMV modules known as chart modules. Also, separate modules are defined for handling

global events and condition variables, that are collectively called monitor-modules. All elements

of these statecharts are represented explicitly, for example, each global event is represented as a

boolean variable and these are declared in a separate SMV module. Inter-level transitions cannot

be translated, and nor can the STATEMATE priority scheme for conflicting transitions. The

translation is described by first giving the formal definition of an element in the statecharts and

then showing how it is defined in SMV. In addition, the SMV language is given a formal temporal

logic definition.

If the STATEMATE translation were to be used to translate a reactive system specification,

we believe that the SMV code generated would be very complicated as a large number of events

are usually being broadcasted between the components. This would lead to an SMV model with a

4.7 Summary 135

large state space that could drastically affect the performance of the model checker. Nevertheless,

the translation [CH00] can be applied to statecharts defining the behaviour of a wider range of

applications, modelling them exactly.

4.7 Summary

In this chapter, we presented a way of model checking the coarse-grain view of RSDS specifications

by translating into the input language of the SMV model checker. We gave a brief overview of the

available tools that implement the SMV algorithm and described what their main constituents

are. Only a subset of the SMV language is used for the translation.

The translation is given using a number of translation rules and translation schemas that can

be expanded for individual systems. A coarse-grain step corresponds to an SMV step. Each

statemachine module of RSDS specifications is translated into an SMV module. The sensor,

controller and actuator transitions are synchronised to ensure that the reaction to a sensor event

happens in a single SMV step. These rules are summarised in Table 4.1. The gas burner system

was used to illustrate how to generate SMV code using the translation rules.

We gave a proof of correctness to show that the translation preserves the meaning of the

RSDS specification. In order to prove the correctness of the translation, an axiomatic semantics

is described for the SMV language.

In addition, design decomposition techniques have been used to manage the state space ex-

plosion problem of model checking. The decomposition approaches divide a system into more

manageable subsystems and we propose defining a separate SMV program for each subsystem.

Therefore, verification is done locally where possible. Table 4.2 summarises how (if at all) the

decomposition approaches are applied to the SMV model.

We end this chapter with a discussion of related work, that is, other definitions of translations

into SMV from modelling notations whose semantics are based on statecharts or statemachines.

In the next chapter, we present the translation from the fine-grain view of the RSDS specification

to SMV.

4.7 Summary 136

Table 4.1: Summary of translation rules for the coarse-grain

SRS Statemachine SMV

Rule 1: Each controller module C in an VAR

RSDS system Sys C : Controller;

Rule 2: Each actuator module A in Sys VAR

A : Actuator(C, OA);

where C is the controller responsible for
managing actuator A and OA are any other
actuator modules that it will need to refer to.

Rule 3: For a state st in a module that ranges over VAR

the set of possible states (s1, s2, ..., sm) : st : {s1, s2, ...,sm};

Rule 4: The initial state of a module ASSIGN

init(st) := init s;

where st represents the current state.

Rule 5: Each controller transition tr ASSIGN

Similarly for actuator transitions next(st) :=

case

–For each transition tr with target state s2
tr : s2;

–For the default case
1 : st;

esac;

Rule 6: The sensor event that currently occurs VAR

sensor event : {e1, e2, ...,en};
where sensor event ∈ ExtEvents and
e1, e2, ..., en are all possible events.

Rule 7: Each controller transition CT1,...,CTk DEFINE

CT1 := ex = e1 & st = x1;

Similarly for all controller transitions

Rule 8: Each actuator transition AT1,...,ATy: DEFINE

AT1 := C.CT1 & G & a state = a1;

where C.CT1 refers to controller transition and
G is the guard and a state is the actuator state.

Rule 9: Each temporal invariant T SPEC

AG(AG(Env) -> T)

where Env is the environmental assumptions.

4.7 Summary 137

Table 4.2: Summary of translation of decomposition approaches

Decomposition SMV Reduce state space
Approach explosion problem

Hierarchical Only one level of controllers is Using virtual sensors
translated using the translation for verifying global properties
rules in Table 4.1. of system whose subsystems

are defined as separate
SMV programs.

Horizontal Each subsystem is Each subsystem verifies
translatedinto a separate SMV its properties independently.
program. Only one level of
controllers is translated using
the translation rules in Table 4.1.

Phase Each phase can be For global properties,
translated into a separate virtual sensors are used.
SMV program. Only one level of Properties for each active
controllers translated using the controller are verified
translation rules in Table 4.1. independently.

Annealing There are no benefits N/A
to translate this approach

Standard controllers: Translated using the N/A
priority and AND translation rules in Table 4.1.
controller

CHAPTER 5

Applying Model Checking to the Fine-grain View of RSDS

The fine-grain semantic view of RSDS statemachines provides a much finer level of granularity of

computation than that of the coarse-grain view. A single step in the coarse-grain, which occurs

between two stable states, corresponds to a reaction cycle in the fine-grain. A reaction cycle is the

system’s response to an external event given as a finite number of steps where the endpoints consist

of stable states and the intermediate states are known as unstable states. In figure 5.1 a coarse-

grain step between stable state1 and stable state2 corresponds to a reaction cycle with fine-grain

steps for the external event and for an ordered sequence of actuator events. Consequently, the

fine-grain models the exact order of actuator events that cannot be modelled in the coarse-grain

view. We have already described how to model check the coarse-grain view of RSDS specifications

where the properties are shown to hold in the stable states. However, this is not enough for the

fine-grain view where the properties must hold in the unstable states too. For example, in the

coarse-grain representation of the gas burner system we have shown that the invariant gv = open

⇒ av = open is true in the stable states, but in the fine-grain representation this invariant must

hold in all states. Violations of properties by unstable states may lead to the development of

unsafe systems. Therefore, we want to verify the fine-grain view of RSDS as well.

In this chapter, we complement the work of the previous chapter with a translation from

the fine-grain RSDS statemachines to SMV. We focus on keeping the size of the SMV source as

small as possible for improving the efficiency of model checking. We guarantee the quality of

stable_state1

unstable_state1

unstable_state2

unstable_state3

stable_state2

e

a1 a2

a3

Actuator event Actuator event

Actuator event

Coarse−grain step

External event

Figure 5.1: A reaction cycle for event e in the fine-grain semantic view of flattened SRS statema-
chines that corresponds to a single coarse-grain step.

5.1 Fine-grain Translation from RSDS to SMV 139

the translation by formally proving its correctness. Furthermore, we apply the decomposition

approaches of RSDS to the fine-grain SMV models generated, describing new translation rules

where necessary. We exploit the structure of the decomposed systems to define, where possible,

separate SMV programs for subsystems that can be model checked independently, thus defining a

natural way to reduce the state space of the models.

5.1 Fine-grain Translation from RSDS to SMV

In the fine-grain, the distinction between external (sensor) events and internal (generated) events

is important since external events indicate the start of a reaction cycle while internal events trigger

transitions that are part of the reaction. In Figure 5.1, the external event is e and the internal

events are {a1, a2, a3}. Each fine-grain step is triggered by a single event, either external or

internal.

In this section, a translation from the fine-grain view of RSDS to SMV is presented. As with

the coarse-grain translation, it is described using a set of translation rules and SMV schemas. A

fine-grain step is modelled as a single SMV step. The order in which internal events are processed

is significant. To guarantee that this ordering is modelled correctly in SMV, the concept of an

event queue is adopted from the definition of the fine-grain semantics in section 3.2.4 and modelled

in SMV. Since the SMV model mimics the behaviour of the fine-grain semantic view of RSDS, it

is easier to prove that the translation preserves the semantics.

5.1.1 Pre-processing and translation of the event queue

For the fine-grain translation, the array construct in SMV is used for representing the queue of

events and since it is static, the maximum length of the array must be calculated before generating

the translation. Therefore, in order to prepare for an automatic translation, a pre-processing phase

is required that consists of:

• Calculating the maximum size of an array by iterating through the number of levels of

components (depending on the decomposition approach chosen), and returning the largest

number of internal events generated by a transition. For most simple reactive systems speci-

fied in RSDS without subcontrollers, the maximum number of event generations correspond

to the total number of actuators in the system as the controller usually issues at most one

command for each actuator. For example, if there are three actuators as in the gas burner

system, then the controller transitions generate a maximum of three events which become

the maximum array size of the queue.

• Automatically determining the position in the array (index) where an element in the tail of

the queue will be moved to after a transition has occurred. This is calculated by: i + ρ − 1

where i is the index of any element in the tail of the queue, and ρ is the number of generations

for a transition (including actuator transitions) and 1 represents the element that is removed

from the head of the queue. If the elements in the array are less than the maximum size

of the array, then the rest of the elements are equal to null. Figure 5.2 illustrates how the

5.1 Fine-grain Translation from RSDS to SMV 140

index is calculated for an array of events, where ρ = 2, i = 2 and the symbol − represents

null.

α β γ

δ1 δ2 − −

− − − −

i + ρ

β γ −

1 2 3 4 5 6 7

1 2 3 4 5 6 7

 − 1

− = null

ρ

 case

 ...

esac;

next(Q[i+p−1 = 2+2−1=3]) :=

 t : Q[i=2];

i = index = 2

 = 2 = no. of generations (δ1, δ2)

Figure 5.2: Example of how the positions in the next snapshot of the queue are calculated.

• Determining the form of the array after an actuator transition occurs: the head of the queue

is removed and the elements in the array are shifted to the left, making the last element

equal to null.

With this information, the queue can be represented in SMV as an array of length maximum

length. It is initially empty and is built by using the next construct for each element in the array.

Each controller transition is triggered by a sensor event and its generations are added to the queue.

If a system is further decomposed and contains subcontrollers, then the internal event found at

the head of the queue that triggers the subcontroller transition, is replaced with the transition’s

generated events. If the transition has no generations, then the event at the head of the queue

that triggered the transition is removed and the elements in the array are shifted to the left.

A module, separate from the modules representing system components, is created for defining

the event queue. Its parameters are all of the other modules collectively representing the system

components because it requires read-access to their transitions. The following translation rule

shows how this module is defined in the main module of SMV.

Rule 1: An SMV module Queue for defining the event queue
MODULE main

VAR

Event queue : Queue(Cont, Act1,...,Actp);

where Cont is the controller module and Act1...Actp
are the p actuators of a system.

As we have already mentioned, the event queue is declared using the array construct in SMV.

The boolean variable is empty is introduced to record whether the queue is empty after a transition

occurs at each step. Actuator and subcontroller transitions with no event generations change the

value of is empty to 1, if the internal event that triggered the transition is the only element left in

the queue. Usually this requires a check of the second element in the array to ensure that equals

null. The translation rules for declaring and initialising the event queue are defined as follows.

The init and next clauses for an array define the initial and next states for each element in the

array, i.e. they describe the state changes for each position in the array.

5.1 Fine-grain Translation from RSDS to SMV 141

Rule 2: For each event queue Q with a set of
possible generated events (ge1, ge2, ..., gem) :
VAR

Q : array 1..max of {ge1, ge2, ...,gem, null};
where max is the maximum length of the array.

Rule 3: To determine whether the queue is empty:
VAR

is empty : boolean;

Rule 4: Initialising the queue:
ASSIGN

init(is empty) := 1;

init(Q[1]) := null;

...
init(Q[max]) := null;

Each element is set to null and is empty to true.

The event queue is updated in one of two ways:

1. Add events to the queue: A controller or subcontroller transition is triggered by an internal

event at the head of the queue. If the transition generates any events, then they are added

to the front of the queue while simultaneously replacing the internal event that triggered the

transition found at head of the queue and pushing the tail of the queue further to the right.

The following translation rule explains how this is modelled in SMV.

Rule 5: For indexes i:1..p of a sequence of generated events ge produced,
the transition tr that are added to the head of the queue:
ASSIGN

next(Q[i]) :=

case

–For each transition tr that generates events
tr : ge(i);

...
–Default case, value in the array stays the same.
1:Q[i]

esac;

The elements at the tail of the queue are moved to their new array
positions j where j= i+p-1 where:
i is the index of the event in the tail of the queue and
p is the number of generated events for a transition.
next(Q[j]) :=

case

–For each transition tr that generates events
tr : Q[i];

...
–Default case, value in the array stays the same.
1:Q[j]

esac;

next(is empty) :=

case

5.1 Fine-grain Translation from RSDS to SMV 142

–If a transition that generates events
–occurs then the queue is not empty
tr : 0;

...
–Default case, value in the array stays the same.
1:is empty

esac;

2. Remove the head of the queue: An event is removed from the head of the queue when that

event triggers an actuator or subcontroller transition. If the transition generates internal

events these are added to the head of the queue replacing the triggered event (see translation

rule 5). If no events are generated, then the triggered event is simply removed. Only one

event is removed at each step. Translation rule 6 shows how this is modelled in SMV.

5.1 Fine-grain Translation from RSDS to SMV 143

Rule 6: For each event that is processed by an actuator transition ATr
ASSIGN

–For each element in the queue where x is the array index:
next(Q[x]) :=

case

–The queue is shifted to the left as the event
– at the head is removed.
ATr : Q[x+1];

...
–Default case, value in the array stays the same.
1:Q[x]

esac;

j= i+p-1 where:
i is the index of the event in the tail of the queue and
p is the number of generated events for a transition.
next(Q[j]) :=

case

–For each transition tr that generates events
tr : Q[i];

...
–Default case, value in the array stays the same.
1:Q[j]

esac;

next(Q[max]) :=

case

–the last element in the queue is set to null
ATr : null;

...
–Default case, value in the array stays the same.
1:Q[max]

esac;

next(is empty) :=

case

–If a transition occurs and the second element
–in the queue is null, then the queue is empty.
ATr & Q[2]=null : 1;

...
–Default case, value in the array stays the same.
1:is empty

esac;

The following translation schema for the event queue module shows how to declare, initialise

and modify the array representing the event queue and its status variable is empty.

MODULE Queue(C, A)

VAR

Q: array 1..max of {ge1, ge2, ..., geq};
is empty : boolean;

ASSIGN

init(is empty) := 1;

next(is empty):=

5.1 Fine-grain Translation from RSDS to SMV 144

case

C.CT1 : 0;

SC.SCT1 : 0;

...
A.AT1 : 0;

A.AT2 & Q[2]=null : 1;

...
1: is empty;

esac;

init(Q[1]) := null;

next(Q[1]):=

case

C.CT1 : ge1;

SC.SCT1 : ge3;

...
A.AT1 : Q[2];

...
1: Q[1];

esac;

...

init(Q[max]) := null;

next(Q[max]):=

case

C.CT1 : null;

SC.SCT2 : ge2;

...
A.AT1 : null;

...
1: Q[max];

esac;

For the gas burner system, once the ordering of the generated events has been determined from

the invariants, the SMV module for the queue is generated based on the snapshots of the queue

in figure 5.3. The snapshots of the queue illustrate how the queue is updated with each fine-grain

step, i.e. with each transition that occurs, and is generated automatically by the RSDS tool from

the RSDS specification. For example, in Figure 5.3, the controller transition CT1 occurs when the

event queue is empty and generates three events, av open, gv open and ig open. These are then

responded to one by one by an actuator and hence are removed from the queue (from the head).

Once the queue is empty, another controller transition can be enable and so on.

As for all reactive systems, controller transitions {CT1,...,CT8} of the gas burner are triggered

by external events i.e. when there are no internal events in the queue waiting to be processed.

These are thus responsible for initiating each reaction cycle. In figure 5.3 the reaction cycle

initiated by each controller transition is illustrated. The actuator transitions within the reaction

cycle are not explicitly labelled in the figure but their effect on the event queue for each fine-grain

step is illustrated.

The maximum size of the event queue at any time is three and therefore this is the size of

the array in SMV. The queue module has read-access to all other system modules i.e. it has

parameters for the controller and the three actuators. Since an array in SMV is modified one

position at a time, the effect of a transition is perceived as the collection of changes brought about

5.1 Fine-grain Translation from RSDS to SMV 145

[]

[]

[]

[]

[av_open, gv_open, ig_open]
[gv_open, ig_open]
[ig_open]

[ig_close, gv_close]
[gv_close]

[av_open, gv_open]
[gv_open]

[av_close]
[gv_close, av_close]
[ig_close, gv_close, av_close]

CT1

CT2

CT3

CT4

[]CT5
[ig_open]

CT6 []
[ig_close, av_open]
[av_open]

[]CT7
[ig_closed, av_open]
[av_open]

[]CT8
[av_close]
[]

Figure 5.3: A snapshot of the event queue for the gas burner system.

by that transition for each array position. For example, the controller transition CT1 for the gas

burner adds the events {av open, gv open, ig open} to the queue, i.e. Q[1] = av open, Q[2] =

gv open and Q[3] = ig open. Moreover, by looking at the next changes for the third element in

the array, we deduce that transitions CT1 and CT2 are the only transitions that generate three

internal events. This fact is confirmed by figure 5.3.

MODULE Queue(C, AV, GV, IG)

VAR

Q: array 1..3 of {av close, av open, gv close, gv open, ig close,ig open, null};
is empty : boolean;

ASSIGN

init(is empty) := 1;

next(is empty):=

case

C.CT1 : 0;

C.CT2 : 0;

C.CT3 : 0;

C.CT4 : 0;

C.CT5 : 0;

C.CT6 : 0;

C.CT7 : 0;

C.CT8 : 0;

AV.AVT0 | AV.AVT1 & Q[2]=null : 1;

AV.AVT2 | AV.AVT3 & Q[2]=null : 1;

GV.GVT0 | GV.GVT1 & Q[2]=null : 1;

GV.GVT2 | GV.GVT3 & Q[2]=null : 1;

IG.IGT0 | IG.IGT1 & Q[2]=null : 1;

IG.IGT2 | IG.IGT3 & Q[2]=null : 1;

1: is empty;

esac;

init(Q[1]) := null;

next(Q[1]):=

case

C.CT1 : av open;

5.1 Fine-grain Translation from RSDS to SMV 146

C.CT2 : ig close;

C.CT3 : ig close;

C.CT4 : av open;

C.CT5 : ig close;

C.CT6 : ig close;

C.CT7 : ig open;

C.CT8 : av close;

AV.AVT0 | AV.AVT1 : Q[2];

AV.AVT2 | AV.AVT3 : Q[2];

GV.GVT0 | GV.GVT1 : Q[2];

GV.GVT2 | GV.GVT3 : Q[2];

IG.IGT0 | IG.IGT1 : Q[2];

IG.IGT2 | IG.IGT3 : Q[2];

1: Q[1];

esac;

init(Q[2]) := null;

next(Q[2]):=

case

C.CT1 : gv open;

C.CT2 : gv close;

C.CT3 : gv close;

C.CT4 : gv open;

C.CT5 : av open;

C.CT6 : av open;

C.CT7 : null;

C.CT8 : null;

AV.AVT0 | AV.AVT1 : Q[3];

AV.AVT2 | AV.AVT3 : Q[3];

GV.GVT0 | GV.GVT1 : Q[3];

GV.GVT2 | GV.GVT3 : Q[3];

IG.IGT0 | IG.IGT1 : Q[3];

IG.IGT2 | IG.IGT3 : Q[3];

1: Q[2];

esac;

init(Q[3]) := null;

next(Q[3]):=

case

C.CT1 : ig open;

C.CT2 : av close;

C.CT3 : null;

C.CT4 : null;

C.CT5 : null;

C.CT6 : null;

C.CT7 : null;

C.CT8 : null;

AV.AVT0 | AV.AVT1 : null;

AV.AVT2 | AV.AVT3 : null;

GV.GVT0 | GV.GVT1 : null;

GV.GVT2 | GV.GVT3 : null;

IG.IGT0 | IG.IGT1 : null;

5.1 Fine-grain Translation from RSDS to SMV 147

IG.IGT2 | IG.IGT3 : null;

1: Q[3];

esac;

5.1.2 Translation of the system components

The modular structure of the SMV generated for the fine-grain is similar to that of the coarse-

grain, i.e. an SMV module is defined for each RSDS module. Also, the sensor modules are not

explicitly translated into SMV for the same reason as that given in the coarse-grain. However,

component transitions are defined differently as in the fine-grain they have to consider the event

queue.

Large reactive systems have controllers that can be decomposed into several subcontrollers

by applying the RSDS decomposition approaches. In the coarse-grain, subcontrollers were not

translated as they would only result in redundant modules in the SMV model and no other benefits

were realised. However, in the fine-grain, subcontrollers can be translated and they do help in

improving the readability of the SMV models generated. We describe the subcontrollers as part

of the standard components because their schema is similar to that of the actuator component.

Controller

In the controller module C, two variables are declared. The stable state variable that represents

the current state of the controller and the sensor event variable represents the sensor event that is

currently received by the current stable state. Stable states and sensor events correspond to those

in the coarse-grain implementation of the controller. Internal events are generated by the controller

or subcontroller and are received by either subcontrollers or actuators. These are collected in the

event queue. The controller module contains as a parameter the event queue module in order to

have read-access to the status variable of the event queue (is empty). The status variable of the

queue is used as part of the condition for taking that transition as a controller transition can only

occur if the event queue is empty. As for the coarse-grain, the guards of controller transitions are

not explicitly represented in SMV because controller states contain all the information of all the

sensor states in the system. Thus, it is sufficient to use the appropriate controller state to define

the transition. If no guard is given, then it is assumed to be true. The translation rules below

show how to map the RSDS statemachine elements of the controller module to SMV as described.

Rule 7: For each state defined in the controller:
VAR

stable state : {stb1, stb2, ...,stbn};
where stb1, stb2, ..., stbn is the set of possible stable states.

Rule 8: Initialising the controller state:
ASSIGN

init(stable state) := init stb;

where init stb is the initial stable state.

Rule 9: For sensor events in the controller:
VAR

sensor event : {ex1,ex2,...,exp};

5.1 Fine-grain Translation from RSDS to SMV 148

Rule 10: For each controller transition:
DEFINE

CT0 := stable state = stb1 & sensor event = ex1 & q.is empty = 1;

where q refers to the module with the event queue.

Rule 11: For each controller state:
ASSIGN

next(stable state) :=

case

–For each controller transition CTi
CTi : stb2;

...
–For the default case
1 : stable state;

esac;

The translation schema for the controller module is defined as follows, where the transition

CT0 (e1 : c1 → c2) is triggered only if there are no internal events in the queue.

MODULE Controller(q)

VAR

stable state : {c1, ..., cm};
sensor event : {e1, ..., er};

DEFINE

CT0 := stable state = c1 & sensor event = e1 & q.is empty = 1;

...

ASSIGN

init(stable state) := c init;

next(stable state):=

case

CT0 : c2;

...
1: stable state;

esac;

The fine-grain controller module for the gas burner is similar to the coarse-grain controller

module, except for the definition of the transitions CTi where they can only occur if the event

queue is empty.

MODULE Controller(q)

VAR

stable state : {Off Absent, On Absent, Off Present, On Present};
sensor event : {swon, swoff, fdon, fdoff};

DEFINE

CT1 := stable state = Off Absent & sensor event = swon & q.is empty = 1;

CT2 := stable state = On Absent & sensor event = swoff & q.is empty = 1;

CT3 := stable state = On Present & sensor event = swoff & q.is empty = 1;

CT4 := stable state = Off Present & sensor event = swon & q.is empty = 1;

CT5 := stable state = On Absent & sensor event = fdoff & q.is empty = 1;

CT6 := stable state = On Absent & sensor event = fdon & q.is empty = 1;

CT7 := stable state = Off Absent & sensor event = fdon & q.is empty = 1;

5.1 Fine-grain Translation from RSDS to SMV 149

CT8 := stable state = Off Absent & sensor event = fdoff & q.is empty = 1;

ASSIGN

init(stable state) := Off Absent;

next(stable state):=

case

CT1 : On Absent;

CT2 : Off Absent;

CT3 : Off Absent;

CT4 : On Present;

CT5 : On Absent;

CT6 : On Present;

CT7 : Off Present;

CT8 : Off Absent;

1: stable state;

esac;

Subcontrollers and actuators

The SMV modules for subcontrollers and actuators are derived similarly. Both have transitions

that are triggered by an internal event at the head of queue, i.e. one of the conditions defined in

the transition is that the event queue is not empty, and the guard is true. Moreover, in SMV the

guard of the actuator transitions must be defined explicitly, otherwise it is assumed to be true.

The following translation rules describe how these components are defined as SMV modules.

Rule 12: For each actuator or subcontroller state:
VAR

st : {st1, st2, ...,stq };
where st1, st2, ..., stq is the set of possible actuator or subcontroller states.

Rule 13: For each actuator or subcontroller transition:
DEFINE

AT0 := st = st1 & Ma.act & q.is empty = 0 & q.Q[1] = e2;

where q refers to the event queue module and Ma.act is the guard.
The guard is a condition that refers to other actuator states.

Rule 14: For each actuator or subcontroller state:
ASSIGN

next(st) :=

case

–For each actuator or subcontroller transition ATi
ATi : st2;

...
–For the default case
1 : st;

esac;

Subcontrollers and actuators have the same schema in SMV. The schema below can be used

for subcontrollers by replacing the labels with those appropriate for the subcontroller. They both

have read-only access to the event queue, hence the module parameter, because the actuator or

subcontroller transition is only triggered by the event at the head of the queue. Furthermore,

they have read-only access to any actuator that is used to compose the guard. The translation of

the guard differs from that discussed in the coarse-grain as in the fine-grain the subcontroller and

5.1 Fine-grain Translation from RSDS to SMV 150

actuator transitions are not synchronised but are triggered by generated events and in subsequent

steps. Therefore, there are two cases that are considered:

1. The case where the actuators refer to the states of actuators within their subsystem, then

each actuator module will have read-only access to those actuator modules whose state they

refer to in the guard. If the subcontroller has a guard that refers to any actuator state, then

the subcontroller is parameterised with the respective actuator modules. This duplication

of the visibility of modules is not necessary in the coarse-grain because the transitions are

synchronised. In the fine-grain we need to ensure that the guard is still true in the next step.

2. The second case considers actuators that refer to the states of actuators from other subsys-

tems. This is rare as one of the main objective of the decomposition approaches is to localise

behaviour within the subsystem. Anyhow, if this is the case, then the actuators must be

parameterised with actuator modules from other subsystems whose state they refer to in the

guard.

MODULE Actuator(q, A1)

VAR

act : {a1, ..., ah};

DEFINE

AT0 := q.is empty = 0 & A1.act = aa1 & q.Q[1] = ge3 & act = a1;

...

ASSIGN

init(act) := act init;

next(act):=

case

AT0: a2;

...
1: act;

esac;

The gas burner system consists of three actuators: the air valve, the gas valve and the ignitor.

They all have transitions that are triggered by events at the head of the event queue. Self-

transitions must be explicitly defined in order to ensure that the head of the queue is removed

even though the state is not changed. The actuator modules for the gas burner are described in

SMV as follows.

MODULE AirValve(q)

VAR

av : {closed, open};

DEFINE

AVT0 := q.is empty = 0 & q.Q[1] = av close & av = closed;

AVT1 := q.is empty = 0 & q.Q[1] = av close & av = open;

AVT2 := q.is empty = 0 & q.Q[1] = av open & av = closed;

AVT3 := q.is empty = 0 & q.Q[1] = av open & av = open;

5.1 Fine-grain Translation from RSDS to SMV 151

ASSIGN

init(av) := closed;

next(av):=

case

AVT0 | AVT1 : closed;

AVT2 | AVT3 : open;

1: av;

esac;

MODULE GasValve(q)

VAR

gv : {closed, open};

DEFINE

GVT0 := q.is empty = 0 & q.Q[1] = gv close & gv = closed;

GVT1 := q.is empty = 0 & q.Q[1] = gv close & gv = open;

GVT2 := q.is empty = 0 & q.Q[1] = gv open & gv = closed;

GVT3 := q.is empty = 0 & q.Q[1] = gv open & gv = open;

ASSIGN

init(gv) := closed;

next(gv):=

case

GVT0 | GVT1 : closed;

GVT2 | GVT3 : open;

1: gv;

esac;

MODULE Ignitor(q)

VAR

ig : {off, on};

DEFINE

IGT0 := q.is empty = 0 & q.Q[1] = ig close & ig = off;

IGT1 := q.is empty = 0 & q.Q[1] = ig close & av = on;

IGT2 := q.is empty = 0 & q.Q[1] = ig open & ig = off;

IGT3 := q.is empty = 0 & q.Q[1] = ig open & ig = on;

ASSIGN

init(ig) := off;

next(ig):=

case

IGT0 | IGT1 : off;

IGT2 | IGT3 : on;

1: ig;

esac;

Linking the modules

All of the component modules are linked in the main module as in the coarse-grain and parame-

terised with the event queue module. If the system consists of more than one actuator and they

contain transitions with guards referring to the states of other actuator modules, then the actua-

tor module is parameterised with the respective actuator modules that it refers to. Similarly for

subcontrollers.

5.1 Fine-grain Translation from RSDS to SMV 152

MODULE main

VAR

Cont : Controller(Event queue);

SubCont : SubController(Event queue);

Act : Actuator(Event queue);

Event queue : Queue(Cont, Act);

The gas burner modules are defined in the main module and all of the components have

read-only access to the event queue module. The queue module has read-only access to all of

the system components. In SMV, parameters increase the state space but the clarity induced

by modularisation overrides this disadvantage. For very large systems, the modularity can be

collapsed into a single module.

MODULE main

VAR

C : Controller(Qu);

Av : AirValve(Qu);

Gv : GasValve(Qu);

Ig : Ignitor(Qu);

Qu : Queue(C, Av, Gv, Ig);

5.1.3 Translation of the invariants

All of the invariants that were verified for the coarse-grain view of the system, must also be verified

for the fine-grain view, that is they must hold for all fine-grain states, not only for stable states.

Their form is identical to that of the invariants for the coarse-grain view and are translated as

follows:

Rule 15: For each temporal invariant T:
SPEC

AG(AG(Env) -> T)

where Env is the environmental assumptions.

Stable states are identified in the fine-grain as those states where Event queue.is empty = 1 is

true, and thus we can use this status variable to define the properties that hold in the coarse-grain,

in the fine-grain model.

The invariants for the fine-grain view of the gas burner system consist of the same set of

invariants as for the coarse-grain view.

MODULE main

...
SPEC

AG(Gv.gv = open -> Av.av = open)

SPEC

AG(Ig.ig = on -> Gv.gv = open)

Two additional properties that should be proven for a fine-grain system are:

5.2 Proof of Correctness for the Fine-grain Translation 153

1. That the system responds to every waiting event (if the event queue is non-empty, then the

event at its head must eventually be processed.) This is expressed for every possible event

that occurs at the head of the queue as:

AG(Event queue.is empty = 0 & Event queue.Q[1] = e → AF (Tr1 / Tr2 ... / Trn))

where Tr1, T r2, ..., T rn are all the possible transitions for e that can be taken in a system.

2. Eventually all events in the event queue will be processed: this is a stronger property and is

expressed in SMV as:

AG(Event queue.is empty = 0 → AF Event queue.is empty = 1)

and is verified for each specification.

5.1.4 Interpreting the results of SMV

The results produced when model checking the SMV model generated for the fine-grain view of

an RSDS specification are similar to those produced for the SMV model generated for the coarse-

grain view of an RSDS specification, i.e. true if a property holds in the model and, false and a

counter-example otherwise. Once again, it is clear from the construction of the SMV from RSDS,

that any counter-example trace in RSDS (¬P) can be translated into a counter-example in SMV

(ξ(¬P) where ξ represents the translation). This means that P holds in the SMV model, it also

holds in the RSDS model (contra-positive).

The counter-example for the SMV model of a fine-grain view of an RSDS specification consists

of a sequence of steps that corresponds to a sequence of fine-grain steps. For each step, a list of all

variables and array values that have changed are given. The variables can be directly mapped to

elements in SRS statemachines representing component states, sensor events and the occurrence

of transitions. The array corresponds to the event queue defined in the fine-grain semantics and

the array values can be mapped to generated events.

For the gas burner system, a counter-example is produced for the false property

AG((Qu.Q[1] = gv open & Qu.is empty = 0) → Gv.gv = open)

stating that it is always the case that if the event gv open is in the front of the queue then the

gas valve is open. This property is only true if the gas valve is open in the next step, i.e.

AG((Qu.Q[1] = gv open & Qu.is empty = 0) → AX(Gv.gv = open))

Figure 5.4 depicts the relationship between the elements in the counter-example with those in

the SRS statemachines and event queue.

5.2 Proof of Correctness for the Fine-grain Translation

For the proof of correctness of the fine-grain translation we need to show that everything that is

true in the fine-grain RSDS system theory ΓFSys, is also true in the SMV interpretation of that

theory ΛM(FSys) (soundness). In order to show this, we need to first prove the following lemma.

5.2 Proof of Correctness for the Fine-grain Translation 154

[]CT1

Air Valve Gas Valve Igniter

AT3:gv_close AT5:ig_close AT6:ig_openAT4:gv_openAT2:av_open

Controller

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

AT1:av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

SRS statemachine

Air Valve Gas Valve Igniter

AT3:gv_close AT5:ig_close AT6:ig_openAT4:gv_openAT2:av_open

Controller

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

AT1:av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

Air Valve Gas Valve Igniter

AT3:gv_close AT5:ig_close AT6:ig_openAT4:gv_openAT2:av_open

Controller

CT2:swoff/ig_close^gv_close^av_close

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT6:fdon/ig_close^av_open

CT7:fdon/ig_open^av_openCT8:fdoff/av_close

AT1:av_close

off_present

off_absent

on_present

on_absent

open

closed

open

closed

on

off

Counter−example: steps Queue snapshot

 C.state = Off_Absent

−> State 1.1 <−

 C.CT8 = 0

 C.CT7 = 0

 C.CT6 = 0

 C.CT5 = 0

 C.CT4 = 0

 C.CT3 = 0

 C.CT2 = 0

 C.CT1 = 1

 C.event = swon

 Av.AVT1 = 0

 Av.AVT2 = 0

 Av.av = closed

 Gv.GVT2 = 0

 Gv.GVT1 = 0

 Gv.gv = closed

 Ig.IGT2 = 0

 Ig.IGT1 = 0

 Ig.ig = off

 Qu.Q[1] = null

 Qu.Q[2] = null

 Qu.Q[3] = null

 Qu.is_empty = 1

−> State 1.2 <−
 C.CT1 = 0

 C.state = On_Absent

 Av.AVT2 = 1

 Qu.Q[1] = av_open

 Qu.Q[2] = gv_open

 Qu.Q[3] = ig_open

 Qu.is_empty = 0

[av_open, gv_open, ig_open]

[gv_open, ig_open]−> State 1.3 <−

 Av.AVT2 = 0

 Av.av = open

 Gv.GVT2 = 1

 Qu.Q[1] = gv_open

 Qu.Q[2] = ig_open

 Qu.Q[3] = null

CT5:fdoff/ig_open

CT5:fdoff/ig_open

CT5:fdoff/ig_open

Figure 5.4: The counter-example produced when model checking fine-grain RSDS specification of
the gas burner system.

5.2 Proof of Correctness for the Fine-grain Translation 155

Lemma 3. The axioms of ΓFSys hold in ΛM(FSys) under the interpretation ξ of an RSDS system

theory ΓFSys as an SMV interpretation of that theory in ΛM(FSys).

Interpretation of the theory of the SMV specification

Apply SMV translation

Preserve the meaning

M

Λ

ξ

Γ
Derive the meaning of RSDS specification

Derive the meaning of SMV specification

Γ FSys

FSys The fine−grain RSDS specification of a system

Γ FSys

Λ M(FSys)

Γ

M

Λ

Λ

ξ

FSys M(FSys)

M(FSys)

Interpretation of the theory of RSDS specification

M(Sys) SMV specification of a RSDS specification

Figure 5.5: A sketch of the proof of correctness.

Proof. The proof of the lemma is organised as follows:

• We first define the interpretation of a fine-grain RSDS system theory ΓFSys into the theory

ΛM(FSys).

• Then, we show that the component and system axioms hold from ΓFSys in ΛM(FSys) under

the interpretation as illustrated in Figure 5.5. These axioms are the same as in the coarse-

grain semantics, i.e. CG1 to CG12, except for CG9 and CG10 that are dropped.

• Finally, we show that the axioms on event queue hold from ΓFSys in ΛM(FSys) under the

interpretation.

The controller theory of ΓFSys is interpreted by the module C in ΛM(FSys), each actuator

theory by A, each subcontroller theory by SC and the queue attributes are interpreted in the Q

module. The theory ΛM(FSys) of the interpretation of an RSDS specification Sys is defined to be

the theory Λmain of the main module of M(FSys).

The interpretation of the fine-grain RSDS system theory ΓFSys into the theory ΛM(FSys) is

defined by:

1. Q.event queue : seq(EventToken) for holding the sequence of tokens representing pending

events is interpreted by Q.qu:array 1..k of iTok (an array in SMV) where k represents the

integer of the maximum size of the array at any time during computation, and iTok is an

enumerated set isomorphic to the set EventToken of all internal (generated) events in the

system.

2. Q.event queue = [] for checking whether the queue of internal events is empty, is interpreted

by boolean variable Q.is empty:boolean, where if Q.is empty = 1 the queue (array in SMV)

is empty.

3. The sensor state s of a sensor S, is the i-th projection proji(C.stable state) of the controller

state, if S is Si.

5.2 Proof of Correctness for the Fine-grain Translation 156

4. tr : Transs for a sensor S is interpreted as the disjunction (C.CT1 = 1) ∨ ... ∨ (C.CTn

= 1) where the CT 1, ..., CTn represent all the controller transitions which depend on tr (in

the RSDS model). We will use the shorthand given in SMV for C.CT1 to mean C.CT1 = 1,

similarly for all boolean or DEFINE variables.

5. The state attribute st for the controller is interpreted by C.stable state.

6. A transition tr : Trans of the controller is interpreted by the predicate C.CTj=1 where

C.CTj is the corresponding DEFINE variable in the controller module.

7. The sensor (external) events ext : Ext events are interpreted by C.sensor event = extTok

in the main controller where extTok is the name for ext listed in the enumerated type of

C.sensor event.

8. The state attribute sub st of a subcontroller is interpreted by SC.sub st.

9. A transition sub tr of a subcontroller is interpreted by the predicate SC.Tk =1 where SC.Tk

is the DEFINE variable in the SMV module for the subcontroller.

10. The state attribute state of an actuator is interpreted by A.state.

11. A transition act tr of an actuator is interpreted by the predicate A.ATj=1 where A.ATj is

the DEFINE variable in the SMV module for the actuator.

12. The guard g of an actuator transition is interpreted by the predicate G = 1, which is

described in the definitions of actuator transitions A.AT i. It is composed of a conjunction

of references to other actuator states, for example : A2.state = g1 & A3.state = g2, which

refers to the state of actuator A2 and A3.

13. A transition tr that changes the elements in the queue is interpreted as the disjunction

C.CT1 = 1 ∨ ... ∨ C.CTj = 1 ∨ SC.T 1 = 1 ∨ ... ∨ SC.Tk = 1 ∨ A.AT 1 =

1 ∨ ... ∨ A.ATq = 1 where C.T 1, ..., C.CT j and SC.T 1, ..., SC.Tk and A.AT 1, ..., A.ATq

represent all the transitions (controller, subcontroller and actuator) which invoke tr in the

RSDS model.

The component and system axioms of ΓFSys hold in ΛM(FSys) under this interpretation:

Controller

CG1 The axiom defining the initial state of Sm:

BEG ⇒ sm = initsm

where Sm is a controller statemachine and sm is its current state, is interpreted in ΛM(FSys)

as

BEG ⇒ C.stable state = initstable state

which is immediately true. C.stable state is a tuple of sensor states, which means that its

initial state corresponds to the initial values of all the sensor modules initS1 ... initSn, where

S1, .., Sn are the sensor modules of a system.

5.2 Proof of Correctness for the Fine-grain Translation 157

CG2 That at most one sensor event of Sm can occur in a step:

¬(α ∧ α′)

for each pair of distinct events of Sm. This axiom is interpreted as

¬(C.sensor event = α ∧ C.sensor event = α′)

which holds because of the definition of sensor event: C.sensor event :Type, where Type is

an enumerated set, and C.sensor event can have only one value at a time.

CG3 The state transition behaviour of Sm:

sm = s ∧ α ⇒ tr (5.1)

tr ⇒ α (5.2)

sm = s ∧ tr ⇒ AX(sm = t) (5.3)

for each sensor transition tr of Sm with source s, target t and trigger event α. Sensor

transitions are interpreted as the disjunction of controller transitions. Therefore, axiom 5.1

is interpreted as

(C.stable state = s1∨ ...∨C.stable state = sn)∧C.sensor event = α ⇒ C.CT1∨ ...∨C.CTn

were s1, ..., sn are all the controller states where one of the elements in the tuple is the same

i.e. corresponds to the sensor source of the sensor transition, and C.CT1, ..., C.CTn refers to

the controller transitions that are depended on tr. This axiom holds because of the definition

of controller transitions:

C.CTj := C.stable state = si & C.sensor event = α & Q.is empty = 1

which are in terms of C.stable state values, sensor events and the eventqueue is empty (i.e.

no internal events).

The axiom 5.2 is interpreted as

C.CT1 ∨ ... ∨C.CTn ⇒ C.sensor event = α

which holds, because of the definitions of the controller transitions.

The axiom 5.3 is interpreted as:

(C.stable state = s1 ∨ ... ∨ C.stable state = sn) ∧ (C.CT1 ∨ ∨ C.CTn) ⇒
AX(C.stable state = t1 ∨ ... ∨ C.stable state = tn)

whereby s1, ..., sn are the controller state values that contain the sensor state s in their tuple,

and t1, ..., tn are the controller state values that contain t in their tuple. This axiom follows

from the definition of next for C.stable state:

5.2 Proof of Correctness for the Fine-grain Translation 158

ASSIGN

next(stable state):=

case

CT1 : t1;

...

CTk : tn;

1: stable state;

esac

which is interpreted as:

AG(C.stable state = s1 ⇒ (C.CT1 ⇒ AX(C.stable state = t1)))
...

AG(C.stable state = s1 ⇒ (¬C.CT1 ∧ ¬C.CT2 ∧ ... ∧ C.CTk ⇒ AX(C.stable state = tn)))

and similarly for all values of C.stable state.

CG4 That at most one sensor transition of Sm can occur in the step:

¬(tr ∧ tr′)

for each pair of distinct transitions of Sm. This axiom is interpreted as:

¬((C.CT1 ∨ ... ∨ C.CTn) ∧ (C.CTj ∨ ... ∨C.CTk))

where (C.CT1∨ ...∨C.CTn) are the controller transitions invoked by tr, and (C.CTj ∨ ...∨
C.CTk) are the controller transitions invoked by tr′. An assumption of RSDS specifications

is that the events are unique, and each sensor transition is defined in terms of events.

Therefore, this axiom is true because each sensor transition will invoke a different set of

controller transitions depending on the sensor event.

CG5 That a sensor transition can only occur if Sm is in its source state:

tr ⇒ sm = sourceSm(tr)

This axiom is interpreted as:

C.CT1 ∨ ... ∨ C.CTn⇒ C.stable state = s1 ∨ ... ∨ C.stable state = sn

where the source state is an element in the tuple of controller states s1, ..., sn. Since the

controller state is an amalgamation of sensor states, a sensor transition can correspond to a

number of controller transitions (maximum number = number of sensor modules) because

although the event and the source state are the same, the states of the other sensors can be

different. This axiom is true because of the definition of controller transitions:

C.CT i := C.stable state = s & C.sensor event = α & Q.is empty = 1;

which is in terms of the source state for C.stable stable.

CG6 The locality notion requires that there is no visible change to the value of the attribute sm

when no transition is taken:

¬tr1 ∧ ... ∧ ¬trn ∧ sm = s⇒ AX(sm = s)

5.2 Proof of Correctness for the Fine-grain Translation 159

for each s ∈ StatesSm, where the tri are all the transition action symbols of Sm.

This axiom is interpreted as:

¬C.CT1 ∧ ... ∧ ¬C.CTk ∧ C.stable state = s⇒ AX(C.stable state = s)

which is true because of the default case in the case statement within the next clause that

defines the state changes of C.stable state:

ASSIGN

next(stable state):=

case

CT1 : s2;

...

CTk : sk;

1: stable state;

esac

which is interpreted as:

AG(C.stable state = s0 ⇒ (¬C.CT1 ∧ ... ∧ ¬C.CTk ⇒ AX(C.stable state = s0)))

and similarly for all values of C.stable state.

CG7 We assume that only one sensor event can occur in each step:

¬(α ∧ α′)

for each pair of events α of Sm and α′ of Sm′ where Sm and Sm′ are distinct sensor

components. This axiom is interpreted as:

¬(C.sensor event = α ∧ C.sensor event = α′) ∧Q.is empty = 1

which holds because the type of C.sensor event is an enumerated set, and by definition only

one value of this set can be true in each SMV step. The start of a fine-grain reaction cycle

is when the event queue is empty and that is the only time that a sensor event can occur.

Subcontrollers/Actuators

CG1 The initial state of the actuator statemachine Sm:

BEG ⇒ sm = initSm

where initSm is the initial state of Sm. This axiom is interpreted as

BEG ⇒ A.state = initSm

which is immediately true.

5.2 Proof of Correctness for the Fine-grain Translation 160

CG2 That at most one actuator event of Sm can occur in a step:

¬(α ∧ α′)

for each pair of distinct events of Sm. Actuator events are those that are at the head of the

queue, therefore, the axiom is interpreted as:

¬(Q.qu(1) = α ∧Q.qu(1) = α′)

which is immediately true because of definition of queue as an array that only has a single

value at the first position (i.e. qu(1)).

CG4 That at most one actuator transition of Sm can occur in a step:

¬(tr ∧ tr′)

for each pair of distinct transitions of Sm. This axiom is interpreted as:

¬(A.AT 1 ∧A.AT 2)

for each pair of distinct transitions of actuator Sm. This axiom holds because of actuator

definitions which state that actuator transitions are triggered by an event at the head of the

queue:

ATi := A.state = a1 & Q.qu[1] = α & G;

where G is the guarding condition whose default value is true. Since there is only one such

event at a time, and the definition of actuator transitions is unique (combination of sctuator

state and event), therefore, only one such transition is triggered at a time.

CG5 That a transition can only occur if Sm is in its source state:

tr ⇒ sm = sourceSm(tr)

This axiom is interpreted as:

A.AT i⇒ A.state = a1

where a1 is the source state of transition A.AT i and is immediately true because of the

definition of an actuator transition:

ATi := A.state = a1 & Q.qu[1] = α & G;

where G is the guarding condition whose default value is true.

CG6 The locality notion requires that there is no visible change to the value of the attribute sm

when no transition is taken:

¬tr1 ∧ ... ∧ ¬trn ∧ sm = s⇒ AX(sm = s)

5.2 Proof of Correctness for the Fine-grain Translation 161

for each s ∈ StatesSm, where the tri are all the transition action symbols of Sm. This axiom

is interpreted as:

¬A.AT 1 ∧ ¬A.AT 2 ∧ ... ∧ ¬A.ATn ∧A.state = s⇒ AX(A.state = s)

This is represented in the translation by the default case in the case statement within the

next clause that defines the state changes to A.state, the actuator state:

ASSIGN

next(state):=

case

AT1 : a2;

...

ATn : ak;

1: state;

esac

which is interpreted as:

AG(A.state = a1 ⇒ (¬A.AT 1 ∧ ... ∧ ¬A.ATn ⇒ AX(A.state = a1)))

which is immediately true. Similarly for all values of A.state.

CG8 The state transition behaviour of Asm:

sm = s ∧ α ∧ gtr ⇒ tr (5.4)

tr ⇒ α ∧ gtr (5.5)

sm = s ∧ tr ⇒ AX(sm = t) (5.6)

for each transition tr of Sm with source s, target t and trigger event α. The first axiom is

interpreted as:

A.state = s ∧Q.qu(1) = α ∧G ⇒ A.AT i

where G is the guard. This axiom is immediately true because of the definition of the

actuator transition which is given in terms of: the event at the head of the queue (element

at array index 1), the actuator state and the guard.

Axiom 5.5 is interpreted as:

A.AT i⇒ Q.qu(1) = α ∧G

which is immediately true because of the definition of the actuator transition.

The final axiom 5.6 is true because of the next assignment for the actuator state:

ASSIGN

next(state):=

case

AT1 : a2;

...

ATn : an;

1: state;

esac

5.2 Proof of Correctness for the Fine-grain Translation 162

which is interpreted as:

AG(A.state = a1 ⇒
(A.AT 1 ⇒ AX(A.state = a2)) ∧

(¬ A.AT 1 ∧ A.AT 2 ⇒ AX(A.state = a3)) ∧
...

(¬ A.AT 1 ∧ . . . ∧A.ATn ⇒ AX(A.state = an))))

(¬ A.AT 1 ∧ . . . ∧ ¬A.ATn ⇒ AX(A.state = a1))))

showing that the cases when an actuator transition occurs (all, except for the last one) brings

about a change to the actuator state.

Complete System

CG11 An axiom for the guard is :

trC ∧ GA ⇒ trA

where GA is the guard for an actuator transition, and trC and trA are controller and actuator

transitions respectively. This axiom is interpreted as:

C.CT i ∧G⇒ A.AT i

If we assume that C.CT i ∧ G, then because of the definition of A.AT i, we can reduce the

axiom to:

C.CT i⇒ Q.qu(1) = α ∧A.state = a1

where α is the event that triggers A.AT i and a1 is the state in which A.AT i occurs. The

guard definitions on either sides of the implication are cancelled out. Let’s assume that

C.CT i generates events, whereby α is one of them. Then, because of the next definition for

Q.qu(1) which is interpreted as:

AG(Q.qu(1) = x⇒ (C.CT i⇒ AX(Q.qu(1) = α)))

the CG11 axiom holds. If a controller transition does not generate events, CG11 does not

hold.

CG12 The axiom that asserts that each controller transition generates events received by sub-

controller or actuator components:

AG(trC ⇒ ρ1 ∧ ρ2 ∧ ... ∧ ρp)

where trC is a controller transition and {ρ1, ..., ρp} are the subcontroller or actuator events

that it generates. This axiom is interpreted as:

AG(C.CT i ⇒ Q.qu(1) = ρ1 ∧Q.qu(2) = ρ2 ∧ ... ∧Q.qu(p) = ρp

5.2 Proof of Correctness for the Fine-grain Translation 163

which is immediately true because of the next definitions for each element in the queue

(Q.qu(i)). For example, the interpretation of the next definition for Q.qu(1) is:

AG(Q.qu(1) = x⇒ (C.CT i⇒ AX(Q.qu(1) = ρ1)))

where x ∈ Type of generated events. Similarly for all possible values of Q.qu(1) and similarly

for all p positions in the array.

The axioms on event queue of ΓFSys hold in ΛM(FSys) under this interpretation:

FG1 The initialisation axiom:

BEG ⇒ event queue = []

is interpreted in two ways:

1. BEG⇒ Q.is empty = 1 which is immediately true.

2.

BEG ⇒ Q.qu(1) = null

BEG ⇒ Q.qu(2) = null

...

BEG ⇒ Q.qu(n) = null

for each position in the Q.qu (n = last index of array). All the elements in the array

must be null for the queue to be empty, which is immediately true.

FG2 An sensor event α ∈ ExtFSys that triggers a transition t may only be responded to if the

queue is empty:

t⇒ event queue = []

which is interpreted by:

1. C.CT i ⇒ Q.is empty = 1 which is immediately true because of the definition of con-

troller transitions:

C.CT i := C.stable state = s1 & C.sensor event = α & Q.is empty = 1;

2.

C.CT i ⇒ Q.qu(1) = null

C.CT i ⇒ Q.qu(2) = null

...

C.CT i ⇒ Q.qu(n) = null

These axioms are immediately true because C.CT i can only occur if the event queue is

empty (definition of C.CT i), which means that all the elements in the array representing

the queue are null.

5.2 Proof of Correctness for the Fine-grain Translation 164

FG3 When an sensor event α is received by the system and it triggers a sensor or controller

transition t, its generations become the new event queue:

t⇒ AX(event queue = generations(t))

which is interpreted by:

1. C.CT i ⇒ AX(Q.is empty = 0) which holds because of the next definition which is

interpreted as:

AG(Q.is empty = 1 ⇒ (C.CT i⇒ AX(Q.is empty = 0))

2.

C.CT i ⇒ AX(Q.qu(1) = ρ1)

C.CT i ⇒ AX(Q.qu(2) = ρ2)

...

C.CT i ⇒ AX(Q.qu(n) = ρn)

These are true becuase of the next definition for each element in the queue (represented

by array). For example, for the first element in the queue, the next clause is defined as

follows:

ASSIGN

next(qu[1]):=

case

CTi : ρ1;

...

1: qu[1];

esac

which is interpreted as:

AG(Q.qu(1) = null⇒ (C.CT i⇒ AX(Q.qu(1) = ρ1))

which is immediately true. Similar interpretations for all possible values of Q.qu(1) (i.e.

on the LHS of the first implication). Similarly for all array indexes.

FG4 An internal event found in the queue can only be processed if it is at the head of the queue:

β ⇒ event queue 6= [] ∧ name(β) = head(event queue)

where β is the event at the head of the queue and name is defined above. This axiom is

intepreted as:

A.AT i⇒ Q.is empty = 0 ∧Q.qu(1) = β

where A.AT i is some actuator or subcontroller transition which is triggered by event β, which

is at the head of the queue (that is how events are processed). This axiom is immediately

true because of the definition of the actuator/subcontroller transitions :

ATi := Q.is empty = 0 & Q.qu[1] = β & A.state = a1;

5.2 Proof of Correctness for the Fine-grain Translation 165

FG5 The head of the queue is removed when the corresponding event is processed and replaced

with some interleaving ρ of the generations (set of internal events) of all the transitions

triggered by the occurrences of β, the event at the head of the queue:

β ∧ q = event queue⇒ AX(event queue = ρ _ tail(q))

If there are no generations (ρ = []), then the event β at the head of the queue is simply

removed. This axiom is interpreted by:

1.

β ∧ (Q.qu(2)′ = Q.qu(2) ∧ ... ∧Q.qu(k)′ = Q.qu(k)) ⇒
AX((Q.qu(1) = ρ1 ∧ ... ∧Q.qu(n) = ρn) ∧
(Q.qu(n+ 1) = Q.qu(2)′ ∧ ... ∧Q.qu(max) = Q.qu(k)′) (5.7)

where Q.qu(1)′, ..., Q.qu(k)′ refer to the current values of the array, k refers to the

number of generated events in the queue and n is the number of generations that are

added at the head of the queue. There are two cases to consider:

(a) The case where β is a sensor (external) event: the queue is empty when a sen-

sor event occurs, therefore the generated events are added to the queue. This is

interpreted as:

C.sensor event = β ⇒ AX(Q.qu(1) = ρ1 ∧ ... ∧Q.qu(n) = ρn)

which holds because the sensor event will trigger a controller transition that gener-

ates the events ρ1, .., ρn. These events are added to the queue by the definition of

next for the array elements representing the queue. For example, for Q.qu(1) the

next definition is interpreted as:

AG(Q.qu(1) = x⇒ (C.CT i⇒ (AX(Q.qu(1) = ρ1)))

and similarly for all possible values of Q.qu(1). Similarly for all array indexes.

(b) The case where β is a generated event: the generated event triggers a subcontroller

or actuator transition that could generate more events to be placed in the queue.

In the axiom definition 5.7 for the interpretation of FG5, β is changed to A.AT i

which is some actuator transition that is triggered by β, which is how events are

processed in SMV. This axiom holds because of the next definitions for the array

elements and for Q.is empty.

i. The status variable for the queue must indicate that once the transition A.AT i

occurs, the queue is not empty (because there are generated events) which

follows from the next definition that is interpreted as:

AG(is empty = 1 ⇒ (A.AT i⇒ AX(is empty = 0)))

Similarly for when is empty = 0.

5.2 Proof of Correctness for the Fine-grain Translation 166

ii. Each array element, representing the queue elements, must be updated to show

that the generations are added into the queue. If there are n generations (that

are less than the size of the array) with values ρ1, ..., ρn, then for positions 1 to

n in the array, next is defined as:

ASSIGN

next(qu[1]):=

case

A.ATi : ρ1;

...

1: qu[1];

esac

which is interpreted as:

AG(Q.qu(1) = x⇒ (A.AT i⇒ AX(Q.qu(1) = ρ1)))

Similarly for all values of Q.qu(1) and similarly for all array positions with

indexes 1 to n.

The events that are already in the queue are shifted down the queue. For

example, if n generations are added to the queue, then the existing events are

placed in positions n+ 1 to max, where max is the size of the array. The next

definitions for array positions are defined as:

ASSIGN

next(qu[i + n - 1]):=

case

A.ATi : qu[i];

...

1: qu[i + n - 1];

esac

where i is the array index of the event in its original position, n is the number

of generated events. This is interpreted as:

AG(Q.qu(i+ n− 1) = x⇒ (A.AT i⇒ AX(Q.qu(i+ n− 1) = Q.qu(i))))

where i > 1 because the first element in the queue is removed. Similarly for all

values of Q.qu(i+ n− 1) and similarly for all array indexes greater than n.

2. If there are no generations then the interpretation is as follows:

β∧ ⇒ AX(Q.qu(1) = Q.qu(2) ∧Q.qu(2) = Q.qu(3) ∧ ... ∧Q.qu(n) = null)

The event β is an actuator event (usually the latter) which will trigger a transition

that will process it. Lets call this transitions XTi that can be either a subcontroller or

actuator transition. This holds because of the next definitions for Q.is empty and for

the queue elements.

(a) The status variableQ.is empty is updated (using the next clause) whenXTi occurs:

AG(Q.is empty = 1 ⇒ (XTi⇒ AX(Q.is empty = 0)))

5.2 Proof of Correctness for the Fine-grain Translation 167

Similarly for when Q.is empty = 0. If β is the last element in the queue, then the

queue is empty, which is interpreted as:

AG(Q.qu.is empty = 0 ∧Q.qu(2) = null ⇒ (XTi⇒ AX(Q.is empty = 1)))

which checks to see that the second element in the queue is null, then in the next

step the queue will be empty (the event at the head of the queue is processed).

(b) The next definition for the queue elements is:

ASSIGN

next(qu[i]):=

case

XTi : qu[i+1];

...

1: qu[i];

esac

which is interpreted as:

AG(Q.qu(1) = x⇒ (XTi⇒ AX(Q.qu(1) = Q.qu(2)))

and similarly for all possible elements of Q.qu(1). Similar interpretations for all

elements in the array.

The two properties that should be proven for a system are (asserted as properties under the

SPEC clause in SMV):

FG6 That the system responds to every waiting event (if the event queue is non-empty, the

event at its head must eventually be processed.) This is a weaker property than FG7 and is

expressed for every possible event that occurs at the head of the queue as:

AG(Event queue.is empty = 0 & Event queue.Q[1] = e → AF (Tr1 / T r2 ... / T rn))

where Tr1, T r2, ..., T rn are all the possible transitions that can be taken in a system. There-

fore, there are many properties to be verified.

FG7 Eventually all events in the event queue will be processed: this is expressed in SMV as:

AG(Event queue.is empty = 0 → AF Event queue.is empty = 1)

and is verified for each specification automatically.

• All system invariants are valid in the RSDS controller module, so remain true in the SMV

translation.

Theorem 3. The translation is sound if we can show that: if ΓFSys ` ϕ then ΛM(FSys) ` ξ(ϕ)

5.2 Proof of Correctness for the Fine-grain Translation 168

Proof. The theorem follows because the rules of deduction are the same in the theories (quantifier

free CTL in object calculus) and deduction steps [Eme90] in ΓFSys are preserved by ξ. For

example, for Modus Ponens:

If

ΓFSys ` ϕ
and

ΓFSys ` (ϕ =⇒ ψ)

then by induction on the length of the proof

ΛM(FSys) ` ξ(ϕ)

and

ΛM(FSys) ` ξ(ϕ =⇒ ψ)

which means

ΛM(FSys) ` ξ(ϕ) =⇒ ξ(ψ)

so

ΛM(FSys) ` ξ(ψ)

Therefore, with this theorem we proved the soundness of the translation. In order to show the

completeness of the translation, we use the following lemma.

Lemma 4. For each trace h of the SMV model M(Sys) there is a corresponding trace r(h) in

the RSDS model Sys which satisfies the same formulae with respect to the translation ξ.

Proof. If h consists of a sequence h1, ..., hn of n Kripke nodes (where RSDS states and events are

represented by variables), then r(h) is defined as a sequence of n states and events as follows.

The settings of the sensors at state i of r(h) are given by the value of C.stable state in hi. The

settings of other components are given by their values in hi. The sensor event which occurs to

move from node i to node i+1 is given by C.sensor event in hi. The response actuator events and

transitions are given by those disjunctions of conditions used in M(Sys) to define their occurrence,

which are true (i.e. their value is 1) in hi. The settings of the queue are given by Q.qu:array 1..max

and Q.is empty in hi

These two traces have the property that:

h `ΛM(Sys)
ξ(ϕ) ⇔ r(h) `ΓSys

ϕ

Hence, if h is an SMV counter-example to an RSDS property ψ, i.e.

h `ΛM(Sys)
¬ξ(ψ)

the r(h) is an RSDS counter-example to ψ:

r(h) `ΓSys
¬(ψ)

Let us consider the same example system described in the completeness proof for the coarse-

grain view 4.4 that contains: two sensors, S1 with states {s11, s12}, and S2 with states {s21, s22, s23};
a controller C and an actuator A1 with states {a1, a2, a3}. If

ϕ = C.CT1 & Q.is empty = 1 ⇒ AF (A.state = a3)

then a possible counter-example h produced for this system could be:

5.2 Proof of Correctness for the Fine-grain Translation 169

h1 C.stable state = s11 s21
C.sensor event = α
A.state = a1
C.CT1 = 1
(No actuator transitions are true)
Q.is empty = 1
Q.qu[1] = null
...
Q.qu[n] = null where n is the size of the array

h2 C.stable state = s12 s21
C.sensor event = α
A.state = a1
(No controller transitions are true)
A.AT1 = 1
Q.is empty = 0
Q.qu[1] = ρ1

Q.qu[2] = null
...
Q.qu[n] = null

h3 C.stable state = s12 s21
C.sensor event = β
A.state = a2
C.CT2 = 1
(No actuator transitions are true)
Q.is empty = 1
Q.qu[1] = null
...
Q.qu[n] = null

where in h3 A.state = a2 instead of A.state = a3. The corresponding counter-example r(h) in

the RSDS model Sys is:

5.3 Applying Decomposition Techniques to SMV Models 170

r(h1) S1 = s11
S2 = s21
stable state = s11 s21
sensor event = α
A1 = a1
trC = α/ρ1

(No actuator transitions are true)
event queue = []

r(h2) S1 = s12
S2 = s21
stable state = s12 s21
(No sensor event occurs)
A1 = a1
(No controller transition occurs)
trA = ρ1

event queue(1) = ρ1

r(h3) S1 = s12
S2 = s21
stable state = s12 s21
sensor event = β
A1 = a2
trC = β/ρ2

(No actuator transitions are true)
event queue = []

This example illustrates the close correspondence between h and r(h).

The same reasoning as in 6 also shows the completeness of the translation.

Theorem 4. The translation is complete if we can show that: if ΛM(Sys) ` ξ(ϕ) then ΓSys ` ϕ.

Proof. We prove the contra-positive: if not(ΓSys ` ϕ) then not(ΛM(Sys) ` ξϕ) For every trace s

of an RSDS system it is simple to construct a trace h of the corresponding SMV system for which

s = r(h). If

not(ΓSys ` ϕ)

there is a counter-example trace

s `ΓSys
¬ϕ

But then

h `ΛM(Sys)
¬(ξ(ϕ))

and

not(ΛM(Sys) ` ξϕ) which proves completeness.

5.3 Applying Decomposition Techniques to SMV Models

As for coarse-grain SMV models, decomposition techniques can be applied in a natural way to

fine-grain SMV models to help reduce the state space for the purpose of model checking. In fact,

the way in which these approaches are applied is very similar, that is, subsystems are defined as

separate SMV programs so that model checking is performed locally. However, in order to discuss

these, we need to first show how the fine-grain view of decomposed systems is translated into

5.3 Applying Decomposition Techniques to SMV Models 171

SMV modules. Each decomposition approach is considered independently. In practice it is often

the case that systems are decomposed using a combination of these, and thus a combination of

translation rules must be applied, one for each approach.

We have already shown how subcontrollers are translated into SMV modules as these are similar

to actuator components. Their transitions are triggered by internal events and, unlike actuator

transitions, they may generate events that are added to the event queue. The introduction of

subcontrollers in the SMV models of the fine-grain is useful as opposed to the coarse-grain, as the

sequence of internal events generated, which includes those generated by the subcontrollers, in the

fine-grain must be shown to be correct. In this section, we give for each decomposition technique

any additional translation rules that are required and briefly describe how the algorithm at the

pre-processing phase calculates the maximum size of the array to be used for the event queue.

5.3.1 Hierarchical composition of controllers

The hierarchical decomposition approach decomposes the system controller into a number of sub-

controllers, managed by an overseer controller.

C1

C

S1

A3A2A1

S2

C2 LEVEL 2

LEVEL 1

Figure 5.6: There are two levels of controllers in this hierarchically decomposed system.

The algorithm for calculating the maximum size of the array used to represent the event queue

considers the events generated at each level. When a hierarchical approach is applied once to a

system, as in Figure 5.6, two levels of controllers are produced.

In a hierarchically decomposed system, subsystems can be verified independently in separate

SMV programs with the introduction of virtual sensors that act as interfaces between one sub-

system and another. These are introduced in the same way as described in section 4.5.1 for the

coarse-grain.

5.3.2 Horizontal composition of controllers

In a horizontally decomposed system, events are broadcast from the outer-level controller to sepa-

rate controllers that processes events independently. There is no overseer controller for managing

subcontrollers. Each subcontroller is considered as a separate subsystem. An example of such a

system is illustrated in figure 5.7.

Each subsystem in a horizontally decomposed system can be expressed as a separate SMV

5.3 Applying Decomposition Techniques to SMV Models 172

S1

C1

A1 A2

Cp

Am

Sn

Figure 5.7: The DCFD for the horizontally decomposed system.

program and be model checked independently. This will thus help reduce the state space. Small

or medium systems can be represented in a single SMV program. There are two cases that we

need to consider when translating these into SMV:

1. The first case considers subcontrollers that process events concurrently. In this case, we

introduce separate event queues for each subcontroller i.e. subsystem. Translation rule

15 shows how the separate queues are defined in the main module. Each queue module

is generated using the translation rules 1-6. Translation rule 16 is used when we want to

reduce the state space of large systems by avoiding the unnecessary parameter passing of

modules, i.e. each queue defined for each system has parameters for all the system modules.

Therefore, the separate queues are defined in the same queue module (as defined normally

by translation rules 1-6) and can have access to all the system modules.

Rule 16: For each subsystem SS1...SSn defined in the main module:
VAR

QSS1 : QueueSS1(C, Act);

...

QSSn : QueueSSn(C, Act);

where n is the maximum number of subsystems,
C is the subsystem’s controllers, and Act is the subsystem’s actuators.

OR

Rule 17: Define an array for each subsystem in the Queue module:
VAR

QSS1 : array 1..maxSS1 of {s1e1, s1e2, ...,s1em, null};
...

QSSn : array 1..maxSSn of {sne1, sne2, ...,snek, null};

is emptySS1 : boolean;

...

is emptySSn : boolean;

where n is the number of subsystems in a system.

For a horizontally decomposed system consisting of C1, ..., Cp independent controllers, a

separate event queue is generated for each controller QSS1, ..., QSSp and each of these is

represented by a separate module in SMV. The actuators are parameterised with the queue

with which they interact, that is any event queue i of QSS1, ..., QSSp, where 1 ≤ i ≥ p. The

main module is responsible for linking each controller with its corresponding event queue and

5.3 Applying Decomposition Techniques to SMV Models 173

defining which actuators belong to which subsystem i.e. to the event queue and controller.

If the subcontrollers share actuators, then event queues for each controller will be updated

by transitions of the shared actuators. The translation schema for the main module of this

system is as follows.

MODULE main

VAR

C1 : Controller1(Event queue);

...

CP : ControllerP(Event queue);

Act : Actuator(Event queue);

...

Event queue : Queue1(C1, ..., CP, Act);

The algorithm that calculates the maximum size of the event queue (array in SMV) is applied

to each subsystem, that has its own queue.

2. Alternatively, the second case considers subcontrollers processing interleaved events. A strict

order in which the events are processed is imposed over the entire system i.e. an event is

processed from the one subcontroller and then an event is processed from another subcon-

troller and so on until all sensor events have been processed. Typically, this case is used for

RSDS systems not optimised by decomposition. The queue is defined as normal using the

translation rules discussed, and the internal events in the queue can be any internal event

for any subcontroller.

5.3.3 Phase composition of controllers

For a system decomposed using the phase decomposition technique, a separate controller is spec-

ified for the control reactions to be carried out in each mode or phase of the system. Phase

decomposition is similar to the hierarchical decomposition, that is it consists of a single overseeing

controller with a number of subcontrollers. The key difference is that in the phase decomposi-

tion the system can react to events only in one mode at a time, therefore only one subcontroller

can compute reactions to events at a time, while in the hierarchical decomposition this is not so.

Each active mode corresponds to a separate subsystem, for example in Figure 5.8 there are three

subsystems, where two controllers C2 and C3 share actuator A3.

We assume that there are restraints on the overseeing controller to send at each step events

only to one subcontroller or mode as only one mode is active at a time (the activeness of subcon-

trollers is mutual exclusive). A subcontroller is active when it receives events that fire/enable its

transitions, which in turn generate actuator events which update the actuator states of actuators

that it manages. In other words, only one subcontroller can respond to sensor events at a time in

this decomposition approach. An active mode is determined by a disjunction of sensor states, i.e.

the state of the overseeing controller (in Figure 5.8 the overseeing controller is C). Subcontrollers

can share actuators, however this does not lead to any safety violation as they cannot send con-

tradictory commands simultaneously to the common actuator as the subcontrollers are active at

different times.

5.3 Applying Decomposition Techniques to SMV Models 174

C1

A2A1

C

S1 S2

C3

A4

C2

A3

Figure 5.8: An example of a system with three modes (subsystems).

The SMV code for the controller module is generated by using the standard translation rules

presented. The controller transitions determine which mode and thus which subcontroller is active

as they are responsible for updating the sensor states ingrained in the controller state. A separate

variable could be used to identify the system modes, but we choose to keep the state space to a

minimum as we can determine the modes by the controller transitions and controller state.

The SMV modules for subcontrollers and actuators are similar and do not differ much from

their standard module definition. The main difference lies in the definition of subcontroller or

actuator transitions where they can only occur if the system is in the right mode. The translation

rule below describes the definition of the transitions for these modules.

Rule 18: For each subcontroller or actuator transition:
DEFINE

AT0 := C.CT1 & q.is empty = 0 & q.Q[1] = ie1 & act = sc0;

where AT0 is a subcontroller or actuator transition, CT1 is a controller transition,
act is the subcontroller or actuator state and ie1 is an internal event.

Actuators can be shared by different subcontrollers which means that they can receive con-

tradictory commands from different subcontrollers as only one subcontroller is active at a time.

Therefore, different system modes can have controller transitions that generate the same or dif-

ferent internal events to be received by the shared actuator. Lets assume that in Figure 5.8

subcontroller C2 is active with controller transitions CT1 and CT3 while C3 is active with con-

troller transitions CT2 and CT4, but CT1, CT2 and CT4 generate the internal event a1 for

actuator A3, while CT3 generates the internal event a2 for actuator A3. In the first mode the

subcontrollers generate the same internal event a1, while in the second mode subcontroller C2

generates a different internal event. Both cases describe valid system behaviour.

The modules are linked in the usual way. Invariants for this decomposition technique have the

standard form AG(AG(Env) ⇒ T), but T is usually given in terms of modes:

C.stable state = st1 ⇒ Q

where C.stable state is the controller state that determines which mode is currently active and

Q describes constraints on the actuator states in that mode. For example, a possible mode of a

5.3 Applying Decomposition Techniques to SMV Models 175

system with two sensors s1, s2 (that have two states: on, off) could be when s1 = on. Therefore,

this mode would be active if C.stable state = on off and C.stable state = on on. Q would then

be the constraints on actuator states for these controller states when s1 = on. T can also have

any static or temporal invariant form presented in section 3.1.1.

The algorithm for calculating the maximum size of the array is applied to each subsystem and

then the maximum length of alternate subcontrollers is calculated.

Systems structured according to the phase decomposition approach can be expressed using

numerous SMV programs, one for each subsystem with an active controller. Therefore, properties

of active controllers are verified independently. If subsystems depend on each other in any way,

then virtual sensors must be introduced as in hierarchically decomposed systems (see example

given for coarse-grain in section 4.5.3 as this is similar to the fine-grain).

5.3.4 Annealing

There are no clear benefits of using the annealing decomposition approach for a system that is

to be translated into SMV. This is because the encapsulation of the repeated control sequences

in a separate module will only increase the state space of the SMV model as all the modules will

require read-access to the module and vice versa.

5.3.5 Standard controllers

There are two standard controllers: the AND controller and the priority controller. The fine-grain

translation is similar to the coarse-grain with the inclusion of the event queue.

The AND controller system

The AND controller system in Figure 5.9 consists of two sensors, a controller and an actuator.

The controller sets an actuator to on only if both sensors generate the event swon. The actuator

state is updated analogous to the truth table produced for a logical and operator.

off

on

A on
B off

A off
B on

A off
B off

A on
B on

onoff

off on

Switch A

Switch B

Controller

Switch_onA

Switch_onB

Switch_offB

Switch_offA

Actuator

Go_offGo_on

Switch_offA

Switch_onA/
Go_on

Switch_offA/
Go_off

Switch_onB/Go_on

Switch_offB
Switch_onA

Switch_onB

Switch_offB/

Go_off

Figure 5.9: The SRS statemachine for the AND controller.

In the fine-grain SMV representation of the AND controller system, an event queue is intro-

duced. However, since there is only one actuator in this system, an event queue is not required

since there will be a maximum of one event generated at a time. Therefore, a variable q of enumer-

ated type {swon, swoff, null} is used to represent the internal event at the head of the queue and

no variable is needed to indicate whether the queue is empty. The AND controller system can be

5.3 Applying Decomposition Techniques to SMV Models 176

part of a larger system with many actuators which would require an event queue to organise the

order of the internal events issued. The queue module is generated using the standard translation

rules.

The AND behaviour of the system is implemented by the generations of the internal event swon,

i.e. only controller transition CT1 and CT5 generate the internal event swon which consequently

sets the actuator state to on. The actuator transitions remove the event at the head of the queue,

therefore in this case they simply set the variable q to null.

The SMV code generated for the queue module is as follows.

MODULE Queue(C, A)

VAR

q : {swonA, swoffA, swonB, swoffB, null};

ASSIGN

init(q) := null;

next(q):=

case

C.CT1 | C.CT5 : swon;

C.CT2 | C.CT3 | C.CT4 | C.CT6 | C.CT7 | C.CT8 : swoff;

A.AT1 | A.AT2 | A.AT3 | A.AT4 : null;

1:q;

esac;

The controller module is generated using the standard translation rules. In this case, owing to

the system having a single actuator and thus just a single variable for representing the internal

event generated, the controller transition occurs only if no internal event is generated, i.e. Q.q =

null. The controller state changes that the transitions cause correspond to updating the sensor

states, since the controller state is an amalgamation of sensor states. The SMV code for the

controller is generated as follows.

MODULE Controller(Q)

VAR

stable state : {Aon Boff, Aon Bon, Aoff Boff, Aoff Bon};
sensor event : {swonA, swonB, swoffA, swoffB };

DEFINE

CT1 := Q.q = null & sensor event = swonA & stable state = Aoff Bon;

CT2 := Q.q = null & sensor event = swonA & stable state = Aoff Boff;

CT3 := Q.q = null & sensor event = swoffB & stable state = Aoff Bon;

CT4 := Q.q = null & sensor event = swoffB & stable state = Aon Bon;

CT5 := Q.q = null & sensor event = swonB & stable state = Aon Boff;

CT6 := Q.q = null & sensor event = swonB & stable state = Aoff Boff;

CT7 := Q.q = null & sensor event = swoffA & stable state = Aon Bon;

CT8 := Q.q = null & sensor event = swoffA & stable state = Aon Boff;

ASSIGN

init(stable state) := Aoff Boff;

next(stable state):=

case

CT1 | CT5 : Aon Bon;

5.3 Applying Decomposition Techniques to SMV Models 177

CT2 | CT4 : Aon Boff;

CT3 : Aoff Boff;

CT6 | CT7 : Aoff Bon;

CT8 : Aon Boff;

1:stable state;

esac;

The actuator module has read-only access to the queue module as its transitions are triggered by

internal events found in the queue, in this case indicated by the variable q. The sole responsibility

of the actuator module is to update the actuator state according to the commands issued by

the controller. Therefore, the queue module determines from the controller transitions when the

actuator state is set, and the actuator module sets its state accordingly. The SMV code generated

for the actuator module is as follows.

MODULE Actuator(Q)

VAR

act : {on, off};

DEFINE

AT1 := Q.q = swon & act = off;

AT2 := Q.q = swon & act = on;

AT3 := Q.q = swoff & act = off;

AT4 := Q.q = swoff & act = on;

ASSIGN

init(act) := off;

next(act):=

case

AT1 | AT2 : on;

AT3 | AT4 : off;

1:act;

esac;

The priority controller system

The priority controller system in Figure 5.10 consists of two sensors, a controller and two actuators.

Its objective is to ensure that priority is given to actuator A, i.e. actuator B cannot be set to on

unless actuator A is on. There are no priority restrictions when the actuators are switched off.

off on

onoff

Switch B

onoff

Actuator B

off on

Actuator A

A off
B off

A on
B off

A on
B on

Switch A

Switch_offA

Switch_onB

Switch_offB

Controller

Go_offA

Go_onB

Go_offB

Go_onA

Switch_onB/Go_onB

Switch_onA/Go_onA

Go_offA

Switch_offB/
Go_offB

Switch_offA/
Switch_onA Switch_offA

Switch_offB

Figure 5.10: The SRS statemachine for the priority controller.

As usual, the fine-grain SMV representation of this system introduces a queue module for

declaring the queue of internal events generated by controller transitions. However, only one

internal event is generated and therefore we can use a single variable for the internal event as we

5.3 Applying Decomposition Techniques to SMV Models 178

did for the AND controller. For a priority controller system that is embedded in a larger system,

a queue of events would be required.

MODULE Queue(C, A)

VAR

q : {swon, swoff, null};

ASSIGN

init(q) := null;

next(q):=

case

C.CT2 : swonA;

C.CT3 | C.CT4 : swoffB;

C.CT5 : swonB;

C.CT8 : swoffA;

A.AT1 | A.AT2 | A.AT3 | A.AT4 : null;

B.BT1 | B.BT2 | B.BT3 | B.BT4 : null;

1:q;

esac;

The controller module is mainly the same as that of the AND controller system with the

exception that in the next clause CT6 and CT7 do not update the controller state to the undesirable

state of Aoff Bon. This is because of the priority requirement of actuator A over actuator B

that is determined by the appropriate reaction to the controller transitions. The controller state

must never reach the state Aoff Bon as this will violate the priority requirement. Moreover, the

controller transition CT1 must never occur for the same reason.

The actuator modules have transitions that are triggered by the internal event found at the

head of the event queue. As for the AND controller system, the actuator module is responsible for

updating the actuator state according to the events generated by the controller. The SMV code

for the actuator modules is generated using the standard translation rules and is as follows.

MODULE ActuatorA(Q)

VAR

act : {on, off};

DEFINE

AT1 := Q.q = swonA & act = off;

AT2 := Q.q = swonA & act = on;

AT3 := Q.q = swoffA & act = off;

AT4 := Q.q = swoffA & act = on;

ASSIGN

init(act) := off;

next(act):=

case

AT1 | AT2 : on;

AT3 | AT4 : off;

1:act;

esac;

MODULE ActuatorB(Q)

VAR

act : {on, off};

DEFINE

BT1 := Q.q = swonB & act = off;

BT2 := Q.q = swonB & act = on;

BT3 := Q.q = swoffB & act = off;

BT4 := Q.q = swoffB & act = on;

ASSIGN

init(act) := off;

next(act):=

case

BT1 | BT2 : on;

BT3 | BT4 : off;

1:act;

esac;

5.4 Discussion 179

5.4 Discussion

For both the coarse-grain and the fine-grain translations, we have decided not to translate the

sensor components as separate SMV modules because the sensor state and events are represented

in the controller module. We have shown that our approach still represents all the information

provided by the sensors and that it preserves both the coarse-grain and fine-grain semantics of SRS

statemachines. The following table gives the performance and BDD statistics for model checking

the SMV models generated using the coarse-grain and fine-grain translations for the gas burner

system.

nuSMV resources used Coarse-grain Fine-grain

User time: 0.06 seconds 0.08 seconds
System time: 0.04 seconds 0.04 seconds
Virtual data size (bytes allocated): 6357K 6536K
BDD nodes allocated: 733 8021
BDD cluster size: 59 570

We considered an alternative translation approach for the coarse-grain and fine-grain that only

translates the sensor and actuator components because derived controllers of large systems with

many sensors can become very complicated. We discuss what SMV models they generate.

In the alternative coarse-grain translation, explicit SMV modules are described for sensors, and

the actuator modules have read-only access to the sensors, instead of the controller, in order to

synchronise actuator transitions with sensor transitions. Therefore, sensor transitions are repeat-

edly defined in the various actuators because several actuators can respond to the same sensor

transition. Also, controller guards (reference to sensor states) are defined only in the actuator

modules as they already have read-access to the states of all other sensor modules. We can apply

the decomposition techniques to the same extent as with the translation without sensors, that is,

no explicit representation of subcontrollers, but uses the structure of the system to divide it into

separate SMV programs accordingly.

In the alternative fine-grain translation, explicit SMV modules are described for the sensors and

actuators. Sensor transitions with controller guards are described in the queue module as they are

used to generate the events that will be added to the queue. Without the explicit representation

of controllers and subcontrollers, it would not make sense to apply the decomposition techniques

to systems modelled in this way. We can however make use of the ways in which the SMV model

is divided into separate SMV programs depending on which decomposition technique is applied.

This would require that we model the system with controllers (no more than one level) in the

RSDS specification and apply the decomposition techniques, but then only translate the sensors

and actuators as separate SMV programs respectively.

In the following table we present the resources used for model checking the SMV models (see

Appendix B.2 for SMV code) generated by applying the alternative translation approach to the

RSDS specification of the gas burner system.

5.5 Related Work 180

nuSMV resources used Alternative Coarse-grain Alternative Fine-grain

User time: 0.05 seconds 0.08 seconds
System time: 0.04 seconds 0.05 seconds
Virtual data size (bytes allocated): 6366K 6509K
BDD nodes allocated: 506 5607
BDD cluster size: 53 569

The BDD nodes for the alternative fine-grain translation is higher than that of the alternative

coarse-grain translation because in the fine-grain more states (which are represented by BDD

nodes) are required to model the event queue. The performance statistics for the alternative

translations are slightly lower than those for the coarse-grain and fine-grain translations presented

in this thesis (without sensors), meaning that their performance is slightly faster. For large systems

this difference could be significant, especially with the fine-grain translation as the BDD nodes

allocated are almost half of the BDD nodes of the translation we presented.

5.5 Related Work

RSDS is unique with respect to its two semantic views of statemachines. Consequently, there is

no related work to be found in the literature regarding model checking different levels of semantic

views of statemachines. However, these different semantic views of statemachines lead to the

definition of RSDS specifications at two different specification levels, comparable to B machines

and implementation level. An approach is presented in [BCJ02, BDJK00, JMM99] for combining

model checking (SPIN) and B for verifying temporal properties. However, model checking is only

applied at the first level, that is to the B machines, and not at the implementations.

We also compare the fine-grain translation with the translations [CH00, CAB+98] discussed

(with respect to the coarse-grain translation) in section 4.6. In the fine-grain, the most important

behaviour that must be modelled in SMV is the order in which the generated events occur. These

events are defined in the statemachines as actions of controller transitions and modelled using an

array in SMV. We consider how actions are handled by the other translations and whether such

an order is modelled.

In [CH00], generated events that are described as actions of transitions cannot occur in a

sequence. For example, the transition in the Controller SRS statemachine in Figure 5.11 Ta :

α/β _ γ _ δ can be expressed in the STATEMATE language as three transitions: T 1 : α/β,

T 2 : β/γ, T 3 : γ/δ and T 4 : δ, as illustrated in Figure 5.12. However, it is not always the case in

a specification that β generates γ or γ generates δ. There might be another transition in an SRS

statemachine tb : θ/β _ δ which can be expressed in the STATEMATE language as T 5 : θ/β,

T 6 : β/δ, leading to an incorrect representation of the SRS transition as when T 5 is executed, T 2

and T 6 will be triggered in the next step, instead of just T 6. Somehow the generated events need

to be linked back to the sensor event and this is not easily done without: either introducing a

new event to differentiate between β generated by T 1 and that generated by T 5; or introducing a

number of dummy states between Cstate1 and Cstate2 whose event is true. Therefore, if we use

these solutions to model the fine-grain and then translate into SMV for model checking them, the

SMV program obtained has unnecessary states or events which consequently increases the state

space. There are similar issues with the translation presented in [CAB+98].

5.6 Summary 181

θ/ β

Actuator1 Actuator2 Actuator3

Controller

Cstate1 Cstate2

Cstate3

Act1

Act2 Act4

Act3 Act5

Act6

Ta:

Tb:

^α/ β δ^

Tx: Ty: Tz:

γ

β γ δ

Figure 5.11: SRS statemachines

α/ β
Cstate1 Cstate2

Cstate3

Act1

Act2 Act4

Act3 Act5

Act6

T3:

T5:

T2:

Controller

Actuator3Actuator2Actuator1

θ/ β

β/ γ γ/ δ δT4:

Τ1:

Figure 5.12: STATEMATE statecharts

5.6 Summary

In this chapter, we described how to translate fine-grain RSDS specifications into SMV, using

translation rules and schemas. As for the coarse-grain translation, each statemachine module is

translated into a single SMV module, except for sensor statemachines that are implicitly repre-

sented by the controller. A fine-grain step corresponds to an SMV step. The order in which

generated events occur is vital in the fine-grain. It is maintained in the SMV model by a first-in-

first-out queue of events (implemented using an array), which has also been used in the definition

of the semantics of fine-grain statemachines. All the translation rules for translating fine-grain

RSDS specifications into SMV are summarised in Table 5.1.

Table 5.1: Summary of translation rules for the fine-grain

Rules RSDS SMV

Rule 1: An event queue. MODULE main

VAR

Event queue : Queue(Cont, Act1,...,Actp);

where Cont is the controller module and Act1...Actp
are the p actuators of a system.

Rule 2: Each event queue Q with a VAR

set of possible generated events Q : array 1..max of {ge1, ge2, ...,gem, null};
(ge1, ge2, ..., gem). where max is the maximum length of the array.

Rule 3: To determine whether the queue VAR

is empty. is empty : boolean;

Rule 4: Initialising the queue ASSIGN

init(is empty) := 1;

init(Q[1]) := null;

...
init(Q[max]) := null;

Each element is set to null and is empty to true.

Rule 5: For indexes i : 1..p of a ASSIGN

sequence of generated events next(Q[i]) :=

continued on next page

5.6 Summary 182

continued from previous page

Rules RSDS SMV

ge produced, the transition tr case

that is added to the head of –For each transition tr that generates events
the queue. tr : ge(i);

...
–Default case, value in the array stays the same.
1:Q[i]

esac;

The elements at the tail of the next(Q[j]) :=

queue are moved to their new case

array positions j where –For each transition tr that generates events
j = i+ p− 1 where: tr : Q[i];

i is the index of the event in ...
the tail of the queue and, –Default case, value in the array stays the same.
p is the number of generated 1:Q[j]

events for a transition. esac;

next(is empty) :=

case

–If a transition that generates events
–occurs then the queue is not empty
tr : 0;

...
–Default case, value in the array stays the same.
1:is empty

esac;

Rule 6: Each event that is processed by ASSIGN

an actuator transition ATr –For each element in the queue where x is the array index:
next(Q[x]) :=

case

–The queue is shifted to the left as the event
– at the head is removed.
ATr : Q[x+1];

...
–Default case, value in the array stays the same.
1:Q[x]

esac;

j= i+p-1 where:
i is the index of the event in the tail of the queue and
p is the number of generated events for a transition.
next(Q[j]) :=

case

–For each transition tr that generates events
tr : Q[i];

...
–Default case, value in the array stays the same.
1:Q[j]

esac;

next(Q[max]) :=

continued on next page

5.6 Summary 183

continued from previous page

Rules RSDS SMV

case

–the last element in the queue is set to null
ATr : null;

...
–Default case, value in the array stays the same.
1:Q[max]

esac;

next(is empty) :=

case

–If a transition occurs and the second element
–in the queue is null, then the queue is empty.
ATr & Q[2]=null : 1;

...
–Default case, value in the array stays the same.
1:is empty

esac;

Rule 7: Each state defined in the VAR

controller. stable state : {stb1, stb2, ...,stbn};
where stb1, stb2, ..., stbn is the set of possible
stable states.

Rule 8: Initialising the controller state ASSIGN

init(stable state) := init stb;

where init stb is the initial stable state.

Rule 9: Sensor events ex VAR

sensor event : {ex1,ex2,...,exp};
defined in the controller module.

Rule 10: Each controller transition DEFINE

CT0 := stable state = stb1 & sensor event = ex1 &
q.is empty = 1;

where q refers to the module with the event queue.

Rule 11: The controller state ASSIGN

next(stable state) :=

case

–For each controller transition CTi
CTi : stb2;

...
–For the default case
1 : stable state;

esac;

Rule 12: Each actuator or subcontroller VAR

state. st : {st1, st2, ...,stq };
where st1, st2, ..., stq is the set of possible
actuator or subcontroller states.

Rule 13: Each actuator or subcontroller DEFINE

transition. AT0 := st = st1 & Ma.act & q.is empty = 0 &
q.Q[1] = e2;

where q refers to the event queue module and Ma.act
is the guard. The guard is a condition that refers to
other actuator states.

Rule 14: Each actuator or subcontroller ASSIGN

continued on next page

5.6 Summary 184

continued from previous page

Rules RSDS SMV

state. next(st) :=

case

–For each actuator or subcontroller transition ATi
ATi : st2;

...
–For the default case
1 : st;

esac;

Rule 15: Each temporal invariant T SPEC

AG(AG(Env) -> T)

where Env is the environmental assumptions.

Rule 16: Each subsystem SS1...SSn VAR

defined in the main QSS1 : QueueSS1(C, Act);

module. ...

QSSn : QueueSSn(C, Act);

where n is the maximum number of subsystems,
C is the subsystem’s controllers, and Act is the
subsystem’s actuators.

OR

Rule 17: Define an array for each VAR

subsystem in the Queue QSS1 : array 1..maxSS1 of {s1e1, s1e2, ...,s1em,

module. null};
...

QSSn : array 1..maxSSn of {sne1, sne2, ...,snek,

null};

is emptySS1 : boolean;

...

is emptySSn : boolean;

where n is the number of subsystems in a system.

Rule 18: Each subcontroller or DEFINE

actuator transition. AT0 := C.CT1 & q.is empty = 0 & q.Q[1] = ie1 &
act = sc0;

where AT0 is a subcontroller or actuator transition,
CT1 is a controller transition, act is the
subcontroller or actuator state and ie1
is an internal event.

The correctness of the fine-grain translation was formally shown by proof. Therefore, we guar-

antee that the SMV model generated preserves the semantics of a fine-grain RSDS specification. In

addition, we showed how the results produced from model checking the SMV model are interpreted

in the corresponding RSDS specification.

As for the coarse-grain translation, design decomposition techniques have been used to manage

the state space explosion problem of model checking. We propose using a separate SMV program

for each subsystem and verifying properties locally where possible. Table 5.2 summarises how the

decomposition approaches are applied in SMV.

We conclude with a discussion of an alternative translation that could have been used in-

stead and the reasons for choosing the one presented. Furthermore, we consider other possible

translations in the literature that could have been used, and discuss why they were not suitable

to translate RSDS specifications. In the next chapter we evaluate the RSDS method (with the

integration of model checking) against two widely used methods: SCR and PVS.

5.6 Summary 185

Table 5.2: Summary of translation of decomposition approaches

Decomposition SMV Reduce state space
Approach explosion problem

Hierarchical The translation rules in Table 5.1 Virtual sensors can be used
can be applied. The algorithm for for verifying global properties
calculating the maximum size of a system, whose subsystems
of the array, checks events at are defined as separate
each level. SMV programs.

Horizontal The translation rules in Table 5.1 Each subsystem verifies
can be applied. Each subsystem its properties independently.
can be translated into a
separate SMV program.

Phase Each phase can be For global properties,
translated into a separate virtual sensors are used.
SMV program using the Properties for each active
translation rules in Table 5.1. controller are verified

independently.

Annealing There are no benefits N/A
in translating this approach

Standard controllers: Translated using the N/A
priority and AND translation rules in Table 5.1.
controller

CHAPTER 6

Comparison of RSDS against SCR and PVS using the autopilot system

The autopilot system was chosen as a case study to be developed using RSDS with the motive of

evaluating RSDS. We compare its performance against the Software Cost Reduction (SCR) method

and Prototype Verification System (PVS) which have also been used to specify the autopilot system

in [BH96] and [But96] respectively. Although all of these approaches are capable of specifying and

verifying reactive systems, we are interested in determining the suitability of these approaches to

developing reactive systems by discussing their strengths and weaknesses. First, we develop an

RSDS specification of the autopilot system from the set of requirements described in [But96] and

show how it is translated into SMV. Then, we evaluate the development process with SCR and

PVS.

6.1 The Autopilot Specification

The Boeing 737 autopilot system consists of a mode control panel as in Figure 6.1 with four

buttons or switches to allow the pilot to engage or disengage a mode, and three displays and dials

for entering the desired values for the altitude (ALT), calibrated air speed (CAS) and flight path

angle (FPA). One of the three modes: ATT (attitude control wheel steering), ALT, FPA should be

engaged at all times independently from the fourth mode CAS, that can be engaged at the same

time as the other modes. The displays show the current values of ALT, CAS and FPA unless a

desired value is entered by the pilot via the dials. The aim of the autopilot system is to achieve

the desired value dialed in by the pilot and maintain the set of modes that are currently active by

not violating any of the safety and operational invariants that describe the normal behaviour of

the aircraft.

The complete requirements are given informally in English in [But96] and, from these, we

use the RSDS method to systematically develop the autopilot specification. There are numerous

problems with these requirements which we hope the RSDS development approach will identify

(i.e. by applying consistency checking, model checking and the B theorem prover). These problems

are summarised as follows:

6.1 The Autopilot Specification 187

FPAsw

ALTsw CASsw

ATTsw

ALTdisplay

FPAdisplay

CASdisplay

(input dials)

Figure 6.1: Control mode panel

• The initial state of the system is not given.

• Some cases are missing from the specification, for example, the FPA switch is described as a

toggle, but there is no definition of what state the system is in after it is toggled off. If such

problems are identified, we need to work out as best as we can what the intended behaviour

is.

• It is not clear when certain modes are disengaged such as ATT mode. ATT mode is disen-

gaged when another mode is selected.

• There are usability problems with the display, such that it is not clear whether the display

shows the current or desired value, and the current mode is not displayed at all. This type

of problem is common in the aviation industry and has been generally classified as mode

confusion.

• Contradictory requirements: this usually occurs when a general case is first given, and then

later on, a more specific case is given that contradicts it.

The complete informal requirements as given in [But96] are as follows.

R1 The mode control panel contains four switches for selecting modes and three displays for

dialing in or displaying values. The modes are: attitude control wheel steering (ATT), flight

path selected (FPA), altitude engage (ALT) and calibrated air speed (CAS). Exactly one of

the first three is engaged at any time. CAS can be engaged with any of these. The pilot

engages a mode by pressing the corresponding button.

R2 The three displays are: altitude (ALTdisplay), flight path angle (FPAdisplay) and calibrated

air speed (CASdisplay). These usually show current values (ALTcurrent, FPAcurrent, CAS-

current) of the aircraft. The pilot can enter a new value into a display by dialing in a value

(ALTdesired, CASdesired and FPAdesired) using the dial next to the display. This sets the

display to show the target or desired value that the pilot wishes the aircraft to attain. For

example, to climb to 25000 feet, the pilot dials in 25000 via ALT dial and then presses ALT

switch to engage ALT mode. Once the target value is achieved or the mode is disengaged,

the display reverts to showing the current value.

6.1 The Autopilot Specification 188

R3 If the pilot dials into ALT an altitude more than 1200 feet above the current altitude and then

presses the ALT switch, the ALT mode does not directly engage. Instead altitude engage

mode is set to “armed” and the FPA mode is engaged. The pilot must then dial into FPA

the desired flight path that is to be followed until the aircraft attains the desired altitude.

The FPA mode remains engaged until the aircraft is within 1200 feet of the target altitude

and then the ALT mode is automatically engaged.

R4 Target CAS and FPA values need not be selected before corresponding modes are engaged,

instead the current values displayed are used. However, the target altitude must be selected

before the ALT switch is pressed, otherwise the command is ignored.

R5 The CAS switch and FPA switch toggle on and off every time they are pressed. However

pressing the ATT switch when ATT mode is engaged has no effect and similarly for ALT

switch.

R6 Whenever a mode other than CAS is engaged, all other displays should return to current.

R7 If the pilot dials in a new altitude while ALT mode is engaged, or if altitude engage is “armed”,

then ALT mode is disengaged, and ATT mode is engaged. If altitude engage is armed, then

the FPA mode is disengaged as well.

6.1.1 Formalising the requirements

The requirements are formalised by converting them into formal invariants in the form accepted

by RSDS. Each invariant has a label written besides it that refers to the requirement(s) that it is

derived from.

The invariants describe the system behaviour by refering to the states and events of this

system. The states are specified for each sensor, controller and actuator and consist of: {CASmode,

CASdisplay, mode, FPAdisplay, ALTdisplay, ALTengage, Alt}. The following set of events are

specified in RSDS: {CASpressed, FPApressed, ATTpressed, ALTpressed, ALTdialed, FPAdialed,

CASdialed, ALTreached, ALTgetsNear, CASreached, FPAreached}. These events occur as a result

of the pilot interacting with the mode-control panel (i.e. pressing buttons, dialing in values), and

also from sensors that monitor when the airplane has reached the desired Altitude value, FPA

value and so on.

The following invariants describe how the CAS mode changes depending on when the switch

is pressed.

CASpressed & CASmode = false ⇒ AX(CASmode = true) (R1, R5) (6.1)

CASpressed & CASmode = true ⇒ AX(CASmode = false) (R5) (6.2)

The next three invariants describe what is displayed on CASdisplay depending on whether

CAS mode is engaged, if a CAS value has been dialed or the CAS switch pressed or if the desired

6.1 The Autopilot Specification 189

CAS value is reached.

CASpressed & CASmode = true ⇒ AX(CASdisplay = CAScurrent) (R2) (6.3)

CASdialed ⇒ AX(CASdisplay = CASdesired) (R2, R4) (6.4)

CASreached ⇒ AX(CASdisplay = CAScurrent) (R2) (6.5)

The invariants that follow describe the system changes brought about by events associated

with the FPA mode. For example, invariant 6.6 ensures that if a FPA value is entered via the dial,

the FPA display will show the new target value and invariant 6.9 ensures that when the desired

FPA value is reached by the aircraft, then the FPA display shows the current value of FPA.

FPAdialed ⇒ AX(FPAdisplay = FPAdesired) (R2, R4) (6.6)

FPApressed & mode = FPA ⇒ AX(mode = ATT ∨ mode = ALT) (R5) (6.7)

FPApressed & mode 6= FPA ⇒ AX(FPAdisplay = FPAcurrent &

mode = FPA) (R4, R6) (6.8)

FPAreached ⇒ AX(FPAdisplay = FPAcurrent) (R2) (6.9)

Invariants 6.10, 6.11 and 6.12 describe the system changes attained when the ATT switch is

pressed. These either set the mode to ATT or set the ALT and FPA displays to show their current

value respectively.

ATTpressed ⇒ AX(mode = ATT) (R5) (6.10)

ATTpressed & mode 6= ATT ⇒ AX(ALTdisplay = ALTcurrent) (R2, R6) (6.11)

ATTpressed & mode 6= ATT ⇒ AX(FPAdisplay = FPAcurrent) (R2, R6) (6.12)

The values appearing on the ALT display are influenced by invariants 6.13 and 6.14: if a new

value for ALT is entered via the dial then the desired value will be displayed or if the desired

altitude is reached by the aircraft, the current value will be displayed.

ALTdialed ⇒ AX(ALTdisplay = ALTdesired) (R2) (6.13)

ALTreached ⇒ AX(ALTdisplay = ALTcurrent) (R2) (6.14)

For the system to be in the FPA mode and the altitude engage to be armed, the ALT switch

must be pressed and the ALT display must show the desired value, the current system mode is

not ALT and the desired value must be greater than the current value plus 1200 (invariant 6.15).

If ALT switch is pressed while the mode is ALT, the command has no effect (invariant 6.16).

ALTpressed &

ALTdisplay = ALTdesired &

mode 6= ALT &

ALTdesired > ALTcurrent + 1200 ⇒ AX(mode = FPA &

ALTengage = armed) (R3) (6.15)

ALTpressed & mode = ALT ⇒ AX(mode = ALT) (R5) (6.16)

6.1 The Autopilot Specification 190

Invariant 6.17 ensures that the system is in ALT mode if the airplane approaches the desired

altitude (specified by the event ALTgetsNear) within the appropriate range, and the current mode

is set to FPA and the altitude engage is armed.

ALTgetsNear & mode = FPA &

ALTengage = armed ⇒ AX(mode = ALT &

FPAdisplay = current) (R3) (6.17)

These two invariants (6.18 and 6.19) describe the events that occur for the mode to be set

to ATT, that is the desired ALT value must be entered with the current mode is set to ALT or

altitude engage is armed.

ALTdialed & mode = ALT ⇒ AX(mode = ATT) (R7) (6.18)

ALTdialed & ALTengage = armed ⇒ AX(mode = ATT) (R7) (6.19)

All the invariants presented for this system are given in the form of operational or action

invariants because of the way in which the requirements are expressed. These types of invariants

are not recommended as the sole form of invariants for specifying a system as they do not express

clearly which states are reachable. For example, in this system any combination of CASmode and

CASdisplay is possible. Nevertheless, these facilitate the translation into SMV.

Furthermore, we have adopted the abstraction techniques involving integers recommended in

[But96] that are applied to the display actuators and the altitude sensor. These techniques help

keep the verification of the SMV model computable as integers increase the state space immensely.

For the display actuators, the actual value of the integers is not significant for verification purposes

but whether the display shows the current or the desired value. Therefore, we abstract from the

integer value and only have two possible states for each display actuator: current and desired, thus

keeping the state space small.

The values of the altitude sensor Altitude are given as integers ranging from 0 to greater than

1200, where no limit is defined. To model this sensor as a statemachine, it would require a state

for each possible value. The system is not however interested in all these values, instead it focuses

on the relationship between the current value and the desired value i.e. how far is the actual value

with respect to the desired value. Therefore, these values are abstracted by grouping them into

three ranges: near, away, at. The following invariants model this relationship, describing precisely

what these ranges mean and are considered as environmental assumptions:

(desiredALT ≤ actualALT + 1200)

& desiredALT 6= actualALT ⇒ Alt = near (6.20)

desiredALT > actualALT + 1200 ⇒ Alt = away (6.21)

desiredALT = actualALT ⇒ Alt = at (6.22)

There are a number of invariants that are formalised and used for verification. One of them

aims to ensure that if altitude engage is armed, then the FPA mode must be engaged too.

ALTengage = armed ⇒ mode = FPA (R3) (6.23)

6.1 The Autopilot Specification 191

The following invariants are taken from the SCR implementation of the autopilot [BH96].

These ensure that if the FPA mode is disengaged, then the FPA display reverts to showing the

current value, and similarly for the ALT mode.

mode = FPA ⇒ AX(mode 6= FPA ⇒ FPAdisplay = current) (R2) (6.24)

mode = ALT ⇒ AX(mode 6= ALT ⇒ ALTdisplay = current) (R2) (6.25)

A different type of invariant checks to see if a state is reachable. For example, invariant 6.26

checks if the state where the ATT mode is engaged and the two displays are showing the desired

values is reachable.

EF(mode = ATT & ALTdisplay = desired & FPAdisplay = desired) (6.26)

It is clear from the data dependencies of the invariants that the autopilot system consists

of two independent subsystems. The DCFD in Figure 6.2 shows the horizontal decomposition

approach applied to split the control system into the CAS controller for the CAS mode and the

Altitude controller for the other modes of the system (FPA, ALT and ATT). Notice that controller

attributes such as Mode and ALTengage are expressed as actuators.

Main Controller

Altitude
Controller

CASmode
Controller

CASmode

CASdisplay

FPAsensor
ALTsensor

ALTsw

FPAsw

ATTsw

ALTdial

FPAdial

Altitude

CASdial

CASsw

CASsensor

ALTengage

ALTdisplay

FPAdisplay

Mode

Figure 6.2: The DCFD of the autopilot system showing the horizontal decomposition of controller.

6.1.2 Producing the SRS statemachines

Each component in the DCFD in Figure 6.2 is described in terms of a SRS statemachine module.

Since there are two independent subsystems, we will present the statemachines for each subsystem

separately. The coarse-grain and fine-grain statemachines are visually the same, just the meaning

of a step is different for each.

6.1 The Autopilot Specification 192

The CASmode Subsystem

The CASmode subsystem consists of the following components: the sensor CASsw that records

when the switch is pressed, the sensor CASdial for detecting when the desired CAS value is entered,

the actuator CASdisplay that displays the current or desired value and an internal attribute

CASmode, that is modelled as an actuator, determines if the CAS mode is engaged. Figure 6.3

illustrates the statemachines for all of these components.

set_current

current

pre−selected

set_desired

CASdial

dial

CASsw CASmode

true

false

set_true

CASdisplay

off

on

CASpressed

CASpressed

set_false

CASdialed

Figure 6.3: SRS statemachines for all the components in the CASmode subsystem.

The statemachine for the controller of the CASmode subsystem is synthesised from its sensor

statemachines and from the invariants 6.1 to 6.5 that define what effect the sensor events have on

the actuators i.e. what actuator events are generated. The state of the controller is comprised of

the tuple of sensor states: (CASdial, CASsw). Since CASdial is a single state statemachine for

detecting change, its state is not explicitly represented in the controller statemachine, but its events

are. This abstraction is aimed at reducing the state space as we have model checking in mind

for verification. Moreover, the CASsw statemachine is isomorphic (a one-to-one correspondence

between two graphs, in this case the statemachines) to the CASmode statemachine and these are

therefore fused together. Therefore, Figure 6.4 illustrates the controller and the two actuators

(CASdisplay and CASmode) of the CASmode subsystem and it is clear from the statemachines

that if CASmode is removed, its behaviour is represented by the controller. This is another kind

of abstraction that also helps reduce the state space. The first abstraction technique can be

automated, however the second would require the user to identify which components describe an

internal attribute and since there might be more than one isomorphic statemachine, identify which

statemachines to fuse.

off

set_current^set_false

false

true

set_trueset_false

pre−selected

current

CASpressed/

CASCont CASdisplay CASmode

set_current

set_desired

CASreached / set_current

CASpressed/set_true

CASreached / set_current

CASdialed / set_desired

CASdialed / set_desired
on

Figure 6.4: SRS statemachine for CAS controller and its actuators.

6.1 The Autopilot Specification 193

The Altitude Subsystem

Figure 6.5 illustrates all the components in the Altitude subsystem with a state space of 32×23 = 72

states. The process for synthesising the Altitude controller is similar to that of the CASmode

controller, i.e. using the amalgamation of sensor states and transitions and the invariants 6.6

to 6.18 for determining the valid transitions. The state of the controller consists of the tuple

(Altitude, FPAsw, ALTsw, ATTsw, ALTsensor, FPAsensor, ALTdial, FPAdial) but since most

of the sensors are single state statemachines, the tuple is reduced to: (Altitude). All the sensor

events appear as events triggering controller transitions in the controller statemachine.

ATT

ALTpressed

ATTswALTsw

ALTpressed

away

dial

dial

ALTdisplay

Altitude

ATTsw

FPAdisplay

FPA sensor

ALTsensor

FPA sensor

FPAsensor

unarmed

ALTengaged

FPA

ModeFPAsw ALTsw

ALTdial

FPAdial

FPAsw

FPApressed

current

set_current
set_desired

current

set_current
set_desired

ALTreached

FPAreached

desireddesired

near

ALTgetsNear

at

ALTgetsAway ALTgetsNear

ALTreached

ALTdialed

FPAdialed

armed

ALT

Figure 6.5: SRS statemachines of components of the Altitude subsystem.

There are two internal attributes that are neither sensors or actuators: Mode and ALTengage.

Mode indicates the system mode that is currently engaged independently of the CAS mode i.e.

either FPA, ALT or ATT is engaged at any one time. ALTengage is used for the case when

the system does not directly engage into ALT mode, but will be armed and in FPA mode until

the aircraft is within 1200 of the actual altitude (from R3). There is no direct way in which to

represent these attributes in an RSDS specification. The ideal representation of these attributes

would be to combine them together with Altitude to form the statemachine for the controller, as

these attributes refer to the control behaviour of the system. However, in RSDS, the controller is

composed from sensors only and therefore, these attributes cannot be included in the controller.

Instead, we represent these as separate statemachines composed using AND as illustrated in Figure

6.6, that are treated as actuators. The states where ALTengage is armed and the Mode is in ATT

or ALT is not shown in Figure 6.6 because these states are never reached.

6.1.3 Analysis of invariants

RSDS analyses the specification (i.e. the invariants and the statemachines) to detect completeness

and consistency problems. This analysis is not automated as yet and we perform it by inspection

6.1 The Autopilot Specification 194

armed

not_armed

ALTdial
FPAreached
FPAdial

ALTdial
ATTpressed
FPApressed

ALTdial ALTdial

FPAreached

ALTreached

ALTpressed[Alt\=away]

ALTgetsNear

ALTpressed[Alt=away]

ALTpressed[Alt\=away]

FPApressed

ALTpressed[Alt\=away]

ATTpressed
ALTreached

FPApressed

FPApressed
ATTpressed

ALTpressed[Alt=away]

ALTpressed[Alt=away]

FPAreached

not_armed

not_armed

ATT

ALT

FPA

Figure 6.6: SRS statemachine produced by the amalgamation of Mode and ALTengaged.

and, by using B and SMV. We discuss what was detected for the autopilot system. The following

completeness problems were identified:

• No initial state is given by the requirements. RSDS statemachines insist upon an initial

state. We adopt the initial state used in [But96].

• ALTengage is never set to not armed. To correct this we assume that ALTengage = armed

means that the system is in the process of reaching the desired altitude, i.e. it is temporarily

in FPA mode. Thus, we add the following invariants:

ALTdialed & Mode = ALT ⇒ AX(ALTengage = not armed) (R7) (6.27)

ALTdialed & ALTengage = armed ⇒ AX(ALTengage = not armed &

FPAdisplay = current) (R7) (6.28)

and the RHS of invariant 6.17 is updated:

ALTgetsNear & mode = FPA &

ALTengage = armed ⇒ AX(mode = ALT &

FPAdisplay = FPAcurrent & ALTengage = not armed)

and similarly for the RHS of invariants 6.7 and 6.12.

• It is apparent that some cases are missing from the specification of events ALTpressed,

ALTgetsNear, ALTgetsAway, when we analyse the disjunction of the conditions on the LHS

of the invariants:

– For ALTpressed these cases are not specified:

6.1 The Autopilot Specification 195

1. ALTdisplay 6= ALTdesired

2. ALTdisplay = ALTdesired ∧ mode = ALT

3. ALTdisplay = ALTdesired ∧ mode 6= ALT ∧ Alt 6= away

The default null action seems correct for the first two cases, but the third seems to be

a genuine missing requirement. To correct this we add the invariant:

ALTpressed &

ALTdisplay = ALTdesired &

mode 6= ALT & Alt 6= away ⇒ AX(mode = ALT &

FPAdisplay = FPAcurrent &

ALTengage = not armed) (R3) (6.29)

– ALTgetsNear is missing a specification of what happens if the event occurs when:

1. mode 6= FPA

2. mode = FPA ∧ ALTengage 6= armed

We assume a null action was intended for both cases.

– ALTgetsAway is missing a behaviour specification. We assume that a null action was

intended.

• FPAsw is described as a toggle in the requirements, but there is no definition of what state

the system is in after it is toggled off. We assume that ATT mode is engaged when FPAsw

is toggled off.

• Usability problems with the display have also been identified such as it is not clear whether

the display shows the current or desired value or that the display does not show the current

mode. This is a serious problem in aviation systems and is classified as mode confusion.

In [LC99], the authors show the advantages of using model checking over theorem provers

for verifying the mode confusion properties. The Nagoya crash [Nag] is an example of

a catastrophe that arose from the mode confusion problem. Nevertheless, we choose to

implement the specification based mostly on the existing implementation for consistency.

In conclusion, the invariants must be defined for all possible event combinations with guards

if required on the LHS of the implication and on the RHS,and a value for each actuator must be

provided.

RSDS detects the following inconsistencies:

• R3 and R7 are contradictory. R3 says that FPA should remain engaged until altitude

becomes “near” its target. R7 says mode can go to ATT instead. This is typical of many

requirements where a general case is stated and then a special case contradicting it is given

later on. We assume R7 should apply.

• R6 suggests that the ALT display should be reset when we enter FPA mode in R3, or enter

ATT mode in R7. Also that CAS display should be reset if FPA, ATT or ALT is entered.

6.1 The Autopilot Specification 196

There is also inconsistent behaviour of the interface from a user perspective, in that sometimes

other displays are reset when we enter a mode, and sometimes not. This could be misleading

for operators and lead once again to the mode confusion problem. In [Lev97], an approach is

presented for detecting errors induced due to automated control of software systems (especially

aviation), that can be used for designing the operator interface.

6.1.4 Verifying the autopilot system

RSDS specifications are verified by the B theorem prover and the SMV model checker. A transla-

tion [LBA99, LAK00, LAC00] already exists from RSDS specifications to B AMN machines and

in this thesis we have defined one from RSDS specifications to SMV. We recall briefly what is

considered as the input of the translations for the autopilot system.

The RSDS specification of the autopilot system consists of invariants and statemachines. The

structure of the autopilot system is depicted in Figure 6.7 where the horizontal decomposition

approach has been applied and the system is divided into two independent subsystems that do not

share any sensors or actuators. The controllers for the subsystems are: CAScont for the CASmode

subsystem and ALTcont for the Altitude subsystem, that process distinct events independently

of each other. SRS statemachines are used to describe the dynamic behaviour of each component

in the subsystem. The controller statemachines are generated automatically by combining the

sensor statemachines. The invariants that formalise the requirements are used to identify the

valid transitions in the controller statemachines. Some abstractions have been applied on the

statemachines that have already minimised the state space and we summarise them:

1. Sensor states whose behaviour is described with single state statemachines are not part of the

state of the derived controller. In the autopilot system, both subsystems contain a number of

single state sensor statemachines that are ignored in the controller, for example, the ALTcont

is derived from the altitude sensor and the other seven sensors’ states are ignored. However,

the sensor events are not ignored and appear in the controller transition definitions.

2. The second abstraction that was applied involves the CASmode subsystem. The statema-

chine for the CASsw component is isomorphic to that of the CASmode component. Since

CASmode is an internal attribute that is implemented as an actuator and CASsw deter-

mines its changes, we have decided to fuse the two statemachines, by implementing only the

CASsw in the CAScont controller, thus avoiding any unnecessary repetition.

Using B for verification and validation

The B specification for the autopilot is derived from the statemachine modules and invariants that

make up the RSDS specification. For each event e, all of the invariants that concern it are collected

and their effects are combined to form the definition of the B operation for e. For example, the

invariants for the event CASpressed are 6.1, 6.2 and 6.3 and their effect are combined to form the

following B operation.

6.1 The Autopilot Specification 197

ALTdisplay

CASdisplay

CASmode

Mode

ALTengage

FPAdisplay

FPAsensor
ALTsensor

ATTsw

CASdial

CASsw

CASsensor

FPAsw

ALTsw

ALTdial

FPAdial

Altitude

ALTcont

CAScont

Figure 6.7: The autopilot system is horizontally decomposed resulting in two independent subsys-
tems.

CASpressed =

IF

CASmode = false

THEN

CASmode := true

ELSE

CASmode := false ||

set current CASdisplay

END;

The rest of the operations are formulated similarly. The structuring of the B machines illus-

trated in Figure 6.8 follows the receivers hierarchy defined by the DCFD diagram and it respects

the horizontal composition of controllers. The complete B source can be found in Appendix C.

Controllers

CASdisplay

FPAdisplay

ALTdisplay

OuterCont_1

INCLUDES

INCLUDES

SEES

SEES SEES

IMPORTS

INCLUDES

INCLUDES

INCLUDES

INCLUDES

REFINES

SEES

SEES

APTypes

Altitude

SEES

OuterCont
IMPORTS

CAScontALTcont

Figure 6.8: The B Development Architecture of the Autopilot.

6.1 The Autopilot Specification 198

The B translation allows us to check that the expected static invariant 6.23

ALTengage = armed ⇒ mode = FPA

is actually provable from the formalisation of the requirements, or to identify where it fails. The

proof obligations generated for these B machines by the BToolkit reveal that the invariant does not

hold: ALTengage = armed can occur with mode = ATT as a result of ATTpressed, if ALTengage

is armed with FPA mode active before this event. To correct this we add the extra invariants 6.23

and 6.24 and correct invariants 6.7, 6.12, 6.17 to ensure that ALTengage is set to not armed.

Verification of temporal invariants is not supported in B without some additional enhancements

to the method. However, B is capable of using the environmental assumptions in the specification

to define the data abstraction in the outer-level controller. The outer-level (interfacing) controller

is responsible for detecting events by polling, or sampling the environment and broadcasting the

events to the main controller one at a time. It is implemented in B as a separate B machine

OuterCont which is refined into the implementation OuterCont 1. A single operation cycle

describes the polling of the environment for events. The environmental assumptions, i.e. the

invariants 6.20, 6.21 and 6.22 in the autopilot system defining the altitude ranges away, at and

near, are used as follows to check the relationship between the actual and the desired altitude

value and to broadcast the appropriate events.

IF

desiredALT <= 1200 + actual

THEN

ALTgetsNear

ELSE IF

desired = actual

THEN

ALTreached

ELSE

AltgetsAway

END

END;

Moreover, B toolkit provides animation facilities to explore user scenarios to check that the

formalised invariants accurately capture the intended behaviour of the system. For example, a

possible scenario of normal behaviour for the Altitude subsystem could be given as in Figure

6.9. The altitude values in bold indicate which value is currently being displayed by the actuator

ALTdisplay.

Model Checking the Autopilot System

SMV code is generated from the RSDS specification of the autopilot system using the translation

rules described in chapter 4. There are two semantic views of RSDS specifications: one for the

coarse-grain view and one for the fine-grain. For the fine-grain, an order of actuator events must

be described in the requirements and formalised in the invariants. The invariants of the autopilot

do not define any precedence of actuator events over others. Therefore, we believe that there are

no benefits in implementing the fine-grain view for this system, although this can be easily done.

6.1 The Autopilot Specification 199

Event Desired Current Altitude Old Mode New Mode

ALTdial 30000 5000 away ATT ATT
ALTpressed 30000 5100 away ATT FPA & armed
FPAdial 30000 5200 away FPA & armed FPA & armed
FPAreached 30000 10500 away FPA & armed FPA & armed
ALTgetsNear 30000 28800 near FPA & armed ALT
ALTreached 30000 30000 at ALT ALT
ALTaway 30000 30100 near ALT ALT

Figure 6.9: An example scenario of normal behaviour for the autopilot system.

The complete listing of the SMV code generated for the coarse-grain view of the autopilot can be

found in the appendix C.

In SMV, the main module shows the dependencies between the different system components,

as illustrated by the DCFD, that run in parallel (representing the concurrency of SRS statema-

chines). In this system, it is clear that the CAScont controller and its actuator are independent

from ALTcont controller and its actuators. Also, the dependencies between the modules of the

components in a subsystem are evident, for example all the actuators in the Altitude subsystem

have read-only access to the ALTcont module as well as to the Mode actuator module.

MODULE main

VAR

–For the CASmode subsystem
c1 : CAScont;

cas : CASdisplay(c1);

–For the Altitude subsystem
c2 : ALTcont;

mo : Mode(c2, alt, en);

en : ALTeng(c2, mo, alt);

fpa : FPAdisplay(c2, mo, en, alt);

alt : ALTdisplay(c2, mo);

The SMV code for each module is derived from the statemachines. Note that the internal

attributes Mode and ALTengage are represented in RSDS as actuator statemachines and are

translated into SMV modules using the translation rules described in Chapter 4. Therefore,

the states of SMV modules for these attributes will change value depending on the controller

transitions, and, any actuator in the system can access these states if needed by guard definitions

in their transitions.

The action invariants used to formalise the requirements are well-represented in the SMV

model. For example, lets consider invariant 6.8:

FPApressed & mode 6= FPA ⇒ AX(ALTdisplay = ALTcurrent & mode = FPA)

The event on the LHS of the implication is represented by the controller transition CT4, CT5,

and CT6 since the current altitude range value has not been specified.

MODULE ALTcont

6.1 The Autopilot Specification 200

VAR

state : {near, away, at};
event : {ATTpressed, FPApressed, ALTpressed, ALTgetsNear,

ALTreached, FPAreached, ALTdial, FPAdial};

DEFINE

CT1 :=event = ATTpressed & state = near;

CT2 :=event = ATTpressed & state = away;

CT3 :=event = ATTpressed & state = at;

CT4 :=event = FPApressed & state = near;

CT5 :=event = FPApressed & state = away;

CT6 :=event = FPApressed & state = at;

...

The effect of this invariant, expressed by the RHS of the implication, is represented in the local

transitions MT2 of the Mode actuator and AT1, AT2 of the ALTdisplay actuator.

MODULE Mode(OC, a, En)

VAR

mode : {ATT, ALT, FPA};

DEFINE

MT1 := !(mode = ATT) & (OC.CT1 | OC.CT2 | OC.CT3) ;

MT2 := !(mode = FPA) & (OC.CT4 | OC. CT5 | OC.CT6) ;

...

ASSIGN

init(mode) := ATT;

next(mode) := case

MT1 : ATT ;

MT2 : FPA ;

...

1 : mode;

esac;

MODULE ALTdisplay(C, M)

VAR

ast : {desired, current};

DEFINE

AT1 := (C.CT4 | C.CT5 | C.CT6) & !(M.mode = FPA) & ast = desired ;

AT2 := (C.CT4 | C.CT5 | C.CT6) & !(M.mode = FPA) & ast = current;

...
ASSIGN

init(ast) := current;

next(ast):= case

AT1 | AT2 : current ;

AT3 | AT4 : desired ;

...

1 : ast;

esac;

Note that mode 6= FPA is a guarding condition that forces the actuator components to have

read-only access to the mode actuator. This system is rich with guards which results in high

interdependency of modules. Moreover, the actuator transition definitions are abridged for the

6.1 The Autopilot Specification 201

purpose of presentation, such as the transition MT1 that is defined as:

MT1 := !(mode = ATT) & (OC.CT1 | OC.CT2 | OC.CT3);

where | is an OR connective. In the automated version there will be three transitions, one for each

controller transition. The state space is not increased with the additional definitions of transitions.

The outer-level controller is not translated into SMV as the environment is modelled by under-

specification where the events occur non-deterministically and the system must be able to react

to all possible events. We abstract from the details of how the events are received from the

environment. These invariants will have to be ensured by the developer or in B.

The RSDS specification is translated into SMV in order to verify its temporal properties,

invariants 6.24, 6.25, that cannot be verified in B. These are described as follows in SMV.

SPEC AG(mo.mode = FPA → AX(!(mo.mode = FPA) → fpa.fst = current))

SPEC AG(mo.mode = ALT → AX(!(mo.mode = ALT) → alt.ast = current))

A counter-example was produced for 6.24, as the model was incomplete. The RHS of invariant

6.7 must be updated to include the condition that sets the FPA display to current. Furthermore,

two more invariants must be added since 6.13 and 6.14 are not enough. These set the FPA display

to current when ALTdialed and ALTreached occur. Additional transitions were added to update

the SMV model.

ALTdialed & ALTengaged = not armed ⇒ FPAdisplay = FPAcurrent (6.30)

ALTreached & mode = FPA ⇒ FPAdisplay = FPAcurrent (6.31)

Alternatively, model checking can check if a state is reachable. To check if a state such as

P: mode = ATT & ALTdisplay = desired & FPAdisplay = desired

is reachable, we can try to prove AG(!P). This is equivalent to !EF(P), the negation of invariant

6.26. If P is reachable a counter example sequence will be produced by SMV. In this system we

get the counter example sequence:

ALTdialed; FPAdialed

which establishes P. In this case almost all possible states are reachable, and therefore the actuator

settings are not at all predictable from the mode. Again this is evidence of poor human factors

and design of the system.

Any invariant that is verified using B, can be verified in SMV, such as invariant 6.23. It is

expressed in SMV as:

SPEC AG (en.Alt armed = armed) → AX (mo.mode = FPA))

In addition, the invariants used to formulate the invariants can be checked in SMV. For example,

in the CAS mode subsystem, the following invariant is true of the autopilot model.

SPEC AG (c1.cas event = CASdial→ AX (cas.st = desired))

6.1 The Autopilot Specification 202

The resources used to model check the autopilot system with NuSMV are as follows. Since the

values for user and system time, and virtual data, vary each time the model is checked, we have

taken the average for these usage values for ten runs of the autopilot model with SMV.

User time: 0.06 seconds
System time: 0.04 seconds
Virtual data size (bytes allocated): 6409K
BDD nodes allocated: 1816
BDD cluster size: 178

6.1.5 Discussion

The autopilot system was chosen to be developed using RSDS primarily for the purpose of com-

parison. However, this is the first system developed by RSDS from the aviation domain. It shows

that in general RSDS is suitable for developing systems from this domain.

The development of the different aspects of the autopilot system are well-supported by RSDS.

For example, not only is the system’s complete reaction to its environment specified, but also

the system’s interface with its environment is specified by the outer-level controller in B where

environmental assumptions can be ensured. The SMV language is particularly well-suited to

modelling the action invariants and these are used solely for formalising the system’s requirements.

The disadvantage of using action invariants is that it is unclear which states are reachable. We

overcome this disadvantage by verifying reachability properties in SMV that aid the detection of

incompleteness and inconsistencies in the specification. Moreover, the process of formulating the

invariants is difficult and can result in missing cases and contradictions that are detected by the

verification tools and RSDS checks.

The drawback of using this approach for the autopilot system concerns the construction of the

controller from the sensors, as this is not very meaningful. In this particular system there are two

internal attributes (Mode and ALTengage) that are modelled as actuators which result in a high

level of interdependency between these modules. This suggests that Mode, and possibly Mode

combined with ALTengage as in Figure 6.6 are good contenders for being the controller of this

system. It would be very good if we could extend RSDS to be able to represent internal attributes

in controllers, while still ensuring that development occurs systematically and is automated as

much as possible. This partly motivates the object oriented version of RSDS described in Chapter

7, where the controller is modelled as a class that may have a number of attributes.

With respect to the translation process, we have previously mentioned [Day98] that highlights

the problems with translations and [KG02] that has identified factors that pertain to the quality

of a translation. We comment on the extent to which these have been met or dealt with, based

on the experience gained from implementing the autopilot specification.

In [Day98], three main problems are identified and we respond as follows:

1. There is no guarantee that the translation preserves the semantics of the source

language. For each translation that was described in Chapters 4 and 5, a proof of correctness

was also given showing that the translations are semantic-preserving. If these translations

are to be automated, then we need to ensure that they are correctly implemented. This is

especially important for safety-critical systems. In [PSS98], a method for validating the

6.1 The Autopilot Specification 203

implementation of the translation is described. For the autopilot system, we manually

translated the RSDS specification into SMV, applying the translation rules given. We know

that the rules are correct, because of the proof of correctness, and therefore we can focus

on ensuring that the rules are applied correctly. Since the SMV model produced is not very

big, we can easily check by inspection that we applied the rules correctly.

2. The results produced from some processing performed on the target notation

are not represented in the source notation. In this case, the type of processing

performed on the target notation is verification, using B and SMV. The B translation has

not presented a way of interpreting its results onto the RSDS specification, this remains to

be tackled in future work. For the translations to SMV, Chapters 4 and 5 describe how

a counter-example is interpreted in the RSDS specification. Some counter-examples were

produced for the autopilot specification. The counter-examples were manually interpreted

on the RSDS specification. Any necessary corrections were made to the RSDS specification

and then it was re-translated into SMV and its properties were model checked. This process

was repeated until the results were true for all of the properties.

3. The translation is notation-specific and hence limited to the processing capa-

bilities of that notation. We don’t consider this to be a limitation because we want to

make use of a notation’s additional capabilities over our own method’s, i.e. model checking,

theorem-proving. We believe that it is better to integrate existing tools that are actively

maintained and familiar, rather than building new tools to perform the same capabilities.

For the autopilot system, the different verification techniques that were applied identified

different problems with the specification that might not have been detected if a single veri-

fication system was used.

The factors (semantic, syntactic and efficiency) for evaluating the quality of the translations are

described in [KG02]. The semantic factors consider whether the elements in the source language

correspond to elements in the target language. It is not always the case that all elements in

the source language can be adequately represented in the target language. The syntactic factors

consider the desired properties of the target model such as modularity and readability. Since

one of the target languages is a model checker, the efficiency factors question how well the state

space explosion problem is dealt with in the target language. We comment on these based on our

experience from developing the autopilot system using RSDS.

• Semantic Factors: The translation presented from an RSDS specification (coarse-grain)

to SMV is not direct. We use all the information that we already know about coarse-

grain RSDS specifications in order to translate. This is because we want to ensure that a

step in RSDS corresponds to a single step in SMV. This is achieved by not translating the

explicit generation of internal events. Instead, the actuator transitions are defined in terms

of controller transitions, thus ensuring that a coarse-grain step corresponds to a single SMV

step. Moreover, the translation is semantics-preserving as a proof of correctness is given.

For the autopilot system, not all elements can be translated directly. The internal attributes

Mode and ALTengage, that should be part of the controller, have to be represented as

6.2 Comparison of RSDS, SCR and PVS 204

actuators because RSDS specifications cannot represent internal attributes. However, this

limitation belongs to the expressivity of RSDS specifications and not to the translation or

target notation (SMV). In Chapter 7, an object oriented version of RSDS is presented,

namely RSDS/UML, that allows for the representation of internal attributes.

• Syntactic Factors: The modularity of RSDS specifications is maintained in the SMV

model, i.e. each statemachine modules is translated into a separate SMV module. The

structure of the SMV model usually corresponds to the structure illustrated by the DCFD

diagram, showing the dependencies of the modules. In the autopilot system, two additional

actuator modules are added in the DCFD in order to specify the internal attributes, but

these are all translated into SMV in the standard way.

• Efficiency: The SMV model that is produced by the translation should be small enough so

that it can be model checked automatically by the tool. There are no problems with size of

the SMV model produced for the autopilot system, as it can be model checked in a fraction

of a second.

6.2 Comparison of RSDS, SCR and PVS

We base our comparison on the development steps in an ideal design strategy for supporting

the entire development process. We aim to answer the following questions with respect to each

development phase.

Requirements analysis and specification development: How well has the specification been

formulated from the set of requirements? Was there a set of guidelines that were followed?

Was the system specified at the right level of abstraction ?

Design: Can the system be decomposed further and how successful is its architecture ?

Validation: Does the development method provide ways of checking that the system does what

the user intended ?

Verification: Is the system modelled correctly ?

Another two aspects that we are interested in comparing among the methods, are:

Abstraction techniques for reducing the state space: Can we apply some abstraction tech-

nique to reduce the state space ? We are interested in these techniques for scalability and

for model checking purposes. Even though PVS does not use model checking, it may still

benefit from abstractions.

Tool support: Is there a tool that supports the development process and to what extent ?

Before we compare the different approaches for specifying and verifying the autopilot system,

we provide an overview of each method. Since the SCR method is very similar to RSDS, we

examine it in more detail and compare it with RSDS.

6.2 Comparison of RSDS, SCR and PVS 205

6.2.1 Overview of SCR

SCR is a set of techniques used for developing systematically formal specifications from a set of

requirements. It was developed from a collaboration between David Parnas and Constance Heit-

meyer, and other researchers from the U.S. Naval Research Laboratory (NRL) in the late 1970’s. It

consists of two formal models [Hei02]: the Four Variable Model and the SCR requirements model.

In [HBGL95] a set of software tools were developed to analyse documents with SCR requirements.

Input
Devices Devices

Output

Output
Data
Items

Data
Items

Input

SoftwareEnvironment Environment

Controlled
VariablesVariables

Monitored

System

IN SOFT OUT

REQ and NAT

Figure 6.10: The Four Variable Model.

The Four Variable Model, illustrated in Figure 6.10, defines the required system behaviour as a

set of relations on four sets of variables: monitored variables that describe the system environment

(non-deterministic), controlled variables that describe the required system behaviour (determin-

istic), input and output data items that are resources available to examine the monitored and

controlled quantities respectively. The relations are: NAT, REQ, IN and OUT. NAT describes

the physical constraints on the system behaviour as assumptions and is defined as a set of possible

values, and REQ describes the required relation between the monitored and controlled quanti-

ties maintained by the system. In RSDS, environmental assumptions can be compared to NAT

and the RSDS system model to REQ. The IN and OUT relations specify the rigour required for

measuring the values of monitored quantities and the computability of the controlled quantities

as mappings from monitored or controlled variables to input or output variables. In RSDS, the

sensor and actuator variables in the statemachines correspond to the input and output variables

in SCR. Figure 6.11 delineates the relationship between the RSDS system defined by the DCFD

diagram and the system described by the Four Variable Model. The labels in brackets refer to the

corresponding SCR elements.

REQ and NAT

IN SOFT OUT

Actuators (Output Devices)Sensors (Input Devices)

Controller
(Software)Environment sensor events Environment

(monitored events)

actuator events
(controlled events)

Figure 6.11: Visual comparison of the DCFD with the Four Variable Model.

6.2 Comparison of RSDS, SCR and PVS 206

The SCR requirements model [HJL96] is a special case of the Four Variable Model that provides

precise semantics by representing the system as a statemachine and focusing on the REQ and

NAT relations. As in the RSDS method, the system responds to a single input event from the

environment by changing state (initial state specified) and possibly changing some controlled

variables by producing one or more system outputs.

REQ is specified by using the following constructs: mode classes, terms, conditions and events.

A mode class is a state machine with system modes as states and transitions that are triggered by

events1. A term is any function of input variables, modes or other terms that are used in making

the specification more concise. A condition is a predicate defined on one or more input or output

variable, mode or term at any particular time. An event occurs when either variables (input or

output, mode or term) changes value. There are some special types of events like the input event

that occurs when an input device (sensor) changes value, and the conditioned event that occurs

when a specified condition becomes true. A conditioned event is defined as:

@T (c) WHEN d −→ ¬c ∧ c′ ∧ d

where c and d are evaluated in the old state and the primed condition c is evaluated in the new

state. Basically it means that whenever a transition for the event @T (c) WHEN d occurs, the

old state of c is false and the new state of c is true and d was true in the old state but in the

new state can be either true or false. There is also another notation @F (c) that is defined by

@F (c) = @T (¬c). The conditioned event is similar to a transition in the SRS statemachine in

RSDS

t : e ∧ [G] \ α1 _ ... _ αn

where c can be mapped to a condition that describes the current state the system is in, and d can

be mapped to the logical guard G (see Figure 6.12). The SCR transition does not have a particular

event name, but it is unique because of the conditions that define it. Therefore, in @T (c) in SCR

can be mapped to the event name e in RSDS. The actions α1 _ ... _ αn are not explicitly given

in SCR, but are modelled as term variables whose values are expressed in the event and condition

tables.

..., not(c), ...not (c)

@F(c)@T(c)

c

@T(c)[d] / v:=x

..., c, ...

Figure 6.12: The SCR transitions expressed using SRS notation

There are many similarities between the SCR requirement model and the SRS statemachine

semantics of RSDS system specifications. In SCR, monitored and controller variables are assigned

1This can be compared to the state design pattern that has a separate class for each mode [GHJV95] as well as
the phase decomposition approach in RSDS.

6.2 Comparison of RSDS, SCR and PVS 207

discrete values, and RSDS develop specifications for only discrete systems. They both assume that

only a single monitored or sensor event will trigger a state transition at a time and in SCR this

is called the One Input Assumption. The Synchrony Assumption of SCR requires the system to

process one monitored event completely before going on to process the next monitored event and

this corresponds to the fine-grain model assumptions in RSDS for a reaction cycle. No circular

dependencies of state variables are allowed in the definitions of state variables in SCR which applies

for RSDS as well.

In SCR, a tabular notation is used for writing specifications for these relations. Three types

of tables are used: mode transition tables, event tables and condition tables, each defining the

variables mode, event, condition as a function. The mode transition table describes the system

modes in terms of the system states and how they are changed when transitions occur. Then

event tables are used to describe the changes to the variables depending on the events that occur

and also which mode the system is in (the mode does not always appear in the event tables).

Condition tables describe how the values of the output variables or terms change as a function of

a mode and condition. These changes are similar to the changes brought about as a result of an

actuator transition in an RSDS specification. The tables spell out the steps of execution, showing

what the values of variables are and how they change when transitions occur and which events

become true. This level of detail is comparable to that described by the fine-grain semantics2 for

RSDS. The system properties must be satisfied by the information held in each table.

The invariants to be verified by model checking are written as logical formulae in both SCR and

RSDS methods. However SCR concentrates on two types of invariants [BH99]: state invariants

that have the same form as static invariants in RSDS, and transition invariants that have the

same form as action invariants in RSDS.

The SCR tool [HBGL95] provides a specification editor to allow the user to create, modify

or display a specification as well as a consistency checker, simulator and verifier. For verification

it uses mainly the SPIN model checker but there exists a translation to SMV as well. TAME

(a friendly front end version of PVS) or salsa [BS00a] is available for use when the state space

explosion problem can hinder verification. Currently, the SCR has better tool support capabilities

than RSDS and has been used in industry to specify many critical reactive systems.

6.2.2 Overview of PVS

PVS is a general verification system that was developed by SRI International [SRI]. It consists of

a specification language based on higher-order logic and enhanced with a rich type system that is

integrated with support tools and a theorem prover. It focuses on providing verification support

for non-finite or finite systems with a powerful interactive theorem prover as opposed to the SCR

and RSDS methods that focus on designing specifications from requirements for finite systems.

Its expressive specification language enables users to develop specifications from any application

domain and using any development approach. SCR and RSDS are considered restricted compared

to PVS that is flexible by supporting various specification styles. However, since there is no

2The fine-grain semantics separates the steps within the reaction and represents these as successive steps in the
tables.

6.2 Comparison of RSDS, SCR and PVS 208

Similarities

1. Both assume: only one
sensor event will trigger a
transition at a time.

2. Both process one event
completely before processing
another.

3. Both describe systems with
discrete values.

4. Both distinguish sensor
and actuator values, (known
as monitored and controlled
variables in SCR.

5. Both dont allow circular
dependencies of state
variables

6. The level of detail in
SCR tables is comparable
to the fine-grain semantic
view of RSDS.

7. Both integrate existing
tools for verificaion (by
translation).

Figure 6.13: The similarities between RSDS
and SCR.

RSDS SCR

1. Notation: Tabular notation.
statemachines and
invariants.

2. More types of Only two types of
invariants are invariants: state
defined. invariants and

transition
invariants.

3. Tool still in Very good tool
the initial stages support.
of development.

4. Integrated with Integrate with
SMV and B. PVS, SPIN and

SMV

5. Statemachines Specifications
suffer from the state have many tables
explosion problem. that can be hard to

follow.

6. A number of Mode decomposition
decompositions is always applied.
can be applied.

Figure 6.14: The difference between RSDS
and SCR.

6.2 Comparison of RSDS, SCR and PVS 209

systematic method given for producing specifications, it relies heavily on human ingenuity and

this could be time consuming and may lead to ill-designed specifications. It can be incorporated

into another method that can use its powerful theorem prover for verification, for example it is

part of the techniques associated with the SCR method used for verification.

The PVS development process consists of the following:

1. A specification in the PVS specification language is produced using any style of speci-

fication, such as declarative, axiomatic and algorithmic. The specification is described as a

collection of theories.

2. The specification is parsed automatically to identify syntax errors.

3. The specification is type-checked to identify any semantic errors, such as ambiguous types

and undeclared names. Since type-checking is undecidable, proof obligations are produced

and most are discharged automatically. This type-checking allows for PVS to provide simple

solutions to issues that are considered difficult in other systems, such as accommodating

partial functions. Moreover, it enforces strong checks on consistency and other properties in

a reliable manner.

4. The theorems are proved, automatically or interactively. For interactive proofs, a number

of atomic commands can be used for each deductive step, such as induction, quantifier

reasoning and automatic conditional rewriting. Each proof is divided into a number of

subgoals and is constructed by prompting the user to give a suitable command to prove a

given subgoal. The execution of the command can lead to the generation of further subgoals

or complete the proof of the subgoal and move to another unproven subgoal. The user

can define proof strategies that are applied as commands to enhance automation of proofs.

Model checking has also been incorporated into PVS for automatically verifying finite-state

specifications.

5. The PVS tool is used to produce documentation of the specification.

6.2.3 Evaluation of SCR, PVS and RSDS with the autopilot system

The autopilot was specified in [BH97a] using the SCR tabular notation, with the relation REQ

describing the required system behaviour by expressing the relationship between the monitored

and controlled variables. A mode transition table is used to describe the transitions that occur

when the system mode changes from ALT, ATT or FPA. A number of event and condition tables

are used to describe how the term variables are changed when the various events occur depending

on the system mode. For example, an event table is defined for the term tCASmode (of type

boolean) that represents the CAS mode and it shows when its value is set to TRUE or FALSE

depending on the transitions that occur.

In [But96], the autopilot system was specified in the PVS language. Two modelling techniques

were used: one involved representing the system as a statemachine and the other embraced the

SCR modelling approach. The specification that was modelled on statemachines consists of states

for each system mode and events for inputs initiated by the pilot or from the sensors. It consists of a

6.2 Comparison of RSDS, SCR and PVS 210

number of theories defining the types of the states and events, for describing the possible transitions

and for initialising the system and stating the invariants that must be true for a valid specification.

The states are specified as a tuple of variables contained in the abstract data type RECORD which

is equivalent to the amalgamation of all states in the RSDS specification. The specification that

was generated from adopting the SCR modelling approach decomposed the specification by mode,

rather than by event. Each of the sensors and actuators are described in isolation from each other.

In this comparison we evaluate the specification modelled on statemachines, as we are already

evaluating the SCR modelling approach.

The RSDS specification of the autopilot system resembles the PVS specification using the

statemachine approach, but there are some significant differences. These are summarised in the

following table:

Comparison points RSDS SCR PVS

Requirements
analysis and
specification
development

Formulation of
specification

Level of abstraction

DCFD, invariants &
statemachines &
set of guidelines.
Development process
partly automated.
Also, models
environmental
assumptions.

High & low
Coarse-grain &
Fine-grain

Tabular notation &
set of guidelines.
Also, models
environmental
assumptions.

Low

PVS language -
theories. Very
expressive. No
guidelines for
modelling. Uses
data abstraction
technique.

High

Design System
decomposition

Horizontal
decomposition

Always applies
mode
decomposition.
Many tables,
hard to follow.

No
decomposition
applied, any
can be used.

Validation Simulation &
checks

Simulation,
(animation in B)
inconsistency &
incompleteness
checks

Simulation,
inconsistency &
incompleteness
checks

Validation by
verification
only

Verification Proof support B theorem
prover & SMV

PVS & SPIN PVS

Abstraction
techniques

Model checking Optimisation via
syntax and
decomposition
approaches

Two reduction
principles

N/A

Tool support Tools used RSDS tool, SMV
and BToolkit

SCR tool, SPIN
PVS with TAME
as front end

PVS theorem
prover

In the following sections, we consider in more detail the similarities and differences among

the specifications of the autopilot system. The results are organised according to the aspects

singularised for the purpose of comparison.

Requirements analysis and specification development

The RSDS and SCR method provide a set of guidelines for applying a particular modelling ap-

proach for developing specifications. Some might consider this as being restrictive, even though

6.2 Comparison of RSDS, SCR and PVS 211

their aim is to focus on a specific application domain enriching the development process with ex-

perience obtained from this domain. RSDS in particular, aims to use this experience to automate

the process for facilitating the development of similar systems. PVS, on the other hand, does not

provide a set of guidelines for developing specifications because it is a verification system that

supports systems from different application domains, and any modelling approach can be adopted

for generating a specification in its language. This however, is not always an advantage as it is

much more difficult to produce the specification and can be time consuming as we cannot assume

that the developer is aware of the different modelling approaches.

The comprehensibility of the notation or language used for describing the specification is

important as it aids validation. The SCR method provides a tabular notation that is not very

intuitive and can get complicated when representing large systems. The variable dependency

graph, used to show visually the relationship between the variables in SCR, suggests the need for

a simple graphical view of the system. In [BH97a], this limitation is recognised and the tabular

notation has been improved by reducing the number of tables for this simple example from nine

to just five. The RSDS method uses statemachines, a familiar notation for engineers and can

encourage communication between developers and non-software engineers, and it can be argued

that they are more comprehensible than SCR’s tabular notation. However, statemachines mostly

for the controllers can get very complicated for large systems, but RSDS overcomes this limitation

by automatically deriving the controller statemachines. The statemachines for the sensors and

actuators are usually very simple. PVS provides a very rich specification language and uses

abstract data types that are familiar to software engineers. Its language caters for the concise

description of specifications but it is not very intuitive and difficult to communicate with people

who have no or little experience with PVS.

dependency

tARMED

tALTpresel

tFPApresel

tnear

mcStatus

cFPAdisplaycALTdisplay cCASdisplay

tCASpresel

tCASmode

mALTactual mFPAsw mALTdesired mFPAdesired mFPAactual mCASdesired mCASswmALTsw mATTsw mCASactual

Terms

Monitored variables
(Sensors)

Controlled variables

(Actuators)

ALT subsystem CAS subsystem

weak

Figure 6.15: The SCR variable dependency graph.

When developing system specifications from their requirements, some of the features have

not been finalised and a modelling language should support a specification at a more abstract

level. The specific details of the features can be introduced once they are known. PVS and RSDS

specify system at a more abstract level than SCR. In fact, RSDS provides two levels of abstraction:

the coarse-grain view and the fine-grain view. The level of abstraction of the PVS model (that

6.2 Comparison of RSDS, SCR and PVS 212

implemented the autopilot using statemachines) is similar to the coarse-grain view, because all

the state changes occur in a single step, i.e. the response to an event occurs in a step. The level

of abstraction of the SCR model is similar to the fine-grain view, because the order in which

the events and the state changes occur is specified. PVS can support refinement, although it is

not needed for the autopilot system. SCR claims that the requirements will not be represented

accurately in a more abstract model and can be misinterpreted by developers. During verification,

they obtain an abstraction of the specification in order to verify a smaller model.

The authors in [But96] have not thought to model the physical environmental constraints

imposed in PVS. They could be used, as in RSDS, for eliminating states that are never reached

by adding them as assumptions when proving the properties. Both RSDS and SCR specifications

include these constraints and use them for fault detection.

Design

The SCR method always assumes a decomposition by control mode for all of the example systems

that have been specified ([BH97a], [HB00]). Butler [But96] pointed out that mode decomposi-

tion was not suitable for specifying the autopilot system as there are many interactions between

the modes that lead to complicated tables. The tabular specification of the autopilot originally

consisted of nine tables and later optimised to five, while there are only seven simple statema-

chine modules in RSDS. The problem that arises with a specification with many tables is that

it is difficult to follow one action. Moreover, some systems cannot always be expressed in terms

of system modes. For example, in the Fault-Tolerant Production Cell [Lot96], the only possible

modes that could be identified are: normal, failed and recovering. These provide little insight on

how to specify the system and will possibly lead to a large and complex tabular specification for

each mode.

RSDS, guided by the dependencies denoted by the invariants, chose horizontal decomposition

as a suitable approach even though mode decomposition was an option. This choice was made

because the variables for CAS do not depend on any other variables in the system as illustrated

by the variable dependency graph of SCR in Figure 6.15. RSDS is equipped with a number

of decomposition approaches as we have already mentioned. PVS does not explicitly provide

decomposition techniques, but if these are known they can be used to produce the specification.

PVS has already shown how it can specify the autopilot using two different approaches, one that

applies mode decomposition and another that is event-driven. It must be possible for PVS to

apply all of RSDS’s decomposition approaches, and many others too.

Validation

In SCR the system is validated in two ways: first a consistency checker is executed that checks for

proper syntax, missing cases, nondeterminism and type correctness, and then a simulator can be

used to execute the requirements and discuss the results with the client to see if the system behaves

as intended. For the autopilot system, SCR and RSDS identified more cases of inconsistencies

than PVS. Moreover, SCR insists upon certain information in order to formulate the specification

and this is also the case for RSDS. For example, in RSDS the statemachines require the definition

6.2 Comparison of RSDS, SCR and PVS 213

of initial states and SCR specifications require these too.

In RSDS inconsistencies or incompleteness are detected by analysing the invariants and this

can be automated. Also, the RSDS specification can be automatically translated into B and the

B animator can be used to execute the specification.

PVS relies on human inspection for detecting inconsistencies and incompleteness as well as for

determining whether the specification satisfies the intended behaviour. Consistency can only be

checked via proof in PVS but its success depends on the properties devised.

Verification

Verification is PVS’s major strength. The specification must satisfy the properties that are pre-

sumed to be true of the system. These properties (or system invariants) are extracted from the

requirements as for RSDS and SCR specifications. A predicate is used to describe the union of

the system invariants and commands are applied for proving that this property is satisfied. For

the autopilot, a single command (GRIND) is only used to prove by induction and its performance

is compared to those of model checkers. There are different ways in which the proof can be formu-

lated and these require ingenuity and experience for deciding which commands to use. The version

of PVS used to specify the autopilot did not support the verification of temporal properties and

thus these were never mentioned. However, model checking has been integrated into PVS so that

temporal properties for finite state systems can be verified.

SCR relies on PVS and the model checker SPIN for verification. For the autopilot system,

it identified two additional properties than the PVS specification described. One of these was a

temporal property, known as a transition invariant in SCR that describes the system in terms

of the next step, similar to action invariants in RSDS. The other property is known as a state

invariant for determining the reachable states in the system, similar to static invariants in RSDS.

PVS is used by SCR in the same way that B is used in RSDS. The main difference is that in B the

modular structure of RSDS is preserved so that proof can be localised and the specification can

be refined further in order to produce code automatically. Although PVS is a very comprehensive

language, B is a more comprehensible language for RSDS users as the coarse-grain view corresponds

to abstract B machines and the fine-grain view to B implementations. SCR has had to provide

their own interface TAME for understanding PVS comments. The temporal property is proven

automatically using SPIN. RSDS uses SMV for verifying temporal properties and identified further

properties for reachability. These properties are aimed at ensuring that an undesired state is never

reached. We do not compare the resources as it would be unfair as the specification of the machines

and the performance of the model checkers used have improved remarkably since the papers were

written. The translation to SMV from RSDS is modular and properties can be proven locally.

An additional invariant is defined in PVS than in RSDS because of the way in which the

variables are defined for the modes. A variable is defined for each mode and is either: enganged,

off or armed and therefore invariants are needed to ensure that only one of the three modes

(ATT, FPA, ALT) is engaged at any one time, independently from the CAS mode. In RSDS, the

decomposition strategy chosen, ensures that this invariant is true and thus does not need to be

explicitly proven.

6.2 Comparison of RSDS, SCR and PVS 214

Abstraction techniques

Since both SCR and RSDS use model checking for verification, it is reasonable to assume that

some kind of abstraction techniques is applied to both in order to reduce the state space of the

model. This allows the verification of some system properties that would otherwise be impossible.

SCR uses the two reductions principles (one for eliminating irrelevant entities and the other applies

abstraction of monitored variables) of [BH97b, BH99] to obtain an abstract specification which

is translated to the language of SPIN. If a counter-example is produced, this is run with the

simulator that highlights the cause of the violation in SCR. A disadvantage of using SPIN is that

it mostly produces long counter-examples, while SMV always guarantees to produce the shortest

path. Moreover, the language of SPIN (Promela) does not cater for the expression of both “new”

and “old” values of variables. To overcome this, SCR [BH99] explicitly represents each value with

separate variables, thus increasing the state space. This problem is not evident in SMV.

The RSDS specification is translated into SMV for verification. For the autopilot system, a

number of optimisations have been applied on the statemachines when generating the controller

that contribute to the reduction of the state space. Eminently, the decomposition approaches aid

verification. For example, the autopilot is decomposed horizontally and thus can be translated

into separate SMV programs for each subsystem to verify the properties locally.

PVS is not impaired by the state space explosion problem. In the development of the autopilot

system, they introduce a data abstraction technique for abstracting the details of the possible

values of variable. For example, the range of values for the altitude sensor is: at, near, away

instead of the integer values and similarly for the displays whose possible values are: current and

desired. This technique corresponds to the second reduction principle in SCR for removing detailed

monitored variables. We have applied this abstraction technique to the RSDS specification, as

this facilitates the translation into SMV as SMV is not efficient at representing integers.

The SCR specification of the autopilot consists of twenty variables (including monitored, con-

trolled, mode class and terms), compared to only ten in the PVS specification, one for each mode,

display and altitude sensor, current event and current state. The SMV model for the RSDS spec-

ification consists of only nine variables as the modes are represented by two variables. The state

space of the SMV model for RSDS specification and the PVS specification is the same.

Tool support

Both SCR and RSDS have some tool support for supporting the development of a specification

from its requirements. They have embodied a collection of tools and provide translations to

the languages of the various tools. SCR aims to seamlessly integrate these tools into the SCR

toolkit and it provides interfaces for interpreting the results. The advantages lie in that developers

minimise the amount of new languages and tools they need to learn.

RSDS provides automated translations whose correctness has been verified but does not provide

an interface for interpreting the results obtained from the tools. It provides a number of templates

to facilitate development and aims to automate as much of the development process as possible,

more than SCR, for example the automatic derivation of the controller statemachine from the

sensors. The SCR tool has been used extensively in industry [Hei02] while the RSDS tool is

6.3 Related Work 215

still in its early stages of development. PVS is also a well-established interactive verification

system to support proof of systems specified in their rich language. It provides no support for the

development of specifications.

6.3 Related Work

In [DT96], a method for developing embedded software systems by using B is introduced that can

be compared to RSDS. The set of requirements of a system are expressed at an abstract level

formally in B and then by applying a number of refinement steps, the specification is structured

and expressed in the form required for translation into code. The disadvantage of introducing all

these refinement steps in B is that refinement is difficult to produce and depends on the skills

of the developers (the process cannot be easily automated). This can introduce errors into the

specification because of human interaction, and can be time consuming. The advantage of this

method is that difficult proofs can be decomposed into a number of smaller proofs that can be

easily proven. RSDS structures the specification at the DCFD and statemachine stage which is

easier and does not introduce any refinement steps in B.

RSML [LHHR94] is a requirements specification language that uses a modified notation of

statemachines ([HN96], [PS91]) as well as other techniques like AND/OR tables, to specify each

component. It is limited with respect to the structuring mechanisms that it provides: like SCR,

it only decomposes the controller by modes. In [CAB+98], RSML specifications are translated

into SMV for model checking. In particular, they translated a portion of the Traffic Alert and

Collision Avoidance System (TCAS II) whose state space size is 1.4 × 1065, which is much larger

than that of the autopilot specification. The translation presented does not represent the modular

structure of statemachines in SMV, i.e. no SMV modules are defined. However, they do translate

more complex states (not in the semantics of RSDS) such as nested OR states and nested AND

states, but by flattening them first. Also, they translate timing constraints which are not defined

in RSDS.

DOVE (Design Oriented Verification and Evaluation) [Dov] is a tool with a graphical editor

for drawing statemachines, an animator for simulating the execution and a prover for verifying

the critical properties. The tool does not provide structuring mechanisms and guidelines and does

not check the liveness property because it represents only finite configurations. However, it can

check only the progress property i.e. a state can be reached after a number of transitions.

iState [SZ01] is a tool for translating statecharts (a restricted version of UML statecharts) into

programming languages, namely Pascal, Java and AMN, for validation. Its not a method, as it

does not provide a set of guidelines or a systematic way in which to specify systems, so it cannot

be directly compared to RSDS, SCR, and RSML. However, the translation to AMN is comparable

to the RSDS translation to AMN. They both take an event-centric translation approach, meaning

that the main structure of the code is that of events. The translation from RSDS to SMV is state-

centric, meaning that the main structure of the code is that of states. The statechart notation

in [SZ01] differs from RSDS statemachines, for example. it allows for states (including initial) to

have several outgoing transitions. Moreover, a proof of correctness for the translations in [SZ01]

has not been given.

6.4 Summary 216

STATEMATE is a tool for specifying and analysing systems. Its modelling language is a

statechart variant. In [CH00], a translation is described from STATEMATE statecharts to SMV,

that is modular, i.e. it preserves the hierarchy structure of the statecharts in the SMV code

generated. Although RSDS translations are also modular, the STATEMATE statecharts are more

expressive than RSDS statemachines as they contain nested AND and OR states. The translation

in [CH00] produces large and complicated SMV code, containing boolean variable definitions for

each event and generated event, and the SMV modules contain a large number of parameters for

passing these events around, both of which increase the state space significantly.

The algorithm for performing this translation [CH00] has been used in the IFADIS toolkit

[LH02], whose aim is to support the analysis of dependable interactive systems by model checking.

It is aimed at practising engineers in the avionics industry that are not familiar with SMV. A

statechart model of the system is first developed using the STATEMATE toolkit [Sta]. Then this

model is imported into the IFADIS toolkit and automatically translated into SMV using [CH00].

The engineer then chooses the kind of properties to be analysed from either property specification

patterns or a list of templates for usability properties, and instantiates them with appropriate

values from the system model. The properties are checked by SMV and the results are presesnted

in an enhanced tabular view (i.e. detailing the steps of the trace for counter-examples). RSDS

differs from IFADIS in two ways. It provides a specific statemachine notation (rather than using

STATEMATE etc.) that supports the specification of reactive systems in a systematic way (for

example, it provides decomposition approaches, type of modules to be used). Secondly, if counter-

examples are produced from SMV, they can be easily corrected on the RSDS model. IFADIS does

not present a direct mapping of the counter-example onto the statechart model, but just presents

the counter-example in an accessible way.

6.4 Summary

The control panel of a simple autopilot system was developed using RSDS for the purpose of

comparison with SCR and PVS that have previously developed it. An overview of the issues

discussed in the comparison are given in the following table.

6.4 Summary 217

Comparison points RSDS SCR PVS

Requirements
analysis and
specification
development

Formulation of
specification

Level of abstraction

DCFD, invariants &
statemachines

High & low

Tabular notation

Low

PVS language

High

Design System
decomposition

Horizontal
decomposition

Mode
decomposition

No
decomposition

Validation Simulation &
checks

Simulation,
inconsistency &
incompleteness
checks

Simulation,
inconsistency &
incompleteness
checks

Validation by
verification
only

Verification Proof support B theorem
prover & SMV

PVS & SPIN PVS

Abstraction
techniques

Model checking Optimisation via
syntax and
decomposition
approaches

Two reduction
principles

N/A

Tool support Tools used RSDS tool, SMV
and BToolkit

SCR tool, SPIN
PVS with TAME
as front end

PVS theorem
prover

We conclude from this experience that a method supported by a collection of tools is far

better at developing specifications of reactive systems rather than just a verification system. The

development method should be flexible but provide guidelines or templates of design approaches

to facilitate development. It is clear that both model checking and theorem proving are required

for verification since model checking is not suitable for modelling the environment.

CHAPTER 7

Model Checking RSDS/UML Specifications

The RSDS/UML method supports the development of systems in an object oriented way. At

present, we focus on specifying reactive systems (in particular control systems) with RSDS/UML

but we aim to widen the application domain to include financially-critical systems1. RSDS/UML

uses a restricted subset of UML notations (class diagrams, object diagrams and statecharts) for

specifying the behaviour of systems. The advantage of using UML is that it provides notations that

are used in mainstream software development and are thus familiar to most software engineers.

In addition, UML is scalable for large systems. However, UML lacks precise semantics which

consequently makes formal verification of UML specifications impossible. Therefore, RSDS/UML

provides formal semantics for this subset of UML and as a result the properties of RSDS/UML

specification can be verified. The semantics for the class diagrams and object diagrams are more

or less standard, while the semantics for the statecharts correspond to an object oriented variant

of SRS statemachines with coarse-grain and fine-grain views.

The problem that we address in this chapter is how to provide verification support for control

systems developed with RSDS/UML. Since model checking was used successfully for verifying

the temporal properties of RSDS specifications, we apply model checking to RSDS/UML speci-

fications as well. Therefore, we define translation rules for mapping elements of an RSDS/UML

specification into elements of the SMV input language. We also discuss how suitable SMV is for

expressing object oriented concepts as SMV does not have high-level data types or constructs that

are commonly used for specifying software.

By providing verification support for RSDS/UML specifications, we not only provide an object

oriented formal approach to developing safety-critical systems, but also provide a way for verifying

UML specifications. Several tools and methods already exist that provide verification support for

UML system models. However, we find that they have the following shortcomings: they provide

translations to the input language for a model checker, theorem prover or other formal methods

verification system, but they do not provide a proof of correctness with respect to the UML

1Financially-critical systems are systems whose failure may result in a devastating economic loss.

7.1 RSDS/UML Specifications 219

semantics. Furthermore, they either verify the static (e.g class diagrams) or dynamic aspects (e.g.

statecharts) of UML, but not both. For class diagrams, the constraints supported do not reason

over the correctness of the dynamic creation or deletion of class instances or on the dynamic

creation or deletion of associations between classes. We address these issues in our translation.

In this chapter we first present the subset of UML notations that constitute an RSDS/UML

specification and formally describe their semantics. We consider to what extent the object oriented

constructs can be represented in the SMV language and describe numerous translation rules for

mapping elements of coarse-grain RSDS/UML specifications to elements of the SMV language.

To ensure that the translation preserves the semantics of RSDS/UML, we formally prove its

correctness. RSDS/UML is currently being revamped, so we discuss how the translation can be

adapted and we also test the efficiency of particular representations that we chose to implement

in SMV. Finally, we evaluate our work with respect to other approaches.

7.1 RSDS/UML Specifications

RSDS/UML uses a restricted subset of UML class diagram, object diagram and statechart notation

to specify the static and dynamic behaviour of control systems. These models present different

views of a system. A class diagram is used in the place of the DCFD to model the relationship

of system components with classes and associations. The instances of classes and associations are

visualised using object diagrams. Invariants are defined in the class diagram using LOCA (Logic

of Objects, Constraints and Associations) [Lan05], asubset of OCL. The dynamic behaviour of

instances is described using statemachines by presenting their internal states and their reaction

to external events. The decomposition techniques can be applied to RSDS/UML specifications as

well, however we do not consider these techniques in the work defined in this chapter.

7.1.1 Class Diagrams

A class diagram is composed of classes and associations. Classes are encapsulations of state and

operations that model its behaviour by updating and querying the state. They are depicted as

rectangles that enclose definitions of their state and operations. On the top RHS corner of a class

there is usually an integer, we call the class multiplicity, that indicates the maximum number

of instances that can be created for that class. These instances can be created and destroyed

dynamically (at run-time) as needed. Associations model the interaction between the instances

of the classes involved, where this interaction results in the instance of one class requiring the

interaction of another in order to perform its operations. They are depicted as solid lines between

two classes. Cardinality can be defined on both ends of an association that indicate the number

of instances of each class that are related. If no cardinality is provided, it is assumed that it is 1,

i.e. one instance of a class is related to one instance of the other class that is associated.

For control systems, RSDS/UML represents each controller and actuator by a separate class

and their relationships are represented by associations. These relationships could not be modelled

with the DCFD and neither could the class state and operations. Figure 7.1 illustrates a class

diagram produced for the most basic type of control system, that is one with a single controller

7.1 RSDS/UML Specifications 220

and actuator. The controller class has only one instance and it always exists. It is derived from

the sensors by combining their states and represents the sensor events and transitions. Actuator

classes have a finite number of possible instances, whereby the maximum is expressed by the class

multiplicity. We explicitly define the class multiplicity because class instances representing control

system components correspond exactly to physical components and any omission of instances could

lead to a serious violation of properties. Actuator classes are never associated with each other.

...

Controller

state
sensor_event

CT1
CT2

CTn
...

ATm
...

AT2
AT1

act_state

Actuator1 * p

state = val1 => act_state = val2

Figure 7.1: A typical class diagram for a basic control system developed using RSDS/UML.

7.1.2 Invariants

In UML class diagrams, constraints are used to impose restrictions on the system and/or the

environment and are expressed in LOCA [Lan05, LCA02d], a subset of OCL 2.0 specification

notation. The syntax for this subset is illustrated in Table 7.1. LOCA uses the OCL types: OclAny

that is a supertype of booleans, numerics and strings, and the parameterised types: Collection 〈T 〉,
Set 〈T 〉 and Sequence 〈T 〉. We further restrict this subset for RSDS/UML to include only discrete

integer values (i.e. no integers of type Real). The mapping of LOCA to syntax to the standard

OCL syntax is illustrated in Table 7.2 and e′ denotes the translation of e. The numeric opererators

/,+, ∗, <,>,<=, >= on numeric expressions have the same form in both OCL and LOCA. For this

version of RSDS/UML, we only use the following LOCA syntax to describe invariants: OclAny,

Integer, Boolean, Sequence and Other.

Usually, constraints are attached to classes as class invariants, or to operations as pre and post

conditions. Invariants are true before and after an operation, i.e. they can be temporarily broken

during an operation. The meta-model definition of UML allows constraints to be attached to any

model element. RSDS/UML adopts this approach and allows constraints to be attached, not only

to classes and operations, but to associations as well. The advantage of this approach is that

one can specify how the states of attributes of one object relate to those of other objects in an

abstract way, without defining explicitly which classes are responsible for enforcing the constraints.

The invariants can be described as constraints on states of specific objects or can be generalised

to apply to all objects (see Other in Table 7.2 for LOCA syntax). An example of an invariant

described as the latter is illustrated in Figure 7.1: state = val1 ⇒ act state = val2 that is

interpreted as:

∀x, y · (x, y) ∈ Controller Actuator ∧ x.state = val1 ⇒ y.act state = val2

7.1 RSDS/UML Specifications 221

〈 value 〉 ::= 〈 ident 〉| 〈 number 〉|
〈 string 〉 | 〈 boolean 〉

〈 objectref 〉 ::= 〈 ident 〉 |
〈 objectref〉.〈 ident〉 |
〈 objectref〉 | (〈 expression〉)

〈 arrayref 〉 ::= 〈 objectref 〉 |
〈 objectref 〉 [〈 value 〉]

〈 factor 〉 ::= 〈 value 〉 |{〈 valueseq 〉} |
Sequence {〈 valueseq 〉} |
〈 objectref 〉 | 〈 arrayref 〉|
〈 factor 〉 op1 〈 factor 〉

〈 expression1 〉 ::= 〈 factor 〉 op2 〈 factor 〉

〈 expression 〉 ::= 〈 expression1 〉 |
(〈 expression 〉) |
〈 expression1 〉 op3 〈 expression 〉

〈 invariant 〉 ::= 〈 expression 〉 |
〈 expression 〉 ⇒ 〈 expression 〉

valueseq is a comma-separated sequence of values

op1 is a factor-level operator such as +,−, ∗, /,_, /\or/\

op2 is a comparator: =, /,=, >,>=, <,<=, :, / :, <: or/ <:

op3 is &, or

Table 7.1: LOCA syntax from [Lan05].

7.1 RSDS/UML Specifications 222

LOCA OCL Note

OclAny
x = y x′ = y′

x/ = y x′ <> y′

Integer
x+ y x′ + y′ Likewise for −, /, ∗
x < y x′ < y′ Likewise for >,<=,>=
{n1, ..., nm}.max n′

1.max(n
′

2.max(...n
′

m...)) Numeric expressions n1, ..., nm

{n1, ..., nm}.min n′

1.min(n′

2.min(...n′

m...)) Numeric expressions n1, ..., nm

{n1, ..., nm}.sum n′

1 + ...+ n′

m No duplicates in n1, ..., nm

x div y x′.div(y′) Likewise for mod

String
str.size str′.size()
str1 + str2 str1’.concat(str2′)

Boolean
b1 & b2 b1′ & b2′

b1 or b2 b1′ or b2′

b1 ⇒ b2 b1′ implies b2′

Collection
c.size c′ → size
x : c c′ → includes(x′)
x/ : c c′ → excludes(x′)
c1 <: c2 c2′ → includesAll(cl′)
coll — (P) coll′ → select(P ′) coll is a collection
c.sum c→ sum()

Set
s = {} s′ → isEmpty()
{x1, ..., xm} Set{x′

1, ..., x
′

m}
set \ / set2 set′ → union(set2′)
set /\ set2 set′ → intersection(set2′)
set \/ {elem} set′ → including(elem′)
set - {elem} set′ → excluding(elem′)
set1 - set2 set1′ − set2′

Sequence
Sequence{x1 , ..., xm} Sequence{x1 , ..., xm}
seq[i] seq′ → at(i′)
seq.asSet seq′ → asSet()
seq1 _ seq2 seq1′ → union(seq2′)

Other
C C.allInstances()
self self

Table 7.2: Mapping of LOCA syntax to OCL from [Lan05].

7.1 RSDS/UML Specifications 223

where Controller Actuator is the set of pairs of objects in the association between Controller

and Actuator.

7.1.3 Object Diagram

Object diagrams represent instances of classes and associations depicted in a class diagram. There

are many object diagrams for each class diagram. RSDS/UML specifications have finite number

of possible object diagrams as the number of class instances is finite.

Let us suppose that the class diagram in Figure 7.1 represents a simple reactive system, that

consists of two sensors (a switch and a fluid detector) and two actuators (valves) that are instances

of class Actuator (therefore, p = 2). The aim of the system is that when the switch is pressed

(state of switch = on), the valves must be set to open in order to allow some fluid to pass through.

The fluid detector is used in order to determine when to close the valves and for fault detection.

A possible object diagram is illustrated in Figure 7.2, showing the initial values for this system.

Valve1: Actuator

act_state = closed

Cont: Controller

sensor_event = switchON
state = off_noFluid

Valve2: Actuator

act_state = closed

state = on_fluid => act_state = open
...

state = on_fluid => act_state = open
...

Figure 7.2: A possible object diagram for the class diagram in Figure 7.1.

7.1.4 Statemachines

A statemachine is produced for each class in the class diagram, representing the dynamic be-

haviour of the class. The statemachine notation employed is an object oriented variant of SRS

statemachines notation used for describing RSDS specifications. It can also be considered as a

restricted subset of UML statechart diagrams. The UML statecharts are restricted in the following

ways:

1. Deferred events are not considered.

2. No nested states are represented. Hence, no history states (where a superstate can recall its

last active substate) are modelled or interlevel transitions.

3. We do not allow non-deterministic transitions.

7.1 RSDS/UML Specifications 224

4. We do not deal with object oriented issues represented in UML statecharts such as inheritance

or sub-behaviour in statecharts.

Moreover, RSDS/UML statemachines have two semantic views: the coarse-grain and the fine-

grain view. Both views do however model the “run to completion” semantics of UML statecharts.

7.1.5 The gas burner system

Recall the gas burner system specified in section 3.5. It can be redesigned to contain a class

Controller, a class Igniter and a class Valve. The classes Controller and Igniter have only one

instance each, while Valve has two instances, one for the air valve and another for the gas valve.

This design is conceptually coherent as the air and gas valve are similar in form and function.

The invariants 3.1 to 3.7 (given in section 3.5) are attached to the associations between the

classes. Figure 7.3 illustrates the class diagram for the gas burner with the invariants attached to

associations. The class Controller is responsible for enforcing the constraints.

vstate = open

Valve

vstate

2 Igniter

istate1

(3.2) state = on_absent => istate = on

Controller

state

CtoV CtoIg

(3.6) istate = on => Gv.vstate = open

(3.3) state = on_present | state = off_present =>

(3.4) state = off_present | state = off_absent =>

Av.vstate = open & istate = off

Gv.vstate = closed & istate = off

(3.1) state = on_absent | state = on_present =>

(3.5) state = off_absent => Av.vstate = closed

(3.7) Gv.vstate = open => Av.vstate = open

Figure 7.3: The class diagram for the gas burner system.

7.2 RSDS/UML Semantic Foundations 225

7.2 RSDS/UML Semantic Foundations

We have described the expected form of the RSDS/UML system specification by describing some

syntactic restrictions. In this section we describe the precise semantics for RSDS/UML specifica-

tions as first order CTL theories as published in [LCA02a, LCA02c]. We use first order CTL as we

want to define the meaning of all instances of classes. The semantics described are more general

than the expected form of RSDS/UML specification as we want to gradually evolve RSDS/UML

to support more UML features without losing the benefits of using the control system structure

for automating as much of the control algorithm as possible. These syntactic restrictions are

gradually relaxed as RSDS/UML is applied to systems from different application domains. In the

meantime, these syntactic restrictions can be considered as guidelines that assist the developer in

modelling the system requirements simply and in a familiar notation.

7.2.1 Class Diagrams

A class diagram CDSys for a control system describes a set {C1, ..., Cn} of classes, and associations

{r1, ..., rn}. Each association has a set of association ends where each end has a corresponding

class and cardinality. The cardinality determines how many objects of a class are associated at a

time. It is interpreted as a set of numbers, for example:

i) 1 is {1},
ii) 0...p is {0, .., p},
iii) ∗ is N,
iv) p...q is {p, .., q}. If no cardinality is provided, it is assumed to be 1. On the top RHS

of a class, there is a cardinality that represents the maximum number of instances that can be

created for this class. The cardinality is interpreted as a natural number (constant in N).

A first order CTL theory ∆CD is defined for a class diagram. This consists of the following

type symbols, attributes and action symbols:

• Type symbols @C for each class C that refers to all possible instances that can exist for

class C, @Di for each end point i of associations, and for standard primitive types bool, int,

etc;

• Attributes

C : F(@C)

for the set of all existing instances of each class C , and r : F(@D1 × ...× @Dk) for the set

of all existing instances of each association r, with end points at classes D1 to Dk;

• Attributes

att : @C → T

for each attribute att : T of class C where T is the attribute type. We may write x.att

for att(x) to emphasise that these represent variables at the instance level. Moreover, the

mode of C (that is the current state of its corresponding statemachine Sm) is included as

an attribute sm : @C → StatesSm;

7.2 RSDS/UML Semantic Foundations 226

• An attribute

mC : N

representing the class multiplicity for each class C.

• Action symbols

op : @C × T1 × ...× Tp → T

for each operation op(T1, ..., Tp) : T of class C where T1, ..., Tp are the parameters of the op-

eration, and T is the return type. The syntax x.op(v1, ..., vp) can be used for op(x, v1, ..., vp);

• Actions for creating and deleting instances:

newC : @C →
killC : @C →

• Actions for linking and unlinking tuples of instances in relationships:

linkr : @D1 × ...× @Dk →
unlinkr : @D1 × ...× @Dk →

• Pseudo-attributes

bs : @A→ F(@B)
as : @B → F(@A)

for each binary relation r between classes A and B. The notations y ∈ bs(x) and x ∈ as(y)

abbreviate (x, y) ∈ r.

The theory ∆CD also consists of the following axioms:

RU1 Axioms defining the initial state of attributes:

newC(x) ⇒ AX(att(x) = val)

where val is the initial value of att specified in the class diagram;

RU2 Axioms

AG(r ⊆ D1 × ...×Dk)

for each association r, with end points at classes D1 to Dk;

RU3 Axioms defining the allowed cardinality of an association: if ck is the cardinality of asso-

ciation r at end k, expressed as a set ck of elements of N, then for each particular tuple

(x1, ..., xk−1) ∈ D1 × ...×Dk−1 at the other ends, the number of elements x ∈ Dk such that

(x1, ..., xk−1, x) ∈ r must be in ck. Similarly for each of the indexes;

RU4 Axioms for creating and deleting instances:

AG(∀X : F(@C) · C = X ∧ newC(x)
⇒ AX(C = X ∪ {x}))

AG(∀X : F(@C) · C = X ∧ killC(x)
⇒ AX(C = X − {x}))

for each association between D1 to Dk.

7.2 RSDS/UML Semantic Foundations 227

RU5 The axioms for linking and unlinking tuples of instances in relationships are:

AG(∀X : F(@D1 × ...× @Dk) · r = X ∧ linkC(x1, ..., xk)
⇒ AX(r = X ∪ {(x1, ..., xk)}))

AG(∀X : F(@D1 × ...× @Dk) · r = X ∧ unlinkC(x1, ..., xk)
⇒ AX(r = X − {(x1, ..., xk)}))

RU6 The axiom:

card(C) ≤ mC

asserts that the number of existing instances of class C must be less than or equal to the

class multiplicity. Similarly for all classes;

RU7 Axioms AG(@E ⊆ @C) and AG(E ⊆ C) if E inherits C;

RU8 Locality axioms, stating that for each class C and attribute att : T of C where the oph are

all the operations of C, if no operations occur in C then the attribute does not change:

AG(∀att : @C → T · ∀x : @C · ∀x : @∀v : T · att(x) = v ∧
∀x1 · ¬op1(x1) ∧ ... ∧ ∀xh · ¬oph(xh) ⇒ AX(att = v))

THEORY ∆CD

Attribute symbols:

C : F(@C) for the set of existing instances of class C
r : F(@D1 × ...× @Dk) for the set of existing instances of each association r
att : @C → T for each attribute
sm : @C → StatesSm for the corresponding statemachine
mC : N for the class multiplicity
bs : @A→ F(@B) pseudo-attribute for the binary relationships
as : @B → F(@A) pseudo-attribute for the binary relationships

Action symbols:

op : @C × T1 × ...× Tp → T for each operation
newC : @C → for creating an instance of a class
killC : @C → for deleting an instance of a class
linkr : @D1 × ...× @Dk → for linking tuples of instances in relationships
unlinkr : @D1 × ... × @Dk → for unlinking tuples of instances in relationships

Axioms:
[RU1]
[RU2]
[RU3]
[RU4]
[RU5]
[RU6]
[RU7]
[RU8]

7.2.2 Invariants

RSDS/UML invariants have the same form as that of RSDS invariants, that is, static, operational

and temporal. The key difference is that the invariants are not just attached to the controller

7.2 RSDS/UML Semantic Foundations 228

component (corresponding to the controller class in RSDS/UML), they can be attached to any

component class as well as to any association between the classes. Moreover, the invariants are

given without quantifiers but these are implicit as they quantify over all instances of classes whose

attributes are referred to in the invariants. This is made evident in the semantic interpretation of

these constraints.

The invariants that are attached to classes describe constraints on attributes local to their

objects. Formally, a constraint φ on a class C has the semantic interpretation:

AG(∀x : C · φ(x))

where x denotes a class instance and is a parameter of attribute att of C in φ(x). An example of

an invariant φ is att ≤ 10 that imposes a restriction on a local attribute. It is interpreted by:

AG(∀x : C · att(x) ≤ 10)

The invariants attached to associations consist of constraints of attributes of objects that are

related to each other via that association. Formally, a constraint on an association r between

classes D1 to Dk is interpreted by

AG(∀x1 : D1; ...;xk : Dk · (x1, ..., xk) ∈ r ⇒ φ(x1, ..., xk))

where each attribute att of Di occurring in φ is replaced by att(xi) in φ(x1, ..., xk). For example,

the gas burner invariant 3.2 in Figure 7.3 is interpreted as:

AG(∀z : Ig; c : Controller · (c, z) ∈ Controller Ignitor ⇒
(state(c) = on absent ⇒ istate(z) = on))

where Ig refers to the ignitor component. Ig and Controller are the classes at the end points of

the association Controller Ignitor.

7.2.3 Object Diagrams

An object diagram displays a set of objects of classes and a set of links between the objects that

are instances of associations in the class diagram. For an object diagram OD we define a first

order CTL theory ΩOD. This consists of type symbols and attributes:

• Type symbols @C for each class C and for the primitive types;

• Attributes C · F(@C) for each class C, and r : F(@D1 × ... × @Dk) for each association r,

with end points at classes D1 to Dk;

• Attributes

att : @C → T

for each attribute att : T of class C;

The theory ΩOD also consists of the following axioms:

7.2 RSDS/UML Semantic Foundations 229

RU9 Axioms

AG(C = {x1, ..., xp})
where the xi are all the existing objects in the diagram declared to be of class C or of a

subclass of C;

RU10 Axioms

AG(r = {t1, ..., tq})
where the tj are all the tuples of existing objects corresponding to the links in the diagram

declared to be the instances of r;

RU11 Axioms AG(att(obj) = val) for each attribute equation att = val listed in object obj.

THEORY ΩOD

Attribute symbols:

C · F(@C) for each class C
r : F(@D1 × ...× @Dk) for each association r
att : @C → T for each class attribute att

Axioms:
[RU9]
[RU10]
[RU11]

7.2.4 Statemachines

Every class in the class diagram has a statemachine associated to it. The definition of the statema-

chine is given in terms of functions and corresponds to that of the original RSDS defined in section

3.2. The generations of transitions in the controller statemachine are defined as:

generationsC : TransC →
(@CC → seq(EventsR1 × @CR1 ∪ ... ∪ EventsRp

× @CRp)) where the set of system

receivers receiversSys(C) = {R1, ..., Rp} and the CRi are the classes corresponding to the Ri

statemachines, CC is the class corresponding to C.

There are two distinct semantics for the RSDS statemachines: the coarse-grain and the fine-

grain. The semantics are described in first order CTL theories and are more general than the

semantics used to describe the original RSDS. This is because the controller statemachine is not

necessarily an amalgamation of the system’s sensors which means that the developer can define

any SRS statemachine for it.

Coarse-grain semantics

The external events of an RSDS system Sys are the sensor events:

ExtSys =
⋃

i:1...nEventsSi
where the set of sensors of Sys is Sen = {S1, ..., Sn}. All

other events of Sys are internal.

A theory ΓSm is defined for each component statemachine Sm for a class C. This has a single

attribute

7.2 RSDS/UML Semantic Foundations 230

sm : @C → StatesSm

and it has action symbols

act : @C → for each element act of TransSm ∪EventsSm.

The axioms of ΓSm include:

RU12 The state-transition behaviour of Sm, for all x : @C:

AG(sm(x) = s ∧G(x) ∧ α(x) ⇒ tr(x))
AG(tr(x) ⇒ α(x))
AG(sm(x) = s ∧ tr(x) ⇒ AX(sm(x) = t))

for each transition tr of Sm with source s, target t, guard G, and trigger event α.

RU13 That at most one transition of Sm can occur in a step:

AG(∀x, y : C · ¬(tr(x) ∧ tr′(y)))

for each pair of distinct transitions of Sm. Similarly for events.

RU14 That a transition can only occur if Sm is in its source state:

AG(tr(x) ⇒ sm(x) = s)

where s = sourceSm(tr).

RU15 Locality:

AG(∀v : StateSm · sm(x) = v ∧
¬tr1(x) ∧ ... ∧ ¬trh(x) ⇒ AX(sm(x) = v))

Notice that events may happen in a state from which there is no transition for the event. The

state remains unchanged in this case.

THEORY ΓSm

Attribute symbols:

sm : @C → StatesSm for the state of the statemachine

Action symbols:

act : @C → for the generated events

Axioms:
[RU12]
[RU13]
[RU14]
[RU15]

At the system level, we define the theory ThSys of the complete RSDS/UML specification Sys

as the union of class diagram theory and each of the statemachine theories, together with the

following global axiom:

RU16 For a controller transition tr with generations ρ:

AG(tr(x) ⇒ ρ(1)(y1) ∧ ... ∧ ρ(p)(yp))

where p is the size(generations(tr)(x)), ρ(i) is the action symbol corresponding to event

first((generations(tr)(x))(i)), and yi = second((generations(tr)(x))(i)).

7.2 RSDS/UML Semantic Foundations 231

THEORY ThSys

Attribute symbols:

All attributes of ∆CD, the class diagram theory
All attributes of all ΓSm statemachine theories (without duplicates).

Action symbols:

All action symbols of ∆CD, the class diagram theory
All action symbols of ΓSm statemachine theories (without duplicates) .

Axioms:
All axioms of ∆CD, the class diagram theory,
All axioms from all the ΓSm statemachine theories, and
[RU16]

Fine-grain semantics

The fine-grain semantics of Sys consisting of sensors S1, ..., Sn, controllers C1, ..., Cm and actuators

A1, ..., Ap can be expressed in terms of statemachines of the components together with axioms on

the attribute

event queue : seq(EventToken) of ThSys which holds a sequence of tokens representing

pending events. EventToken is isomorphic to the set EventSys of all events of the system:

EventsSys =
⋃

i:1..nEventsSi
× @Xi ∪

⋃
i:1..mEventsCi

× @Yi∪⋃
i:1..pEventsAi

× @Zi

where Xi is the class corresponding to Si, Yi is the class corresponding to Ci and Zi is the

class corresponding to Ai. Let name : EventsSys → EventToken be this semantic isomorphism.

The global axiom (RU16 defined at the system level) of the coarse-grain semantics is replaced

by the following axioms on the event queue:

RU17 The event queue is initially empty : BEG ⇒ event queue = []

RU18 An external event α can only be responded to if the queue is empty:

AG(t(x) ⇒ event queue = [])

for each transition t with trigger event some α ∈ ExtSys.

RU19 When an external event is accepted by the system, generations of the triggered transition

become the new event queue. All these events should be internal:

AG(tr(x) ⇒ AX(event queue = ρ))

where tr(x) is the transition triggered by α(x), and

ρ1 = generations(tr)(x)

and ρi = name(ρ(i)) for each i. If several transitions in different components are triggered

by α(x) then some interleaving of their generations becomes the new event queue. It does

not matter which interleaving.

RU20 An internal event can only be processed if it is at the head of the queue:

7.3 Model Checking RSDS/UML Specifications 232

AG(t(x) ⇒ event queue 6= [] ∧ name(β(x)) = event queue(1))

for each controller or actuator transition t(x) with the trigger β(x).

RU21 The head of the queue is removed when the corresponding event is processed, and replaced

with some interleaving ρ of the generations of all transitions triggered by this occurrence of

β:

∀q.AG(t(x) ∧ q = event queue ⇒ AX(event queue = ρ _ tail(q)))

This models the “run to completion” semantics of statecharts in UML.

THEORY ThF Sys

Attribute symbols:

All the attributes of the theory ThSys of the coarse-grain, and,
event queue : seq(EventToken)

Action symbols:

All the action symbols of the theory ThSys of the coarse-grain.
However, events are divided into external and internal events.

Axioms:
[RU17]
[RU18]
[RU19]
[RU20]
[RU21]

7.3 Model Checking RSDS/UML Specifications

RSDS/UML specifications should be analysed and verified. Verification can be performed by

translating into B as shown in [LAC03, LCA04]. However, B cannot verify the systems tem-

poral properties and therefore we apply model checking as with RSDS. The RSDS translations

to SMV presented in Chapter 4 and 5 cannot be used for RSDS/UML specifications as the ob-

ject oriented concepts are not covered. Therefore, we present a new set of translation rules and

translation schemas for translating the coarse-grain specifications of RSDS/UML into SMV. The

fine-grain translation is not finalised yet. The object oriented features included in the translation

are: dynamic creation and deletion of class instances, dynamic creation and deletion of associa-

tions between instances of different classes, encapsulation, class multiplicity, class inheritance and

cardinality on association ends.

In the following sections, we discuss the suitability of SMV for modelling object oriented

systems and present the translation rules for the coarse-grain RSDS/UML semantic view. The

object oriented model of the gas burner system is used to illustrate the translation.

7.3.1 RSDS/UML vs SMV

A crucial issue that we need to consider is how suitable SMV is for verifying object oriented

systems. SMV was originally developed for verifying hardware, therefore its language is very

7.3 Model Checking RSDS/UML Specifications 233

low-level (as it is based on finite transition systems) and does not provide any high-level data

types or constructs that are common in languages used for specifying software. Furthermore,

there is no dynamic memory allocation available and the state space explosion problem bounds

SMV by memory. On the other hand, object oriented notations introduce unbounded behaviour.

Nevertheless, we are still interested in model checking RSDS/UML specifications as verification is

automatic and helps us automate as much of the development process of RSDS/UML as possible.

We consider each object oriented feature of RSDS/UML that will be translated into SMV and

evaluate SMV’s modelling capabilities of these features.

• Dynamic creation and deletion of class instances: SMV can only represent finite

system specifications and is unable to dynamically create or delete modules or variables

in its language. Therefore, it must imitate this dynamic aspect by defining the maximum

number of instances that can exist at any one time for a class in the model and assert its

existence by recording that the instance is alive. When the instance is deleted, the SMV

model must record that the instance no longer exists.

• Dynamic creation and deletion of associations between instances of different

classes: For the same reason as for class instances, associations cannot be modelled dy-

namically in SMV and its behaviour must be imitated in the SMV model. Arrays are used

in SMV for recording which objects (denoted by the index) are associated. Only binary

associations are considered.

• Encapsulation: The SMV language has no concept of encapsulation. This is apparent from

the fact that modules can directly access the instance variables of other modules by passing

them or the modules they belong to as parameters. The passing of parameters, especially

modules, should be kept to a minimum as it increases the state space. Moreover, since the

translation will be automated and the user will not have to be able to understand the SMV

code generated, we are not interested in preserving this concept in the SMV generated.

• Class multiplicity: Since SMV models finite systems only, the maximum number of ob-

jects for each class that can be created must be known before translating. Therefore, the

class multiplicity provides the maximum number of objects created for a class. If no class

multiplicity is provided, it is assumed to be 1. The class multiplicity must be finite and not

too large (the states of SMV model is greater than 1020 and can’t be handled by the tool).

• Class inheritance: There is no construct available in SMV for modelling inheritance.

There are two ways in which inheritance can be implemented. The first way simply copies

all the contents of the superclass module into the subclass, resulting in the subclass having

direct access to the attributes and operations of the superclass. The second way models

inheritance as an association between two classes where at the association end of the subclass

the cardinality is 0..1 and at the association end of the superclass the cardinality is 1 (see

Figure 7.6).

• Cardinality on association ends: The allowed cardinality of an association refers to the

number of instances that can be related to each other at any one time. In RSDS/UML

7.3 Model Checking RSDS/UML Specifications 234

specifications, the only associations defined are between controllers and actuators. The

cardinality must be finite in order to be translated into SMV. Therefore, when cardinality

is * (meaning many), the class multiplicity can be used as an upper bound. There are some

implicit conditions that must be maintained when creating and deleting objects that are

associated with cardinality.

We conclude that general object oriented concepts cannot be modelled precisely using SMV.

We propose several restrictions to the object oriented notation to ensure translation to a valid

SMV model.

1. A class multiplicity must be provided for all classes. If no multiplicity is provided, we assume

it is 1. Moreover, the multiplicities provided must be within a reasonable range as this affects

the feasibility of model checking a system. The reasonable range will be smaller for larger

systems.

2. Attributes of type integer must also be within a reasonable range as they will increase the

state space immensely. The data abstraction technique proposed in [But96] used in the

autopilot system (see Chapter 6) can be applied to obtain a small range.

3. If an association has multiplicity *, then for the translation we assume it to be 0...p, where

p is the number of instances of the class at the association end where it is defined.

4. All of the possible instances of classes are modelled in SMV. They are created and deleted

by changing the value of their boolean variable alive.

In the following sections, we present in detail the translation rules that show how to generate

SMV models for RSDS/UML specifications.

7.3.2 Coarse-grain translation

We define the coarse-grain translation with a number of translation rules that map elements in

RSDS/UML specifications to elements in the SMV input language. An algorithm that automates

the translation can be easily implemented from these rules. In addition, translation schemas are

provided that delineate the form of the SMV modules produced.

We assume that the input to the translation is an RSDS/UML specification that conforms to

the structure presented for control systems and to the restrictions of the object oriented notation.

These should be checked by the RSDS tool. An RSDS/UML specification consists of a single

class diagram that describes the static structure of the system under development, a number of

object diagrams and a statemachine for each class in a class diagram. An example of a class

is given in Figure 7.4 with a number of possible objects and its corresponding statemachine that

describes its dynamic behaviour. Each system component is modelled as a class in a class diagram,

with the controller class associated to every other class. The controller is assumed to be static,

that is it always exists, and is automatically generated by the translation algorithm (no details

of the controller need to be given by the developer). As with the original RSDS derivation of

the controller, we assume that the controller state is a combination of sensor states and that it

receives all of the sensor events.

7.3 Model Checking RSDS/UML Specifications 235

objectp:classA

st: {st1,...,stn}

classA p

Class Diagram

init_st st1

st2

...

stn

StatemachineObject Diagram

st: {st1,...,stn}st: {st1,...,stn}

object1:classA

Figure 7.4: The different views for a single class in a RSDS/UML specification.

Translating the Actuator Classes

Each actuator class is translated into an SMV module and all of its possible objects are defined in

the main module as unique variables of type module. The class multiplicity describes the maximum

number of objects that can be created for that class. These modules contain parameters of type

module for defining the visibility amongst the classes determined by the event flow. Event flow

is from sensors to controllers to actuators, as denoted by the hierarchy of receiving events in the

original RSDS method. The controller is visible to all classes. Actuator modules also have an

integer as a parameter, id, that uniquely identifies an object. If only one object is ever created, a

unique identification integer is not required in SMV. This id is required in order to differentiate

between the objects within the class module, especially when the objects react differently to the

same transition. For example, the first instance has id = 1, the second instance has id = 2 and

so on. Also, it’s a way for other classes to refer to the objects of classes and for the controller to

determine which events occur with which object. Figure 7.4 illustrates the objects that can be

created for class classA. The following translation rule describes how a class is defined as an SMV

module with parameters.

Rule OO-1: For each actuator class with multiplicity p:
MODULE classA(id, C)

where id is a parameter that uniquely identifies the instance
i.e. 1,2,...,p, C is the controller module.

Rule OO-2: For each class with multiplicity p of instances:
MODULE main

VAR

object1 : classA(1,C);

...

objectp : classA(p,C);

where object1 refers to the first instance created for
class A and similarly for all p instances. The first parameter
is an integer used to identify the instance. C gives the objects
read-only access to the controller module.

SMV does not have the language constructs for modelling the creation and deletion of objects

and thus it has to imitate it. All possible objects are predefined in the main module as described

by translation rule OO-2. The boolean variable alive is introduced in each class module with the

aim of recording the existence of objects of the class. The controller is responsible for broadcasting

events to the actuator class objects that trigger transitions that result in the action of recording

the existence of the objects (object creation or deletion). This should occur in the same step

7.3 Model Checking RSDS/UML Specifications 236

(coarse-grain view), and therefore the controller and actuator transitions are synchronised in the

SMV. An object is created by setting the variable alive to 1 (or true) as a result of such a controller

event that occurs with the identification integer of the object (i.e. a controller transition). An

object is destroyed when a controller event occurs for that object and the alive variable is set to 0

(or false). Usually the name of the event is affixed with the phrase new for creating an object or

with the phrase kill for destroying an object. If all the objects of a class have been created and

the controller broadcasts an event new to any of the existing objects, it will simply be ignored

(1:alive means: otherwise the alive value stays the same). No extra objects will be created, if the

number of existing objects is equal to the class multiplicity.

The translation rules for defining and changing the values of the alive variable are as follows.

Rule OO-3: For each class:
VAR

alive : boolean;

is defined in the class module and indicates whether
the instance of the class exists.

Rule OO-4: The alive variable is initialised as follows:
ASSIGN

init(alive):= init alive;

where init alive is the initial value of the alive variable
(usually 0 or false).

Rule OO-5: An object is created by setting alive to 1 (true):
ASSIGN

next(alive):=

case

C.CT1 & id = C.idA : 1;

...

1:alive;

esac;

where id = C.idA refers to the specific instance that is created.

An actuator class usually consists of a single attribute that represents its current state, whose

type is an enumerated set or integer. If the attribute type is an integer, then it must be finite and

within a reasonable sized range. Otherwise, some kind of data abstraction technique should be

applied. The reason for this is that the attribute is mapped to the current state in the correspond-

ing statemachine diagram and its type represents all the other possible states in the statemachine.

If this is too large the state space of the SMV model increases and can make model checking

impossible. These attributes are translated into variables in the SMV modules.

Rule OO-6: For each attribute st of enumerated type:
VAR

st : {st1, st2 ..., stn};
where {st1, st2 ..., stn} are all the possible states in
the statemachine for this class.

7.3 Model Checking RSDS/UML Specifications 237

Rule OO-7: For each attribute att of integer type:
VAR

att : 1..k;

where k is a suitable (small) bound. We cannot
quantify “small” as it depends on the overall
size of the specification. The overall size of the
model should have a maximum of 1020 states.

The initial values of the attributes, denoted by the initial states of the statemachines, are

defined when the object of a class is created and not using the init(st) construct as expected in

SMV. It will always be the case that the SMV step which evaluates init(st) will occur before the

objects are created. Therefore, the transition that creates the object will also define the attribute’s

initial value.

Rule OO-8: The initial value of attribute st is defined:
ASSIGN

next(st):=

case

C.CT1 & id = C.idA : init st;

...

esac;

where CT1 is the transition that creates the object
with id=C.idA and init st is the initial value of st.

The class methods or operations are mapped to events in the class’ statemachine. In a object

oriented language such as Java [Jav], all the transitions triggered by an event are collected and

used to describe the operation for that event. In SMV, each transition is modelled by an expression

that is evaluated to a boolean value 2 and when the evaluation is true, it indicates that a transition

has happened. By modelling transitions in this way, they correspond closely to the definition of

the semantics for RSDS/UML statemachines.

Therefore, transitions are described in SMV under the DEFINE clause in each module. The

actuator transitions are defined in terms of the controller transition to ensure that its state or

attribute changes occur in a single step. The guards of actuator transitions (if any) are defined

as part of the controller transitions. This is because guards of actuator transitions refer to the

states of other actuator objects that must be visible from the actuator object, and since all of the

actuator objects are visible from the controller, then extra parameters do not need to be passed

between the actuator objects. Each actuator transition contains the additional condition, which

is part of the guard, that confirms that the variable alive is true, as only existing objects can react

to sensor events, so if an object is not alive, it only “reacts” to controller events that create it.

The additional alive variable does increase the state space, but we need a way of modelling the

dynamic creation and deletion of objects. The effect of transitions is described in SMV using a

case statement under the ASSIGN clause.

2The variables described under the DEFINE clause do not increase the state space as they are not considered
as additional boolean variables. They are like macros.

7.3 Model Checking RSDS/UML Specifications 238

Rule OO-9: For each transition AT1 of an actuator class:
DEFINE

AT1 : C.CT1 & st = s1 & id = C.idA & alive;

where C.CT1 is the controller transition and id refers to a
particular instance (C.idA) that the event is applied to.

Rule OO-10: The attribute values are changed by the transitions:
ASSIGN

next(st):=

case

AT1 : st2;

AT2 : st3;

...

esac;

where AT1... are the transitions for the class.

Translating the Controller Class

A separate SMV module is defined for the controller where its state, events and transitions are

defined. It does not require an alive variable as it always exists. The module definition is pa-

rameterised to obtain visibility to the objects of classes that the controller is associated to as

these associations are defined in the controller module and the existence of the objects must be

confirmed.

Rule OO-11: The controller is translated into a SMV module:
MODULE Controller(L1,...,Lj)

where L1,...,Lj are modules of classes that are
associated with the controller.

Rule OO-12: In the main module the controller is represented as:
VAR

C : Controller(L1,...,Lj);

The controller class contains an extra variable that defines the sensor events as well as the

events that create and delete class objects and add or remove associations between them. By not

specifying the initial and next state, SMV chooses nondeterministically which event will occur. If

a specific order in which the events occur is enforced by the physical properties of the system, then

the event behaviour can be modelled as a statemachine that corresponds to a class representing the

environment that is related to all the classes in the diagram. The init(event) and next(event)

in SMV models the specific behaviour of events. In RSDS/UML we assume that the events occur

nondeterministically.

Rule OO-13: The current active event is translated as:
VAR

event : {e1, e2 ..., em, none};
where {e1, e2 ..., em} are all the possible events that
can occur. When event equals to none, no event occurs.

7.3 Model Checking RSDS/UML Specifications 239

Variables are defined in the controller module for each class for identifying the objects of that

class and used to determine which events are applied to which objects. If a class has only one

object, then a variable id for it does not need to be defined. We assume that all the events apply

to it and if there is no transitions defined for that event, it will be ignored.

Rule OO-14: For indicating the current object that the event applies to:
VAR

idA : 1..3;

idB : 1..4;

where idA and idB refer to the current object that the event
is applied to.

The states are defined similarly to those of the actuator classes, except for the initial state that

is defined using the init(st) construct since the controller already exists.

Rule OO-15: The controller state is translated as:
VAR

cst : {cst1, cst2 ..., cstn};
where {cst1, cst2 ..., cstn} are all the possible states in the
controller statemachine.

Rule OO-16: The controller state is initialised as follows:
ASSIGN

init(cst):= init cst

where init cst refers to the initial state in the controller statemachine.

The controller transitions are defined in terms of an event, the source state of the transition,

the id of some object that the event is applied to and an actuator guard. The event is either

a sensor event or an event that creates or deletes objects of classes or associations between the

objects. The object id must be given to ensure that an event is applied to a particular object.

The actuator guard (if any) refers to states of other actuator objects and are defined as part of

controller transitions because the controller module has access to all actuator objects and actuator

transitions are defined in terms of controller transitions. The sensor guard is implicitly expressed

by the controller state.

Rule OO-17: For each controller transition CT1:
DEFINE

CT1 : event = e1 & st = s1 & idA = 1 & G;

where id refers to a particular object and G is the actuator guard,
e.g. AA1.state = a1 or AA1.alive.

Rule OO-18: The attribute values are changed by the transitions:
ASSIGN

next(cst):=

case

CT1 : st2;

CT2 : st3;

...

1:cst

esac;

where CT1 are the transitions for the controller class.

7.3 Model Checking RSDS/UML Specifications 240

Translating Associations

Associations between the controller and actuator objects are defined in the controller module. A

variable of type array represents the relationship between the controller and a class with multi-

plicity greater than one. If the multiplicity of a class associated with the controller is equal to

one, then a boolean variable is sufficient. Since there is ever only one instance of the controller, an

array is not required in the actuator modules. If an actuator instance needs to know whether it is

associated to a controller, it can refer to the controller array as the controller is visible from the

actuator class. The role given on the association end is used as the name of the array. The array

indices range from 1..m where m is the class multiplicity of the class associated with the controller.

This range corresponds to the id values of objects of the class associated with the controller. Each

position in the array holds a boolean value denoting the existence of an association, for example

if the controller is associated with an object of a class with id = 3 then 1 is stored in the third

position of the array (array index = 3). Figure 7.5 shows an example of a controller associated to

the class Actuator and the following translation rules demonstrate how these are represented in

the SMV controller module.

A

aatt: {on, off} batt: {on, off}

Controller

1 0..n

CtoA

Figure 7.5: The Controller class associated to the Actuator class.

Rule OO-19: For each association between a controller and an actuator class A
whose multiplicity m is greater than one:
VAR

CtoA : array 1..m of boolean;

where CtoA is the role of the association.

Rule OO-20: For each association between the controller and a class A
whose multiplicity equals to one:
VAR

CtoA : boolean;

where CtoA is the role.

Usually, the initial values of the array are set to 0, that is the controller is not associated with

any class instance as the actuator instances do not exist yet. These can be different depending on

the system requirements.

Rule OO-21: For each link with role CtoB:
ASSIGN

init(CtoB[1]) := init 1;

init(CtoB[2]) := init 2;

...

init(CtoB[m]) := init m;

7.3 Model Checking RSDS/UML Specifications 241

where init 1 is the initial value for the link (i.e. whether it is
linked or not) between the controller and object 1 of class B. The total
number of object for class B is m.

There are certain rules that are implied by the cardinalities on the association ends between

two classes. These must be adhered to when creating or destroying objects and relating them. We

represent the cardinality on the associations in an abbreviated form: A x → y B, where x is the

cardinality found on the association end closest to class A and y is the cardinality found on the

association end closest to class B. The rules are summarised as follows:

Translation rules If A is deleted If B is deleted If A is created If B is created

Rule OO-22: Delete B & Delete A & Create B if no Create A if no
A 1 → 1 B remove link remove link existing B & existing A &

add link add link
Rule OO-23: Delete B & Remove link - Create A if no
A 1 → 0..n or ∗ B remove link with object B existing A &

with object B add link
Rule OO-24: Delete Bs & Delete A if this Create B if no Create A if no
A 1 → 1..n B remove links is the last B & existing B & existing A &

remove link add link add link

Translation rules If link is removed

Rule OO-25: Delete both A and B objects.
A 1 → 1 B
Rule OO-26: Delete B object.
A 1 → 0..n or ∗ B
Rule OO-27: The B object is removed. If the A object is not
A 1 → 1..n B linked to another B object, then remove A.

These rules are enforced by the controller transitions in SMV for creating or destroying an

actuator object. For example, if an object of class B is removed by the controller transition CTx

with event deleteB when the cardinality at both ends of the association is 1, then the object A

is removed by the same transition as well as the link associating them. Therefore, the generated

events deleteA and removeAB are not explicitly represented in SMV as we want to ensure that

the effect of deleteB occurs in a single SMV step to correspond to a single coarse-grain step.

Associations are dynamic as they can be added or removed during run-time by the user. Events

are defined in the controller module for adding and removing associations between the controller

and some actuator class objects. The name of these events are written as addCA for adding

an association, where C is the name of the controller and A is the name of the actuator class

associated to the controller. The names of events for removing associations have a similar form.

Associations between an object of a class A are added when the event addCA happens and the

object to be associated to the controller is alive. If this condition is met, then the position of

the array where the index is equivalent to object A’s id is set to true (or 1). Conversely, if event

removeCA happens then the position of the array where the index is equivalent to object A’s id

is set to false (or 0). These events and conditions are defined as part of controller transitions.

7.3 Model Checking RSDS/UML Specifications 242

Rule OO-28: To link or unlink the controller with an object B,
controller transitions are defined with events prefixed with add and remove:
DEFINE

CT5 : event = addCB & st = s4 & idB = 1 & G1;

CT6 : event = removeCB & st = s5 & idB = 1 & G2;

where idB refers to a particular object of B and, G1 and G2 refer to
the guard.

Then, the array is updated as follows:
ASSIGN

next(CtoB[1]) :=

case

CT5 & B1.alive : 1;

CT6 & idB = 1 & B1.alive : 0;

...

1 : CtoB[1];

esac;

where B1.alive refers to object 1 of class B alive variable to confirm its
existence. Similarly for all positions in the array.

Translating Inheritance

Inheritance is a special kind of relationship (“is a”) between classes as illustrated in (a) of Figure

7.6, where classes inherits the structure and behaviour of a superclass. There are two ways that we

can model this relationship in SMV. One way involves copying all of the attributes and transitions

of the superclass into the subclass, which enables the subclass to have direct access to the attributes

and operations of the superclass. Translation rule OO-30 describes how to model inheritance in

the this way. An alternative representation involves modelling inheritance as an association where

the subclass has a cardinality of 0..1 as illustrated in (b) of Figure 7.6. Translation rule OO-29

describes how the SMV code is generated for (b).

(a)

SuperClass

SubClass

SuperClass

SubClass

1

0..1

(b)

Figure 7.6: Inheritance illustrated in (a) can be expressed by associations as in (b).

7.3 Model Checking RSDS/UML Specifications 243

Rule OO-29: For the first modelling approach (see (b) in Figure 7.6),
each subclass BC1,...,BCj of superclass AC:
MODULE Associations(AC, BC1,...,BCj)

VAR

ACtoBC1: array 1..k of boolean;

ACtoBC2: array 1..m of boolean;

...

Similarly for all subclasses of AC. The dynamic adding and
removing of the objects are described using the init and next
clauses as in translation rules OO-21 and OO-28.

Rule OO-30: For the second modelling approach (see (a) in Figure 7.6),
each subclass BC1,...,BCj of superclass AC:
MODULE BC1

VAR

Attributes of AC

Attributes of BC1

ASSIGN

Operations of AC

Operations of BC1

Similarly for all subclasses of AC.

The advantage of defining inheritance as associations with the specific cardinality is that the

SMV model is succinct. Nevertheless, it is unclear when explicit inheritance was intended. There-

fore, we recommend the alternative approach of copying all the attributes and transitions of the

superclass as it resembles the object oriented implementation of inheritance.

Translating the Invariants

The invariants for RSDS/UML specifications must hold for all instances of the classes. In SMV the

properties to be verified are expressed in CTL and are defined under the SPEC clause. CTL does

not contain any universal or existential quantifiers to reason over all instances of classes. Instead,

invariants must be explicitly defined for each class instance. The class instances are defined as

variables in the main module, and these are used in the expression of invariants.

Rule OO-31: For each static invariant that defines constraints on attributes
of class C with p instances and class A with q instances:
SPEC

AG(C1.catt = x -> A1.aatt = y)

SPEC

AG(...)

SPEC

AG(Cp.catt = x -> Aq.aatt = y))

where C1,...,Cp refer to the instances of C, A1,...,Aq refer to
the instances of A, and x and y refer to some enumerated value
of attributes catt of class C and A respectively.

Rule OO-32: For each operational invariant that defines constraints on
attributes of class C with p instances:
SPEC

7.3 Model Checking RSDS/UML Specifications 244

AG(C1.catt = x & event = e1 -> AX(C1.catt = y))

SPEC

AG(...)

SPEC

AG(Cp.catt = x & event = e1 -> AX(Cp.catt = y))

where C1,...,Cp refer to the p instances of C and x and y
refer to some enumerated value of attribute catt.

Rule OO-33: For each temporal invariant:
SPEC

AG(P-> M(Q))

where P and Q define constraints on attributes of particular
instances of classes and M is some temporal operator.

Invariants that describe constraints on the associations can also be verified. These type of

invariants were not expressed in the original RSDS method as it was only capable of modelling

systems with a static structure. Again, these invariants must hold for all instances of the classes

mentioned. Translation rule 00-34 demonstrates how constraints on associations are expressed

as CTL properties in SMV without the use of quantifiers. However, association constraints are

not limited to this form but we want to highlight in the translation rule how the associations are

expressed in the CTL properties and that CTL properties must be defined for all instances.

Rule OO-34: For each invariant that defines constraints on associations
between the controller C and class D with p instances:
SPEC

AG(C.CtoD[1] = 1 -> (C.attc = x -> D1.attd = y))

SPEC

AG(...)

SPEC

AG(C.CtoD[p] = 1 -> (C.attc = x -> Dp.attd = y))

where D1,...,Dp refer to the p objects of D and x and y
refer to some enumerated value of attributes for the
controller and class D respectively.

Usually, invariants apply only to “alive” instances. Therefore, in their definition a condition

must be included that checks whether the instance is alive so that SMV will only check the states

where alive is true. If property checks were to be performed on non-alive instances, there will not

be a state explosion problem, unless there is a state explosion problem with the alive instances.

This is because there are a finite number of instances that are defined for each class (maximum

number of instances is specified by the class multiplicity) and at some point either all the instances

are alive, and at another (e.g. initialy) all the instances are not alive.

7.3.3 The translation schemas for the actuator and controller

We have presented the translation rules for both the controller and actuator modules. The trans-

lation schema for the SMV code generated for a system is as follows.

MODULE main

VAR

7.3 Model Checking RSDS/UML Specifications 245

C : Controller(A1,A2,..,Ap);

A1 : Actuator(1,C);

A2 : Actuator(2,C);

...

Ap : Actuator(p,C);

SPEC

AG(P)

–where P is the property to be verified.

MODULE Controller(AA1,AA2,..,AAp)

VAR

state : {cst1, ...,cstn};
event : {e1,e2,...,em,none};
idA : 1..p;

CtoA : array 1..p of boolean;

DEFINE

CT1 : event = newA & state = cst1 & idA = 1 & AA1.alive;

CT2 : event = killA & state = cst2 & idA = 1 & AA1.a state = a1;

...
ASSIGN

init(state) := cst1;

next(state) :=

case

CT1 : cst2;

CT2 : cst4;

...

1: state;

esac;

init(CtoA[1]) := 0;

next(CtoA[1]) :=

case

CT1 : 1;

CT2 : 0;

...

1: CtoA[1];

esac;

...

init(CtoA[p]) := 0;

next(CtoA[p]) :=

case

CT1 : 0;

CT2 : 0;

...

1: CtoA[p];

esac;

MODULE Actuator(id, C)

–id refers to the instance unique identifier, C to the controller
VAR

7.3 Model Checking RSDS/UML Specifications 246

a state : {a1,...,ar};
alive : boolean;

DEFINE

AT1 : C.CT1 & id = 1;

AT2 : C.CT2 & id = 1;

AT3 : C.CT3 & alive & id = C.idA;

–where A.an state = aa2 is the guard of the transition.
...

ASSIGN

next(a state) :=

case

AT1 : init a state;

AT3 : a2;

...
1: a state;

esac;

init(alive) := 0

next(alive) :=

case

AT1 : 1;

AT2 : 0;

...
1: alive;

esac;

7.3.4 Translating the gas burner system

Let us demonstrate how the gas burner system, whose class diagram is illustrated in Figure 7.7, is

model checked with SMV. The complete SMV code generated using the translation rules is given

in Appendix D.1.

We assume that the controller is derived from the amalgamation of the sensor components

and that it always exists. It is responsible for creating and deleting the objects for the actuators

and for defining the associations between the controller and the actuator objects. There are two

actuator classes in this system: one for the valves and one for the igniter.

The structure of the gas burner system is static. Therefore we assume that the objects for

the actuator components are created initially by the controller and destroyed once the system is

in a safe state, that is when the flame is absent and the switch is off. Figure 7.8 describes the

statemachine for the controller. The controller generates the events {newIG, newV, shutdown}
that create and destroy the actuator objects. The links that relate the controller with the actuator

objects are defined in the controller. Since there is only one igniter object, a boolean variable is

used instead of an array to record the existence of its association with the controller and no id

variable identifying igniter objects. Therefore, there is only one set of ids defined in the controller

identifying the instances of the class Valve. If an event does not trigger any transitions, the values

of variables in the system remain the same (i.e. skip).

MODULE Controller

VAR

7.3 Model Checking RSDS/UML Specifications 247

vstate = open

Valve

vstate

2 Igniter

istate1

(3.2) state = on_absent => istate = on

Controller

state

CtoV CtoIg

(3.6) istate = on => Gv.vstate = open

(3.3) state = on_present | state = off_present =>

(3.4) state = off_present | state = off_absent =>

Av.vstate = open & istate = off

Gv.vstate = closed & istate = off

(3.1) state = on_absent | state = on_present =>

(3.5) state = off_absent => Av.vstate = closed

(3.7) Gv.vstate = open => Av.vstate = open

Figure 7.7: The class diagram for the gas burner system.

CT14:shutdown(Av)/av_kill

CT1:swon/av_open^gv_open^ig_open

CT4:swon/av_open^gv_open

CT3:swoff/ig_close^gv_close

CT9:newV(Av)/av_alive

CT10:newV(Gv)/gv_alive

CT11:newIG/ig_alive

CT13:shutdown(IG)/ig_kill
CT12:start

CT2:swoff/ig_close^gv_close^av_close

CT6:fdon/ig_close^av_open CT7:fdoff/ig_open

CT8:fdoff/av_close CT7:fdon/ig_open^av_open

on_presentoff_present

off_absent

newActs shutdown

on_absent

CT15:shutdown(Gv)/gv_kill

Figure 7.8: The statemachine for the controller class of the gas burner system.

7.3 Model Checking RSDS/UML Specifications 248

state : {Off Absent, On Absent, Off Present, On Present, newActs, Shutdown};
event : {swon, swoff, fdon, fdoff, shutdown, newV, newIG, start, none};
idV : 1..2;

CtoV : array 1..2 of boolean;

CtoIG : boolean;

DEFINE

CT1 := event = swon & state = Off Absent & Va.alive & Vg.alive & iG.alive;

CT2 := event = swoff & state = On Absent & Va.alive & Vg.alive & iG.alive;

...
CT10 := event = newV & idV = 2 & state = newActs & Va.alive & Vg.alive & iG.alive;

CT11 := event = newIG & state = newActs;

...
ASSIGN

init(state) := newActs;

next(state) :=

case

CT1 : On Absent;

CT2 : Off Absent;

...

1: state;

esac;

init(CtoIG) := 0;

next(CtoIG) :=

case

CT11 : 1;

CT13 : 0;

1: CtoIG;

esac;

init(CtoV[1]) := 0;

next(CtoV[1]) :=

case

CT9 : 1;

CT14 : 0;

1: CtoV[1];

esac;

init(CtoV[2]) := 0;

next(CtoV[2]) :=

case

CT10 : 1;

CT15 : 0;

1: CtoV[2];

esac;

The statemachines for the actuator component objects are illustrated in Figure 7.9. These

statemachines are translated into SMV. The actuator transitions are defined in terms of controller

transitions to ensure that their states change in a single SMV step. These class objects cannot

react to sensor events if they do not exist. The valve objects require read-only access to each other

as they both need to be alive in order to respond to the sensor events. This additional condition

is part of the guard of the actuator transition.

The objects are defined in the main modules and the module parameters are given specific

values, for example the controller object is passed as parameter to the actuator objects. The first

7.4 Comparison with RSDS translations 249

Igniter

off_alive

on_alive

off_deadclosed_dead

open_alive

closed_alive

closed_dead

open_alive

closed_alive

AT7:gv_open

AT4:av_close

AT5:av_open

AT12:av_kill

AT6:gv_close

AT11:gv_kill

AT2:gv_aliveAT1:av_alive

AT10:ig_kill

AT3:ig_alive

AT8:ig_close

AT9:ig_open

Air Valve Gas Valve

Figure 7.9: The statemachines for each actuator class of the gas burner system.

two invariants are the same as in the original coarse-grain implementation of the gas burner, that

is, constraints on class attributes, with the additional conditions confirming the existence of the

class instances. The last two invariants ensure that if the instances for the actuator classes exist

then they must be associated to the controller. These invariants imposed on the system structure

could not be formulated in the original RSDS specifications.

MODULE main

VAR

C : Controller(Av,Gv,Ig);

Av : Valve(C,1);

Gv : Valve(C,2);

Ig : Igniter(C);

SPEC

AG(Gv.va = open & Gv.alive -> Av.va = open & Av.alive)

SPEC

AG(Ig.ig=on & Ig.alive & Gv.alive -> Gv.va = open)

SPEC

AG(Ig.alive -> C.CtoIG)

SPEC

AG(Av.alive -> C.CtoV[1])

SPEC

AG(Gv.alive -> C.CtoV[2])

7.4 Comparison with RSDS translations

We have defined translations for both semantic views of RSDS specifications, namely, for the

coarse-grain and the fine-grain. In this chapter, we presented a translation for the coarse-grain

view of RSDS/UML specifications. We compare all of these translations based on the following

criteria (summary in Table 7.3):

1. Readability: how easy it is for a user to understand the SMV model produced from the

translation ?

2. Expressiveness: how well have all the elements in the original model (RSDS or RSDS/UML

model) been expressed in the SMV model ?

7.4 Comparison with RSDS translations 250

3. Coverage: have all the elements in the original model been translated ?

4. Efficiency: how much of the resources is required for model checking the generated SMV

model ?

The coarse-grain and fine-grain translations both preserve the modular structure of RSDS

specifications. Therefore, a module in SMV is defined for each component in RSDS, i.e. one for

each controller and one for each actuator (sensors are combined to form the controller). In the

fine-grain translation the queue data structure is translated into a separate SMV module so that

it is clear to the user that it is additional to the basic components. In the RSDS/UML translation,

the structure of the class diagram in preserved in the SMV model, i.e. each class is translated into

a separate SMV module. Also, the variables that represent the associations between the classes

are placed in the SMV module for the controller. Therefore, all three translations generate models

that can be easily read by the user.

There are problems with the expressiveness of the generated SMV model for all of the trans-

lations. For the coarse-grain translation, the actuator events are not explicitly represented in the

SMV model. Instead they are described in terms of controller transitions that generate them. This

is because we want to model one coarse-grain step as one SMV step. For the fine-grain translation,

the queue elements are not dynamically generated. Instead, the snapshot of the queue for each

step must be determined before translating i.e. we use this information in order to translate. The

RSDS/UML translation cannot translate the dynamic instantiation of classes. Furthermore, the

number of instances that can ever be created must be known and also be finite.

All the elements in the coarse-grain and fine-grain RSDS specification are translated into SMV.

However, the RSDS/UML translation is not able to directly translate the dynamic creation and

deletion of instances. This is because in SMV there are no constructs for defining variables at

run-time.

The gas burner system was specified in both RSDS and RSDS/UML and translated into SMV

model. The following table describes the resource usage for model checking (with the NuSMV

tool) these models.

RSDS/UML RSDS coarse-grain RSDS fine-grain

User time: 0.09 sec 0.06 sec 0.08 sec
System time: 0.03 sec 0.04 sec 0.04 sec
Virtual data size (bytes allocated): 6483K 6357K 6536K
BDD nodes allocated: 3931 733 8021
BDD cluster size: 345 59 570

Once more, the user and system time is too small to be able to use it to compare the SMV

models efficiency. Therefore, we consider the BDD nodes as a reliable metric, where the lower

the number of nodes the better it will be dealt with by the model checker. The coarse-grain

RSDS/UML model is allocated more BDD nodes compared to the RSDS coarse-grain SMV model

and less than the RSDS fine-grain SMV model. Following this pattern, we assume that the fine-

grain SMV model for RSDS/UML specifications will have more BDD nodes than the fine-grain

model of RSDS specifications. Therefore, the SMV models for RSDS/UML specifications are more

expensive in space than RSDS specifications and this should be considered when deciding which

modelling approach to adopt.

7.5 Proof of Correctness of the RSDS/UML Translation 251

Table 7.3: Comparison of RSDS and RSDS/UML translations

RSDS translations RSDS/UML translation
Criteria Coarse-grain (CG) Fine-grain (FG) Coarse-grain

Readability Yes - modularity Yes - modularity Yes - class diagram
is preserved is preserved & so structure preserved

is the event queue

Expressiveness Actuator events Snapshots of Dynamic
not explicitly the queue must instantiation
represented be worked out mimicked - also needs

before translating to be finite

Coverage All elements All elements Cannot
translated translated create instances

at run-time

Efficiency Fastest Slowest Greater than CG
and less than FG

7.5 Proof of Correctness of the RSDS/UML Translation

The proof of correctness for the coarse-grain RSDS/UML translation is described similarly to those

given for the RSDS coarse-grain and fine-grain translations i.e. we must show that the translation

is sound and complete.

For soundness, we need to show that the axioms describing the RSDS/UML model elements

hold from ThOOSys in ΛM(OOSys) under the interpretation, that is we need to show ξ exists in

Figure 7.10. Since ThOOSys is the union of the class diagram theory and each of the statemachine

theories, we need to show that their axioms hold in ΛM(OOSys).

Th

Derive the meaning of RSDS specification

Derive the meaning of SMV specification

Apply SMV translation

Preserve the meaning

M

Λ

ξ

Th OOSys The coarse−grain RSDS/UML system specification

Λ M(OOSys) Interpretation of the theory of the SMV specification

M(OOSys)

OOSys
Th Interpretation of the theory of RSDS/UML specification

SMV specification of a RSDS/UML specification

M

Λ

Λ

ξ

Th

OOSys M(OOSys)

M(OOSys)OOSys

Figure 7.10: A sketch of the proof of correctness.

Lemma 5. The axioms of ThOOSys hold in ΛM(OOSys) under the interpretation ξ of an RSDS

system theory ThOOSys as an SMV interpretation of that theory in ΛM(OOSys).

Proof. The proof of the lemma is organised as follows:

• We first define the interpretation of attributes of the RSDS/UML theory ThOOSys into the

theory ΛM(OOSys).

7.5 Proof of Correctness of the RSDS/UML Translation 252

• Then, we show that the axioms of the class theory ∆CD hold from ThOOSys in ΛM(OOSys)

under the interpretation.

• Finally, we show that the component and system axioms of the statemachine theories ThSys

hold from ThOOSys in ΛM(FOOSys) under the interpretation.

Interpretation of attributes

The interpretation of the coarse-grain RSDS/UML system theory ThOOSys into the theory

ΛM(OOSys), that represents the meaning of the translation into SMV, is defined by:

1. Each instance x ∈ @C for a class C is interpreted as a module Cx: C(x,p1,...,pn) where x

is the unique identifier of the instance and is of type integer, and p1,...,pn are all the other

instances whose states are accessible. According to the syntactic restrictions, there should

only ever be one instance defined for the controller that has access to the states of all the

actuators in the system, while all the actuators should have access to the controller instance.

2. The attribute C : F(@C) for the set of all existing instances of each actuator class C is

interpreted as the collection of SMV modules Cp where Cp.alive = 1 (true). We assume

that the controller class is always alive and therefore no alive variable is defined for it.

3. The attribute r : F(@Cont × A) for the set of all existing instances of each association r,

with end points at the controller class Cont and actuator class A, is interpreted as an array

of the form r: array 1..x of boolean where x refers to the multiplicity of A. The array is

defined in Cont.

4. The notations y ∈ cs(x) and x ∈ as(y) that abbreviate to (x, y) ∈ r, where cs and as are

the pseudo-attributes for each binary relation r between classes C and D are interpreted as

array position C.r[y].

5. The attribute att for the controller class Cont is interpreted as Cont.att, in its instance

module Cont. This also corresponds to the current state in the controller statemachine.

6. The attribute att for an actuator class A is interpreted as Ax.att, in each instance module

Ax. This also corresponds to the current state in the actuator statemachine.

7. The attribute m for the multiplicity of a class C is interpreted as the maximum number

given to an instance as an id in the main module in SMV, i.e. Cm: C(m,p1,...,pk); where

p1,...,pk are modules of other instances.

8. The sensor events α : Events are interpreted as Cont.event = αtok which include the events

for creating and deleting instances and associations.

9. Each operation op of a class C is mapped to a sensor event in the corresponding statemachine

and the body of the operation is mapped to a collection of transitions for that sensor event.

In SMV, each transition is defined individually, and thus we adopt this approach as well.

Therefore, transitions tr are interpreted in two ways depending on the component:

7.5 Proof of Correctness of the RSDS/UML Translation 253

(a) A controller transition is interpreted as a predicate C.CTj=1 where CTj is the cor-

responding DEFINE variable of the controller module.

(b) An actuator transition is interpreted as the disjunction C.CTk1=1 ∨ ...∨C.CTkp=1

where CTkj represent all the controller transitions which invoke tr in the RSDS model.

Similarly for actuator events.

10. Actions for creating and deleting instances (these apply only to instances of actuators):

(a) x.newA is interpreted by Cont.event=newA & Cont.idA=x and

(b) x.killA is interpreted by Cont.event=killA & Cont.idA=x.

where idA is the unique identifier of class A instances. If there is only one instance of a class

then Cont.idA=x is not given. These actions do not apply to the controller instance as it

always exists.

11. For each association r, actions for linking and unlinking tuples of instances in relationships

(associations only exist between the controller and actuators):

(a) linkr(Cont, y) is interpreted as Cont.event=add r & idA=y where y refers to the in-

stance of class A that must be associated and

(b) unlinkr(Cont, y) is interpreted as Cont.event=remove r & idA=y where y refers to the

instance of class A that must no longer be associated.

Axioms that hold under the interpretation

We show how the axioms for the class diagram, object diagrams and statemachines hold under

the interpretation.

Class diagram axioms:

RU1 The axioms defining the initial state of class attributes hold:

1. in the controller module, the initial state is defined as init(att) := init c where init c is

the initial state of the controller class.

2. in the actuator module, the initial state is defined when the instance is created. The

transition that creates the object sets the value of the att via the case statement in the

next(att) clause.

RU2 We strengthen the axioms

AG(r ⊆ D1 × ...×Dk)

for each association r, with end points at classes D1 to Dk, with the axioms

AG(r ⊆ Cont×A1 × ...×Ak)

for each association r, with end points at the controller class Cont and at A1 to Ak, since

we know that control systems only contain associations between the controller class and

actuator classes. Therefore, these strengthened axioms hold under the interpretation because

of Cont.r[y] = 1 ⇒ A1y.alive =1, where y is the instance id of class A1, and similarly for all

actuator classes. The controller is always alive.

7.5 Proof of Correctness of the RSDS/UML Translation 254

RU3 Axioms defining the allowed multiplicity of an association r between the controller and

actuator classes hold because of the definition of the association in SMV. In the case where

the multiplicity is one on both ends of the association, then the association is defined as

r: boolean;. Otherwise, if the multiplicity is p..q or m where m is some constant, then

the association is defined as an array r : array 1...q of boolean; or r : array 1...m of

boolean;. If the multiplicity ∗, then an array is defined with a maximum size equal to the

class multiplicity.

RU4 Axioms for:

1. creating instances hold because the effect is represented by setting the alive variable

for instance x to true (x.alive = 1).

2. deleting instances hold because the effect is represented by setting the alive variable for

instance x to false (x.alive = 0) indicating that it does not exist.

RU5 The axioms for defining the effect of actions for:

1. linking tuples of instances in associations hold because transitions that are triggered

by C.event = add r and are applied to particular instances idD=j have the effect of

setting the array position r[j] to true between two instances using the SMV assignment

statement next(r).

2. unlinking tuples of instances in associations hold because transitions that are triggered

by C.event = remove r and applied to particular instances idD=j have the effect of

setting the array position r[j] to false between two instances using the SMV assignment

statement next(r).

RU6 The axiom for ensuring that the multiplicity of a class is adhered to holds because of the

definition of the instances in the main module whereby the last one for each class has the

same id (number) as its class multiplicity.

RU7 Axioms AG(@D ⊆ @C) and AG(D ⊆ C) if D inherits C hold because the SMV module

describing the class D contains a copy of all the attributes and methods of the SMV module

for C.

RU8 Locality axioms for every class hold because if no transition or operation occurs then the

default case 1:att; of the case statement defined in the assignment statement next(att) denotes

that the att value does not change.

Axioms used to define the statemachine theory:

RU12 The state-transition behaviour of the statemachine Sm, for all x : @C where C is a class,

is described for each transition tr of Sm with source s, target t, guard G, and trigger event

α with the axioms:

7.5 Proof of Correctness of the RSDS/UML Translation 255

1. The axiom AG(sm(x) = s ∧G(x) ∧ α(x) ⇒ tr(x)) where sm refers to the state holds

because the controller transitions, which only occur if all the terms evaluate to true,

are defined as

CT1: event = e & G & st = s1 & id =x

and the actuator and sensor transitions have the following similar form:

AT1: C.CT1 & G & at = a1 & id =x & alive

where CT1 and AT1 are the controller and actuator transitions respectively, and G is

the guard and st refers to the state (or class attribute) and id to a particular instance.

2. The second axiom AG(tr(x) ⇒ α(x)) holds because transitions are defined in terms

of sensor events and therefore, an event must occur in order for a transition to happen.

3. The third axiom AG(sm(x) = s ∧ tr(x) ⇒ AX(sm(x) = t)) holds because of the

assignment next(st) used to define the state changes. A case statement is used to

distinguish the different effects of different transitions on the state. The LHS of the

axiom is represented by the LHS of the case statements and the RHS of the axiom by

the RHS of the case statement:

next(st):= case
CT1 : t;
...
1:st;

esac;

where CT1 is a definition of a transition that contains the LHS of the axiom.

RU13 For each pair of distinct transitions of Sm, at most one transition of Sm can occur in

a step holds because each actuator transition variable is defined in terms of the controller

transitions:

AT1: C.CT1 & G & at = a1 & id =x & alive

and only one of these can be true in any step. Similarly for events.

RU14 That a transition can only occur if Sm is in its source state where s = sourceSm(tr) holds

under the interpretation because the source state is explicitly given as part of the condition

in the definition of a transition. If the system is not in the source state, the transition will

not occur.

RU15 The locality axioms for statemachines hold as for the locality axioms of the classes.

RU16 At the system level, the global axiom stating that generated events (that trigger actuator

transitions) only occur as a reaction to a controller transition holds because the controller and

actuator transitions are synchronised in order to ensure that their reaction occurs in a single

step. The synchronisation is implemented by defining the actuator and sensor transitions in

terms of the controller transitions. Therefore the event is responded to simultaneously by

the controller and by the actuators.

7.5 Proof of Correctness of the RSDS/UML Translation 256

In order to show the completeness of the RSDS/UML translation, we use the following lemma.

Lemma 6. For each trace h of the SMV model M(OOSys) there is a corresponding trace r(h) in

the RSDS/UML model OOSys which satisfies the same formulae with respect to the translation

ξ.

Proof. If h consists of a sequence h1, ..., hn of n Kripke nodes (where RSDS/UML states and events

are represented by variables), then r(h) is defined as a sequence of n states and events as follows.

The settings of the sensors at state i of r(h) are given by the value of C.state in hi. The

settings of other components are given by their values in hi. The sensor event which occurs, to

move from node i to node i + 1 is given by C.sensor event in hi. The response actuator events

and transitions are given by those disjunctions of conditions used in M(OOSys) to define their

occurrence, which are true (i.e. their value is 1) in hi. The settings for mimicking the dynamic

instantiation of classes and associations are given by values of alive for each class, CtoA (where A

is another class that the controller C is associated to) and idA in hi.

These two traces have the property that:

h `ΛM(OOSys)
ξ(ϕ) ⇔ r(h) `ΓOOSys

ϕ

Hence, if h is an SMV counter-example to an RSDS/UML property ψ, i.e.

h `ΛM(OOSys)
¬ξ(ψ)

then r(h) is an RSDS/UML counter-example to ψ:

r(h) `ΓOOSys
¬(ψ)

Let us consider a simple RSDS/UML system with a controller class C with states

{s11 s21, s12 s21, s11 s22, s12 s22, s11 s23, s12 s23, }

that is associated to an actuator A1 (class with only a single instance) with states {a1, a2, a3}. If

ϕ = C.state = s12 s21 & C.CT1 = 1& A1.alive = 1 ⇒ AX(A1.state = a2)

then a possible counter-example h produced for this system could be:

7.5 Proof of Correctness of the RSDS/UML Translation 257

h1 C.state = s11 s21
C.sensor event = α
A1.state = {a1, a2, a3}
A1.alive = 0
C.CtoA1 = 0 (dont need to use array if there is only one instance)
A1.id = C.idA1 = 1
C.CT1 = 1 (where CT1 is defined in terms of this particular state and event)
A1.AT1 = 1 (where AT1 is defined in terms of CT1 and creates instance of A1)

h2 C.state = s12 s21
C.sensor event = β
A1.state = a1
A1.alive = 1
C.CtoA1 = 1
A1.id = C.idA1 = 1
C.CT2 = 1
A1.AT2 = 1

h3 C.state = s12 s22
C.sensor event = γ
A1.state =a3
A1.alive = 1
C.CtoA1 = 1
A1.id = C.idA1 = 1
C.CT3 = 1
A1.AT3 = 1

where in h3 A1.state = a3 instead of A1.state = a2. The corresponding counter-example r(h)

in the RSDS/UML model OOSys is:

r(h1) C.state = s11 s21
sensor event = α (for creating an instance of A1)
The controller instance always exists
No instance of A1 exists
trC = α/ρ1

trA = ρ1

r(h2) C.state = s12 s21
sensor event = β (applied to A1 instance)
Instance of A1 exists and is associated to the controller instance
A1.state = a1
trC = β/ρ2

trA = ρ2

rh3 C.state = s12 s22
sensor event = γ (applied to A1 instance)
A1.state =a3
Instance of A1 exists and is associated to the controller instance
trC = γ/ρ3

trA = ρ3

This example illustrates the close correspondance between h and r(h).

The same reasoning as in 6 also shows the completeness of the translation.

Theorem 5. The translation is complete if we can show that: if ΛM(OOSys) ` ξ(ϕ) then ΓOOSys `
ϕ.

7.6 Generalising RSDS/UML 258

Proof. We prove the contra-positive: if not(ΓOOSys ` ϕ) then not(ΛM(OOSys) ` ξϕ) For every

trace s of an RSDS/UML system it is simple to construct a trace h of the corresponding SMV

system for which s = r(h). If

not(ΓOOSys ` ϕ)

there is a counter-example trace

s `ΓOOSys
¬ϕ

But then

h `ΛM(OOSys)
¬(ξ(ϕ))

and

not(ΛM(OOSys) ` ξϕ) which proves completeness.

7.6 Generalising RSDS/UML

The RSDS/UML method is currently being revamped to support the development of critical

systems not limited by the static structure of control systems, (i.e. the DCFD structure of sensors,

controllers and actuators) so that it can be applied to more general application domains, such as

critical e-commerce systems. It aims to embrace more fully the object oriented development

approach of UML in order to feel the impact of the benefits on the development process. In

[LAC03], a railway system has been developed using the new RSDS/UML approach and its class

diagram is illustrated in Figure 7.11. This representation is more concise than the one that

maps each system component to a separate class. Instead, the classes represent either physical or

conceptual parts of the system, for example in the railway system the class Location refers to the

physical track segment that a train can occupy, while the class Route is a purely conceptual entity.

The sensor inputs and actuator outputs are modelled as attributes whose name is prefixed with

a ? for sensors (input) and a ! for actuators (output). The controller is not explicitly modelled

as a class in the class diagram but nevertheless is considered as being related to all of the classes

and is derived automatically by the RSDS/UML tool during code synthesis. It still receives events

from the environment and is responsible for deriving the reaction of the system to those events.

The constraints that are attached to the classes or associations are given in an abbreviated form

of OCL [UMLa] that excludes the quantifiers but its interpretation implicitly provides them.

We have not presented the details of the translation of generalised RSDS/UML specifications

into SMV for the purpose of verification as the semantics for the new RSDS/UML approach have

not been consolidated. However, we believe that the translation rules presented in this chapter are

applicable to the new RSDS/UML approach with few alterations. We are interested in pursuing

this research direction as verifying general UML specifications, both static and dynamic aspects,

could benefit a wider range of users. Furthermore, we envision including additional UML views of

the system in the RSDS/UML specification that could assist in the interpretation of the verification

results, that is, if a counter-example is produced, a sequence diagram can illustrate the steps

leading to the violation of an invariant. Moreover, sequence diagrams can be used to delineate the

creation and deletion of objects and can be used for generating the translation into SMV.

7.6 Generalising RSDS/UML 259

?sigstp:{Off, On}

 safeholding, occupied}

routestatus:{ok, blocked}

Route

leadSignal

1

*

*

*

1 1

0..1locSwitch

path

locSignal 0..1

Location

!trafficalarm:{Off,On}

 unoccupied}
locstatus:{ok,blocked}
number:int

Switch

swstatus:{ok, blocked}
!swset:{reverse, normal}

Signal

sigstatus:{ok,blocked}
!sigset:{half,stop, clear}

?swn:{Off, On}
?swr:{Off, On}

?location:{occupied,

?sigclr:{Off,On}

route:{unready, ready,

Figure 7.11: Class diagram for the railway system.

7.6.1 Additional translation rules

In this section, we give a taste of some additional translation rules that could be defined. One way

of generalising the UML model is by allowing any class to be associated to any other. For example,

in Figure 7.12 the class Person is associated with the class Jobs, meaning that each person has

0..2 jobs. This is a typical example in UML.

0..21

Person Jobs

r

Figure 7.12: A typical example of UML class diagram.

In SMV, an association is represented by an array in the SMV module for the class whose

name is given by the role. The indices of the array represent the object ids for the class that it

is associated to. Therefore, each instance has an array describing which instances of the other

class it is associated to, that is, the array for each instance represents the instance’s view of the

association.

Recall the example in Figure 7.12. If the following instances are created for these classes:

p1, j1
p1, j2
p2, j3
p2, j4

where the prefix p refers to the objects of class Person and the prefix j refers to the objects of

class Jobs, then the SMV model contains the arrays with the following values:

7.7 A Simple Railway System for Testing Efficiency 260

Person1.r [1, 1, 0, 0]
Person2.r [0, 0, 1, 1]
Job1.r [1, 0]
Job2.r [1, 0]
Job3.r [0, 1]
Job4.r [0, 1]

The translation rules OO-22 to OO-27 describe the rules implied by the cardinalities when

objects are created and destroyed. Additional rules are summarised in the table for the rest of the

cardinalities that were not considered.

Translation rules If object A If object B If object A If object B
is deleted is deleted is created is created

Rule OO-32: Remove link Remove link - -
A 0..n or ∗ → 0..n or ∗ B with object B with object A
Rule OO-33: Delete B if this Delete A if this Create B if no Create A if no
A 1..n → 1..n B is the last A & is the last B & existing B & existing A &

remove link remove link add link add link

Translation Rules Association removed

Rule OO-34: -
A 0..n or ∗ → 0..n or ∗ B
Rule OO-35: If a last A object, then remove it.
A 1..n → 1..n B If a last B object, then remove it.

7.7 A Simple Railway System for Testing Efficiency

In this section, we consider a small part of the railway signalling system [LAC03] for two reasons:

firstly we want to show how we represent in SMV dynamic associations between classes and

secondly, we want to investigate how efficient it is to model check object oriented models and to

justify our choice of some translation rules defined for RSDS/UML based on the results obtained.

The complete SMV listings can be found in Appendix D.2 and D.3.

?location:{occupied,

Location Route

route:{occupied,
unoccupied}

* *

unoccupied}

location=occupied => route=occupied

Figure 7.13: Part of the railway system described in Figure 7.11.

We focus only on two entities in the railway signalling system as illustrated in Figure 7.13:

Location and Route. The railway network consists of a set of locations, each which has an occu-

pancy detector. It is divided into routes, which consists of a sequence of adjacent track locations

extending from a location containing a signal. In [LAC03], Location and Route have a static

association. We revise this association to make it dynamic for explanatory purposes, that is the

associations between objects can be added during run-time. The association between objects is

7.7 A Simple Railway System for Testing Efficiency 261

only removed when one of the objects is destroyed. We abstract most of the attributes from Figure

7.11 and simply represent a single attribute for each class as shown in Figure 7.13. This is because

we are only interested in the attributes that are involved in the following invariant:

location = occupied ⇒ route = occupied

“If any location in a route is occupied, the route is occupied.”

This invariant applies to all instances of Location and Route, that is to all railway networks. We

want to verify this invariant in SMV.

We use the translation rules defined to produce the SMV model for this part of the railway

system. Two separate modules are defined for the classes Location and Route. Moreover, a module

is defined for the controller although it is not visualised in the class diagram. The events are

defined in the controller for creating, deleting instances of Location and Route, and for defining

the associations between their objects. The controller variables locationid and routeid identify

which instances of Location and Route, respectively, the events are applied to. Instances of

Location and Route can be associated when the event link happens and the Location instance is

unoccupied. Once they are associated, then their attribute is set to occupied in order to maintain

the invariant. Therefore, if the event link(L0,R1) happens, then the state of L0 must be unoccupied

and all the states of route instances that are associated to L0 must be updated to occupied.

The controller transition CT1 with event locationoccupied ensures that Route attribute is set

to occupied. The associations between instances are only removed when any of the instances

involved in the association are destroyed. We have identified two ways in which the associations

are represented in an SMV model. In our investigation, we test which representation is more

efficient. The first way is as defined by the translation rules for RSDS/UML specifications, where

the arrays are defined in the controller module representing the association between the controller

(with a single instance) and an actuator class. In this case, since neither of the classes associated

is a controller and they both have more than a single instance, a 2-Dimensional (2D) array is used

to represent the instances of both classes. For the railway system, the 2D array defined in the

controller is Location Route that has the meaning Location Route ⊆ Location×Route.

The second way of representing associations consists of defining an array (1-Dimensional) in

each module representing the class, where the indices of the array refer to the instances of the

class that it is associated with. Therefore, each instance of the class will have its own array that

indicates which instances of the other class it is associated to. For the railway system, the array

LocRoute is defined for each instance of class Location and the array RouteLoc is defined for each

instance of class Route.

For the translation, the class multiplicity is required that will also be used as the upper bound

on the range for the cardinality on the association ends. As we want to test the efficiency of the

translation, we try out a large number for the multiplicity of each class and we discuss how SMV

coped with this. Moreover, we want to determine which translation approach is more efficient,

that is using 2D or 1D arrays. The multiplicity that we chose for Location is 31, with instance

ids ranging from 0..30, and the multiplicity for Route is 16, with instance ids ranging from 0..15.

The runtime statistics are summarised in the table below.

7.8 Related Work 262

nuSMV Resource Usage 2D Array 1D Array

User time: 200.240 sec. out-of-memory (1680.470 sec.)
System time: 0.280 sec. 800.100 sec.
Virtual data size (bytes allocated): 32688K -16679K
BDD nodes allocated: 404699 242067855
BDD nodes representing init set of states: 591 -
BDD nodes representing invar set: 1 -

The SMV model with the 1D array for each instance could not be model checked with NuSMV

as its state space was too big. The 2D array is a more efficient representation than the 1D array and

this justifies our choice, in translation rule 19, of using an array to represent in SMV an association

between the controller and an actuator. Since there is only one instance of the controller, we do

not require a 2D array but as RSDS/UML specifications become more general, we do require a

2D array when the instance of the classes that are associated are greater than one.

The system that we implemented was simple, but it had a large number of instances. One can

argue that the number of instances for this system is not huge if we consider a real control system

such as the batch production plant [ARA+01] that contains over 100 instances of valves and pumps

and other components that interact with each other. However, the structure of these systems is

usually static so the complexity introduced by associations can be avoided. Nevertheless, model

checking RSDS/UML specifications for control systems with associations can be slow for medium

sized systems and impossible for large ones.

7.8 Related Work

We survey various methods designed to verify formally UML specifications and we have divided

our findings into two sections: those methods that use model checking for verification that are

directly comparable to our approach and those that use other formal verification techniques. We

discuss these in more detail.

7.8.1 Verifying UML designs with model checking

Methods that apply model checking to UML specifications by defining translations between their

notations, often encounter difficulties when translating some of the object oriented concepts into

the model checking notation because of the semantic differences between the notations. The

most eminent of these arises with the translation of dynamic instantiation of classes and associa-

tions. Moreover, since the translation approach is adopted for integrating UML design and model

checking, it must be shown (preferably formally) that the model produced in the target language

corresponds to that in the source language and that any properties proven in the target hold in the

source as well. Therefore, in this section we consider how such methods overcome difficulties when

translating and whether they provide a proof of correctness for their translation. We consider the

two most popular model checking languages, namely SMV and SPIN, that have been presented

for model checking UML specifications.

7.8 Related Work 263

Verifying with the SMV model checker

The approach that we have adopted for reducing the semantic gap between the RSDS/UML and

SMV language is to restrict the object oriented notation before translating. The main restriction

concerns the class multiplicity and the cardinality on the association ends of class diagrams. A

maximum number of possible objects must be known before run-time as well as the maximum

number of objects that are associated with each other. Moreover, we recommend that variables

of integer type be limited to a manageable size for model checking or that data abstraction tech-

niques must be applied to extract relevant ranges of values as for altitude values in the autopilot

case study. Our objective is to model the dynamic instantiation of classes and associations as

verification of these aspects has not been dealt with by other researchers.

A similar approach is also adopted by [Tan01] where a translation is presented from UML (class

diagrams, object diagrams and statecharts) to SMV and the object oriented notation is restricted

and the dynamic instantiation of classes and associations is not modelled. A proof of correctness

with respect to UML for this translation has not been given and it would be challenging to do so

as the semantics of UML have not been precisely defined.

The toolset described in [SCH02b] manages to verify UML models with the ASM model checker

[Win01], that is based on SMV, without requiring a proof of correctness with respect to UML.

They define precise semantics for the UML models (informally described in [UMLa]) in the Ab-

stract State Machines (ASM) notation [Bör95, Gur91, Gur95]. Details of the semantics for UML

statecharts, and activity diagrams can be found in [BCR00a, BCR00b]. The toolset is capable of

static validation, syntax checking and checking whether the model satisfies the UML semantics,

and dynamic validation performed by model checking, checks that some significant properties are

satisfied by the model, such as safety and liveness properties.

Verifying with the SPIN model checker

Several alternative approaches for overcoming the problem of reducing the semantic gap between

the languages are identified in the literature concerning methods that use SPIN for model checking

UML models.

The methodology described in [dMGMP02] derives system models in PROMELA, the language

of SPIN, from UML statecharts. Sequence diagrams are used as the property language rather than

Object Constraint Language (OCL) that is typically used for this purpose. Even though OCL

is more expressive than sequence diagrams, the latter are more comprehensible to users and can

be directly mapped to finite state transition models. Their objective is to partially verify large

concurrent systems in the initial design stages and are therefore concerned with the abstraction of

statecharts. RSDS/UML defined two semantic views of statemachines to overcome this problem.

Their current work [GMMP02a, GMMP02b, GPE02] is directed towards defining and applying

abstraction techniques for model checking, that is constructing the smallest model without losing

the interesting properties. This is a good attempt at reducing the state space explosion problem

inherent in model checkers.

Hugo [KM02, SKM01] is a tool that also uses model checking to verify systems designed

with UML. It differs from other approaches because it verifies whether the interactions of objects

7.8 Related Work 264

expressed by a collaboration diagram are preserved in a set of statemachines. Therefore, the

statemachines are translated into a PROMELA model and the collaboration diagrams are trans-

lated into Büchi automata, and then SPIN verifies the model against the automata. Compared to

RSDS/UML, Hugo translates a larger set of UML statecharts, such as nested states and history

states, and the execution semantics are closer to the fine-grain view of RSDS/UML statema-

chines. Also, the statemachines translated are a variant of UML statecharts that is based on the

dynamic computation of UML statechart behaviour, while the variant of UML statecharts used

by RSDS/UML is based on a pre-determined calculation of possible state transitions in response

to input events. Hugo’s translation of statemachines is limited to translating only one instance of

a class and does not support the dynamic instantiation of objects. Moreover, the properties to be

verified are limited to what can be expressed in a collaboration diagram, while RSDS/UML auto-

matically translates constraints described as a subset of OCL. In [SKM01], the authors claim that

the correctness of the translation can be done by inspection. However, the PROMELA model

produced looks complicated and some discrepancies can be easily missed. Hugo also generates

Java classes for animation or for the direct inclusion into a Java application.

Latella et. al. [LMM99a] describe a translation from a subset of UML statecharts to PROMELA

for the purpose of verification. This subset of UML statecharts covers state refinement and tran-

sition priority and since the dynamic semantics (execution semantics) are not formalised in UML,

the authors give an operational semantics in [LMM99b] to this subset. The translation consists of

two steps. First each UML statechart diagram is translated into an intermediate representation

called Extended Hierarchical Automata (EHA), hence providing formal syntax to UML statecharts

that is required for verification. Secondly, the EHA are translated into PROMELA. No proof of

correctness is given for the translation relative to the operational semantics. A particular exam-

ple of how to model check embedded systems designed with UML is described in [MB02]. This

translation is limited to a single statechart and does not translate object-oriented features of UML

statecharts.

vUML [LP99] is a tool that translates UML classes and statecharts into PROMELA and

represents any counter-examples produced as sequence diagrams thereby hiding completely the

model checking part from the users. Again, only a subset of UML is translated, for example,

history states are not considered. Moreover, vUML does not allow any run-time instantiation.

The verification capabilities of vUML are limited to verifying only deadlock properties.

The Bandera Toolset [HD01] does not aim to verify UML models, but focuses on the reverse

process of analysing Java programs by model checking them. Java source code is given as input to

the tool together with requirements specified in Bandera’s temporal specification language, which

are used to generate models in the language of the following model checkers: Spin, dSpin [IS99],

SMV and JPF [BHPV00]. If an error is detected it is traced back, step by step, to the Java source

code. It builds on compiler techniques for reducing object oriented techniques into the language of

the chosen model checker. Problems with translating dynamic type substitution (polymorphism)

arise.

7.8 Related Work 265

7.8.2 Verifying UML designs with formal verification techniques

Model checking is not the only formal technique used for verifying UML models. In this section

we discuss some other techniques that are commonly used.

Alloy

Methods using model checking for verification of large systems are handicapped by the state space

explosion problem. The Alloy constraint analyser [JSS00] is a tool that can analyse large object

models. Its input language Alcoa (successor of Nitpick [Jac96]) is based on Z but is close to

UML making transcription trivial. Alcoa contains explicit quantifiers and set comprehension,

thus requiring more expert knowledge from the developers than RSDS/UML. Alloy works by

translating the constraints into boolean formulas, and then applying SAT solvers. Alcoa is not

decidable, so it cannot provide sound and complete analysis.

Verifying UML with B

Many researches are investigating the ability of the B method to support the analysis and verifi-

cation of UML models. Some of these researches adopt the same approach as we do, by defining

translations [MS00, BS00c, ML02, Tre02] that map elements from UML models of a system into a

elements of the B specification language (AMN). The most common modelling notation of UML

considered for the translations is class diagrams with OCL constraints. The dynamic aspect of the

class described by the operations, are usually translated as well, and in some translations their

behaviour is obtained from UML statecharts. The B proof tools are used to analyse and verify

the OCL constraints and the class behaviour can be animated in B at the specification level. No

proof of correctness with respect to the UML semantics is provided for these translations. Some

[MS00] argue that they provide a formal interpretation of the UML models by expressing them in

the B notation. Only [BS00c] have implemented a tool for automating the translation. However,

as we have already discussed B cannot verify temporal properties.

The USE Tool

The UML-based Specification Tool (USE) [RG00] provides support for validation and verification

of UML models that is based on animation. It simulates UML models and has an OCL interpreter

for constraint checking. There are functions for changing the system state by destroying and cre-

ating objects or associations or setting values to attributes. By translating into B, RSDS/UML

provides similar capabilities as B supports animation and monitoring of invariants and precondi-

tions. Additional verification capabilities are provided by RSDS/UML via the translation to SMV

for verifying temporal properties. The counter-examples produced by SMV for properties that are

not true in that model, define sequences of behaviour which assists the developer with debugging.

UMLAUT

The Unified Modelling Language All pUrposes Transformer (UMLAUT) [HJGP99, JGF98] is a

framework for verifying and generating code for distributed control systems specified using UML.

A system described as UML models is transformed into an executable model for simulation by

7.9 Summary 266

algebraic compositions of reified elementary transformations. Validation is based on Labeled

Transition Systems (LTS) that are related to the basic notation used for model checking. The

transformation rules are much more complex than the translation rules presented for RSDS/UML.

As a consequence, the correctness of these transformations must be difficult to prove. Moreover,

semantics that formalise the transformation rules have not been developed, and this reduces our

confidence in the generated code produced.

The KeY System

RSDS/UML shares common objectives with the Key System [ABB+03], a CASE tool that has been

enhanced with extra functionality for formal specification and verification of UML models. The

interesting aspect of this approach is that formal verification is based on the axiomatic semantics

of a subset of JAVA, called JAVA CARD, and thus the structure of the proof follows closely to the

structure of the JAVA program. The properties to be verified are expressed using dynamic logic

and are automatically generated from OCL constraints. However, this new dynamic logic is not as

established as the predicate logic that RSDS/UML relies on. Moreover, RSDS has an established

modular design methodology that is lacking in KeY. The Key System is also comparable to

Bandera as they both work with Java programs, though the Key System verifies systems more

precisely than Bandera.

7.9 Summary

In this chapter, we present the RSDS/UML semantics and describe the expected form of the

RSDS/UML specifications for control systems. This form has some syntactic restrictions that are

not expressed in the RSDS/UML semantics. We only consider a restricted subset of UML at the

moment, but our future aim is to gradually include more models and loosen the restrictions.

We have shown how to provide verification capabilities for RSDS/UML specifications by trans-

lating them into the model checking notation SMV. We have dealt with the translation issues that

arose by restricting the object oriented aspects of the UML models and by constraining the model

to be finite. These issues were brought about due to the restriction of model checking being ap-

plied only to finite models and the state space explosion problem, as well as the richness of the

object oriented modelling notation compared to that of SMV.

Our translation represents the following RSDS/UML elements in SMV:

• Constraints that are attached to associations and described in a succinct notation are trans-

lated explicitly into SMV for each instance.

• Dynamic classes and associations are translated respecting the class multiplicity and the

cardinality on the association ends. The inheritance relationship is also translated into

SMV.

• The coarse-grain semantic view of the statemachine notation is translated into SMV, where

each coarse-grain step corresponds to a single SMV step.

7.9 Summary 267

We describe the proof of correctness of the translation, an important aspect that is often

omitted by researches in the related work. This omission occurs because of the lack of formal

semantics of the UML notation or because they define the semantics by translating into a notation.

The state space explosion problem inherent in model checking is the main limitation of our

approach. We tested the translation on a simple railway example with a large number of instances.

The optimised translation approach was model checked successfully within a reasonable amount

of time.

CHAPTER 8

Conclusion

This thesis focuses on finding a way to verify the temporal properties of RSDS specifications.

We proposed the use of model checking for this purpose. Model checking was integrated into

the RSDS method by defining translations from RSDS specifications to the input language of

the model checker. The SMV model checker was chosen as it is well suited to representing SRS

statemachines and can model check both CTL and LTL properties. The main contributions of

this thesis are summarised as follows:

Model checking the coarse-grain view of RSDS with SMV: The coarse-grain view of an

RSDS specification is model checked in SMV by defining a translation between the notations.

The translation is defined by a number of translation rules for translating each element in the

coarse-grain view of an RSDS specification into corresponding elements in the input language

of SMV. The translation preserves the modularity of RSDS specifications and ensures that

one coarse-grain step corresponds to one SMV step. The correctness of the translation is

shown with a proof. In order to construct the proof, the semantics of RSDS and SMV must be

defined formally and preferably in the same formalism. We have thus consolidated the RSDS

semantics and presented the semantics where the controller is derived automatically from

the sensor component descriptions. Also, we provide SMV with formal semantics using the

same formalism as that of RSDS, based on the operational semantics defined in [McM92b].

Model checking suffers from the state space explosion problem and therefore, it is unfeasible

to model check some large systems specified in RSDS. Since decomposition approaches are

applied to improve the manageability of large systems specified in RSDS, we find natural

ways of applying them to the SMV models for the purpose of reducing the state space.

Model checking the fine-grain view of RSDS with SMV: Similarly, we define a transla-

tion from the fine-grain view of a RSDS specification into the input language of SMV for the

purpose of model checking. The fine-grain view is more complex than the coarse-grain view,

as the order of actuator events being generated is important and must be preserved. The

queue structure, used in the definition of the RSDS semantics to ensure the order of actuator

8.1 Critical Evaluation 269

events, is emulated in the SMV model. A proof is constructed to assert the correctness of the

translation of the fine-grain view. In addition, we show how the decomposition approaches

that are applied to large systems specified in RSDS, can also be applied in a natural way to

the SMV models generated.

Evaluating RSDS against SCR and PVS: The RSDS method, including the integration of

the SMV model checker, is evaluated by performing a detailed comparison against the SCR

and PVS methods. We develop the RSDS specification for a simple autopilot system and

provide the SMV model and B specification. This autopilot system was developed previously

by both the SCR and PVS methods and used as a basis for comparison. We pay particular

attention to the verification techniques used by all methods involved in the comparison.

Model checking the coarse-grain view of RSDS/UML with SMV: As a starting point,

we apply model checking to RSDS/UML specifications by defining a translation with a set of

translation rules, from the coarse-grain view of RSDS/UML to the SMV input language. We

construct a proof to demonstrate the correctness of the translation. The translation for the

fine-grain view of RSDS/UML has not yet been defined, because RSDS/UML is constantly

being adapted to support the development of a wider range of critical applications. How-

ever, we provide some additional translation rules to give an idea of how the RSDS/UML

translation can be easily enhanced as to represent future versions of RSDS/UML.

8.1 Critical Evaluation

We evaluate the solution presented in this thesis for enhancing the verification support of RSDS

specifications with respect to two sets of criteria. The first set of criteria concern the general

objectives of both RSDS and RSDS/UML methods, that is, of improving the applicability and

usability of formal methods. We want to evaluate how well these objectives are maintained even

with the integration of model checking. The second set of criteria concern the quality of the

translations.

8.1.1 Maintaining RSDS and RSDS/UML objectives

The main objectives of RSDS and RSDS/UML are to improve the applicability and usability

of formal methods for developing reactive systems, whereby the latter takes an object oriented

approach. These are achieved by providing a graphical notation for modelling and by automating

as much of the development process as possible. Verification is supported by the B method that

has been integrated into both RSDS and RSDS/UML methods by translation. Some of these

objectives are part of the ideal criteria in [CW96] that tools and methods must try to satisfy.

Integration of tools or methods

No single tool or method is absolute for developing software and therefore it is recommended that

a combination of approaches be applied. Moreover, it is better to integrate existing tools that are

familiar rather than invent new ones. An appropriate style and meaning must be found when the

approaches are used jointly [CW96].

8.1 Critical Evaluation 270

Model checking has been integrated into the RSDS method by defining a translation for each

semantic view that can be automated from RSDS specifications into the input language of SMV.

The translations ensures that SMV is hidden from the user as the input and output of SMV are

interpreted on the RSDS specification. The meaning of the combination of RSDS and SMV is

defined formally by the proofs of correctness of the translations. The proofs guarantee that the

semantics of RSDS specifications are preserved by the translations.

Similarly, model checking has been integrated with RSDS/UML by defining a translation. We

have also shown that the translation preserves the semantics of RSDS/UML by giving a proof of

correctness. However, we have not shown how the results are interpreted onto an RSDS/UML

specification. This should not be difficult to do.

Automation and error detection

Automation in tools consists of the machine performing the required operations with no user

interaction. Tools that provide a high degree of automation dramatically enhance their usability

and applicability. RSDS aims to automate as much of the development process of reactive systems

as possible. We have remained true to this aim with the proposal of integrating model checking

with RSDS by defining translations that can be automated. The user does not need to have any

prior knowledge of SMV. In addition, SMV verifies the system properties automatically. The

current version of RSDS, as implemented by Kevin Lano, contains the following features:

• It allows a user to draw a statemachine model of a system.

• It assists the user with the drawing of the statemachines by choosing templates (instead of

drawing them from scratch) for typical components, such as for switches with two states,

and valves with three states. Once a template is chosen, the default transition and state

names can be changed.

• It allows users to enter the system invariants in the specific format defined for static, oper-

ational and temporal invariants.

• Consistency and completeness checks can be performed on the statemachine model.

• B machines can be automatically generated from the statemachines and invariants.

• SMV code for the coarse-grain view of the statemachines can be automatically generated.

From the work presented in this thesis, what still needs to be implemented is:

• The mapping of any counter-examples produced from the SMV model representing coarse-

grain RSDS specifications.

• The translation from fine-grain RSDS specifications to SMV.

• The mapping of any counter-examples produced from the SMV model representing fine-grain

RSDS specifications.

8.1 Critical Evaluation 271

Therefore, we can only discuss the usability and applicability of using RSDS to model coarse-

grain RSDS specification and model checking them with SMV. A user can develop a coarse-

grain specification for a reactive system very quickly, using the templates and easily without

requiring expert knowledge of the underlying methods (graphical notation). Then, the RSDS tool

automatically generates the corresponding SMV model. The SMV code is then model checked

using NuSMV, which returns true if a property is true in the model, and false with a counter-

example otherwise. If a counter-example is produced, it is not mapped back onto the RSDS model,

but this is easy to do so from the mapping defined in this thesis. Once the RSDS specification is

corrected by the user, the tool can then re-generate the SMV model. This process continues until all

properties are true. We assume that this process will be similar for fine-grain RSDS specifications.

Therefore, from this process, the usability and applicability of using formal methods are enhanced

because the user is presented with a graphical notation for describing the specification, SMV

code is generated automatically and verification occurs with a “push of a button”. Moreover,

automation is a desired feature for safety critical systems as it reduces user interaction that could

be error prone.

Error detection is achieved early on in the development process by the RSDS tool and SMV.

The RSDS tool performs consistency checking of the invariants, while SMV automatically explores

the state space for any violations of the invariants in the given model. Model checking aims to

detect errors, which according to [CW96] is a better approach than just certifying correctness. The

difference between the detecting errors and certifying correctness that the authors in [CW96] want

to emphasise, is that model checking detects errors by generating counter-examples if a property

is false, thus pointing out specific contradictions present in the specification. We believe that both

are equally important as detecting errors assists the user with development, while certification

substantially increases the confidence in the final system developed.

Although verification is well supported in the RSDS development process, the task of formu-

lating the system invariants is still carried out by the user. This task is usually very hard as it

depends on the user knowing some logic and ensuring that the requirements are complete and

consistent. RSDS provides some templates for the common format of the invariants for reactive

systems and the RSDS tool checks to some extent for consistency and for completeness. However,

more work is required for improving the tool support in this area.

Tool support for the RSDS/UML method is currently being implemented. It has the same

aims as the RSDS tool of detecting errors early on in the development process. Consistency

and completeness checking has not been implemented yet. However, an initial version of the

translations to B and to Java classes have been implemented.

8.1.2 Quality of the translations

We have presented three translations to SMV, where two were from RSDS specifications and the

third from RSDS/UML specifications. We want to ensure that the translations have some desirable

properties that contribute to their quality. We evaluate the quality of the translations based on

factors discussed in [KG02] that are broadly categorised as: semantic, syntactic and efficiency.

The semantic factors consider whether the elements in the source language correspond closely to

8.1 Critical Evaluation 272

the elements in the target language. In some cases, the elements cannot be directly represented in

the target language and an adequate representation must be agreed upon. The syntactic factors

consider the desirable properties of the target model such as modularity and readability. Since

the target notation is a model checker, the efficiency of the target model produced is important

to ensure that the state space explosion problem is handled.

RSDS coarse-grain translation

• Semantic factors: All of the elements of the RSDS coarse-grain specification were represented

successfully in the SMV input language. The proof of correctness guarantees this. However,

the mapping between the elements is not direct. We use the information that we already

know about SRS statemachines and how they are synthesised in order to translate more

efficiently. For example, we do not translate the sensor components into SMV and, to ensure

that a coarse-grain step corresponds to a single SMV step, the controller and actuator

transitions are synchronised in the SMV model. Thus, in SMV the generation of events is

not modelled explicitly. Moreover, we choose not to translate subcontroller components into

SMV, because the subcontroller and actuator transitions would be both defined in terms of

controller transitions in order to ensure that a coarse-grain step corresponds to a single SMV

step. This means that introducing the subcontrollers in the SMV modules does not improve

the manageability of large systems in SMV and simply adds to the state space.

• Syntactic factors: The modularity of the coarse-grain specifications is mostly preserved in

the SMV model, as subcontrollers are not explicitly expressed in SMV (only in the case

of the horizontal decomposition approach, but are again limited to a single level). Each

system component is represented as a separate SMV module and the dependency of the

modules follow closely to that described by the DCFD. Although the SMV notation does not

have any complex structuring mechanisms, the simple modularity that it provides enhances

readability. If the naming conventions for the states, events and transitions are preserved

in the translation, we believe that it is possible for the user to understand the SMV model

without having any prior knowledge of the notation. Nevertheless, we intend to hide the

SMV model from the user to make RSDS seamless.

• Efficiency: We need to produce SMV models that are as small as possible without misrepre-

senting or losing any of information from the RSDS specifications. The reason for this is to

ensure that the model is small enough for model checking. Any aspects that are redundant

have been removed, such as the SMV modules for sensor components and subcontrollers.

Moreover, the decomposition approaches have been used to verify (if possible) subsystems

independently in separate SMV programs. This can be difficult for subsystems that are

dependent on each other. We overcome this problem with the introduction of virtual sen-

sors. It would be beneficial to implement larger case studies using RSDS to determine the

scalability of the translation.

8.1 Critical Evaluation 273

RSDS fine-grain translation

• Semantic factors: In the fine-grain translation, there is a very close relation between the

semantics of the fine-grain view of RSDS specifications and the SMV model generated. In

fact, the queue structure defined in the semantics is emulated as an array in SMV that

models the exact order of the actuator events. This close relation means that the proof of

correctness is easier to show. This queue is implemented in a static way in SMV and all of

the values at all times have to be worked out automatically.

• Syntactic factors: The modularity of fine-grain specifications is preserved in the SMV model.

Subcontrollers are explicitly expressed as modules in SMV and the structuring of these

modules is analogous to that of the RSDS components.

• Efficiency: The state space of the fine-grain SMV model is larger than that of the coarse-

grain because of the introduction of the array for defining the exact order in which the

actuator events are processed in a reaction cycle. Again, the sensor components are not

represented in SMV as the controller is modelled as an amalgamation of sensor components.

As with the coarse-grain, the decomposition approaches can be used to divide the system into

subsystems and verify them independently as separate SMV programs. Various larger case

studies should be implemented for the fine-grain as well and possibly further optimisation

techniques could be identified.

RSDS/UML coarse-grain translation

• Semantic factors: The elements in an RSDS/UML specification were not all directly repre-

sented in the SMV model. This is because RSDS/UML has a high-level specification language

with object oriented constructs, while the SMV language is low-level based on transition sys-

tems. Therefore, it is not possible to represent some of the object oriented construct in SMV.

For example, the dynamic instantiation of classes and associations allowed in RSDS/UML

specifications cannot be directly represented in SMV as SMV models have a fixed state space

that does not dynamically change during run-time. Thus, in the SMV model, we can only

emulate the dynamic creation and deletion of objects and their links. Also, SMV can only

model check finite systems, and therefore it needs to know the number of objects created

for each class. We ensure that this additional information (such as the maximum number

of objects created in the system lifetime) is available from the RSDS/UML specification by

imposing certain restrictions on RSDS/UML specifications. We give a proof of correctness

for translation of the restricted RSDS/UML into SMV. A fair criticism of this work is that

the benefits of using object oriented notation are lost (such as dynamic instantiation) when

translating into SMV.

• Syntactic factors: As we already mentioned, we impose syntactic restrictions on RSDS/UML

specifications. Also, we already know what the static structure of a system to be modelled

with RSDS/UML consists of: a class for each actuator and controller and associations linking

them. This structure is preserved by the translation as each class is represented as an

8.2 Future Work 274

SMV module. The definition of the links between the objects are defined in the controller.

Encapsulation of classes is not maintained in the SMV model as some objects directly access

the attributes of other objects. However, since the user will not need to interact with the

SMV model, the readability and maintainability of the SMV model generated is not vital.

• Efficiency: The SMV model generated by the coarse-grain RSDS/UML translation is much

larger than that generated by the coarse-grain RSDS translation. This is because the links

between objects in a system are explicitly defined using arrays which augment the state

space of the SMV model. We showed, by testing, that the way the links are defined (i.e.

1-dimensional array versus 2-dimensional array) can significantly increase the state space

of the model, making model checking infeasible. Therefore, we have chosen to translate

RSDS/UML elements in the most efficient way possible.

8.2 Future Work

We give some suggestions for future work.

• Scalability: In this thesis we have proposed some ways of managing the verification of large

systems by applying the decomposition approaches in a natural way to the SMV models

generated. The largest system that was developed with RSDS and translated into SMV

is the production cell. This is not enough for commenting on the extent on which these

approaches improve the scalability such that model checking is achievable. Therefore, we

suggest that we test these approaches extensively on “real” large systems with hundreds of

components.

RSDS/UML improves the scalability of large systems in terms of modelling multiple com-

ponents with similar behaviour as a single class. In SMV, the representation of classes as

SMV modules does not help address the state space explosion problem for large systems

because each object is represented explicitly (i.e. as an instance of the module). Only the

readability and maintainability of the system is improved with the definition of modules in

SMV. Therefore, we can examine ways in which to optimise the SMV model generated for

RSDS/UML specifications. The ways in which the decomposition approaches are applied to

the SMV models of RSDS specification, could also be applied to RSDS/UML specification.

However, further work is required to investigate what these decomposition approaches mean

when applied to RSDS/UML specifications and whether they can be applied to any system

(i.e. not limited to reactive systems).

• Tool Support: There is currently a version of the RSDS tool that provides automatic

translations into B, JAVA and SMV. Only the coarse-grain SMV translation has been im-

plemented. Therefore, the translations presented in this thesis should be implemented and

also the results produced by SMV should be interpreted on the RSDS specifications. In this

way, the user does not need to have any prior knowledge of SMV.

Similarly, the translation from the coarse-grain view of RSDS/UML specification must be

implemented in the RSDS/UML tool and the SMV results must be interpreted. In this

8.3 Closing Remark 275

thesis we have shown how counter-examples are mapped to RSDS/UML statemachines and

an animator can be implemented that highlights the states and transitions that correspond to

the counter-example. Furthermore, we could extend RSDS/UML to include other diagrams,

such as collaboration diagrams or sequence diagrams, where the former can be used to

illustrate some of the properties to be verified as in Hugo [KM02] and the latter can be used

to interpret counter-examples as in vUML [LP99].

• Extending RSDS/UML: Our work has focused on using a restricted subset of UML

for specifying reactive systems and for defining a translation to SMV for it. It would be

worthwhile to extend the subset of UML being used and to loosen some of the restrictions

imposed as this will improve the expressivity of the modelling language and also allow for

the specification of a wider range of critical systems (i.e. not only reactive systems). For

example, we can enhance the expressivity of statemachines with the addition of composite

states and of class diagrams with the addition of aggregation relationships and association

classes.

Furthermore, we can investigate how concepts from the UML profile for the specification

of scheduling, performance and time [UMLb] can be incorporated in RSDS/UML. Control

systems often have timing devices that monitor the time taken to perform operations. Tim-

ing properties must be expressed using a suitable language, such as P ⇒ AFτQ in PLC

specifications [LCA+02e] that means that if P is true, then there is a time within τ units in

the future at which Q is true. Sequence diagrams are useful in modelling timing constraints

and should be incorporation in RSDS/UML and formal temporal properties can be auto-

matically generate from these. SMV cannot verify systems with timing properties, so we

can either find a way of extending the SMV tool in order to verify with timing properties

(since NuSMV is open source) or we use the model checkers that focus on verifying real-time

systems (such as UPPAAL, Kronos).

8.3 Closing Remark

It is common for a collection of techniques to be combined for increasing the benefits of a method

or tool. Despite the state space explosion problem and the fact that it applies only to finite state

systems, model checking is a desirable debugging tool. The RSDS tool has greatly benefited from

this integration as errors are detected early on in the development process and temporal properties

can be verified.

Glossary

Notation Description

AMN Abstract Machine Notation (B notation). 13

BDD Binary Decision Diagrams 35
BLAST Berkely Lazy Abstraction Software 44

CELENEC EN 50128 Railway industry standard. 9
controllable transitions They are triggered by internal events and are represented

by solid lines.
55

CTL Computational Tree Logic 25
CTL* A logic that embodies CTL and LTL. 25

DCFD Data Control Flow Diagrams 51

environmental assumptions They describe assumptions that are true about the envi-
ronment.

52

external events These are events that occur in the environment detected
by sensors i.e.sensor events.

55

fault-tolerant systems The ability of systems to operate normally despite hard-
ware or software failure.

52

FSM Finite State Machines 13

internal events These are events that occur within the system i.e. they are
generated by the system and are therefore also known as
generated events.

55

LTL Linear-Time Temporal Logic 25
LTS Labelled transition systems 24

OBDD Ordered Binary Decision Diagrams 35

8.3 Closing Remark 277

Notation Description

operational invariants These have the form α & P ⇒ AX(Q) where P and Q are
state constraints on sensors and actuators and α is a sensor
event and AX is the temporal operator. These invariants
are usually generated automatically by the RSDS tool by
converting the static invariants into this form. They are
then used to synthesise the control algorithm.

53

outer-level controller A controller that is dedicated regularly checking the envi-
ronmental assumptions to ensure that the system is put in
a safe state if these are false.

52

PLTL Propositional Linear Time Logic 15
ProB A model checker for B 45
PVS Prototype Verification Sytsem 11

RSDS Reactive System Development Support 50
RSML Requirements State Machine Language 12

SCR Software Cost Reduction 12
SMV Symbolic Model Verifier 41
SRS Structured Reactive Systems 51
static invariants These have the form P ⇒ Q where P andQ consist only of

constraints of current states of sensors and actuators in the
system. No temporal operators or event names are used.

53

STeP The Stanford Temporal Prover 44
system constraints They describe the behaviour of the system. 52

TCTL Real-time Temporal Logic 46
temporal invariants These have the form P ⇒ M(Q) where M is some tem-

poral operator such as AF and AG and P and Q are state
constraints on sensors and actuators.

53

UML Unified Modelling Language 12
uncontrollable transitions They are triggered by external events and are represented

by dashed lines.
55

VIS Verification Interacting with Synthesis 41

APPENDIX A

SMV code generated for the Fault Tolerant Production Cell

ts

bs

s3

Table sensors:

ts: top sensor
bs: bottom sensor
s3: detects blank on table

Feedbelt sensors:

sw: feedbelt switch
s1: detects blank at start of belt
s2: detects blank at end of belt

Table Feedbelt

s1 s2

sw

Figure A.1: The sensors for the feedbelt and table components.

A.1 The subsystem for the table components

MODULE main

VAR

Cont : Controller;

Mtablemotor : tablemotor(Cont);

SPEC

A.1 The subsystem for the table components 279

AG((Cont.state = Off_Off_Off | Cont.state = On_Off_Off) ->

Mtablemotor.tablemotor = up)

SPEC

AG(AG(Cont.event = s3on ->

(Cont.state = Off_On_Off | Cont.state = Off_On_On |

Cont.state = On_On_Off | Cont.state = On_On_On)) &

AG(Mtablemotor.tablemotor = up ->

AF(Cont.state = Off_On_Off | Cont.state = Off_On_On |

Cont.state = On_On_Off | Cont.state = On_On_On)) ->

((Cont.state = Off_Off_Off | Cont.state = Off_On_Off |

Cont.state = On_Off_Off | Cont.state = On_On_Off) ->

AF(Cont.state = On_On_Off | Cont.state = Off_On_Off)))

MODULE Controller

VAR

-- state : (bs, ts, s3)

state : { Off_Off_Off, Off_Off_On, Off_On_Off, Off_On_On, On_Off_Off,

On_Off_On, On_On_Off, On_On_On };

event : { bson, bsoff, tson, tsoff, s3on, s3off };

DEFINE

CT0 := event = bson & state = Off_Off_Off;

CT1 := event = bson & state = Off_Off_On;

CT2 := event = bson & state = Off_On_Off;

CT3 := event = bson & state = Off_On_On;

CT4 := event = bsoff & state = On_Off_Off;

CT5 := event = bsoff & state = On_Off_On;

CT6 := event = bsoff & state = On_On_Off;

CT7 := event = bsoff & state = On_On_On;

CT8 := event = tson & state = Off_Off_Off;

CT9 := event = tson & state = Off_Off_On;

CT10 := event = tson & state = On_Off_Off;

CT11 := event = tson & state = On_Off_On;

CT12 := event = tsoff & state = Off_On_Off;

CT13 := event = tsoff & state = Off_On_On;

CT14 := event = tsoff & state = On_On_Off;

CT15 := event = tsoff & state = On_On_On;

CT16 := event = s3on & state = Off_Off_Off;

CT17 := event = s3on & state = Off_On_Off;

CT18 := event = s3on & state = On_Off_Off;

CT19 := event = s3on & state = On_On_Off;

CT20 := event = s3off & state = Off_Off_On;

CT21 := event = s3off & state = Off_On_On;

CT22 := event = s3off & state = On_Off_On;

CT23 := event = s3off & state = On_On_On;

ASSIGN

init(state) := Off_Off_Off;

next(state) :=

case

CT0 : On_Off_Off;

CT1 : On_Off_On;

CT2 : On_On_Off;

A.1 The subsystem for the table components 280

CT3 : On_On_On;

CT4 : Off_Off_Off;

CT5 : Off_Off_On;

CT6 : Off_On_Off;

CT7 : Off_On_On;

CT8 : Off_On_Off;

CT9 : Off_On_On;

CT10 : On_On_Off;

CT11 : On_On_On;

CT12 : Off_Off_Off;

CT13 : Off_Off_On;

CT14 : On_Off_Off;

CT15 : On_Off_On;

CT16 : Off_Off_On;

CT17 : Off_On_On;

CT18 : On_Off_On;

CT19 : On_On_On;

CT20 : Off_Off_Off;

CT21 : Off_On_Off;

CT22 : On_Off_Off;

CT23 : On_On_Off;

1 : state;

esac;

MODULE tablemotor(Cont)

VAR

tablemotor : { Off, up, down };

ASSIGN

init(tablemotor) := up;

next(tablemotor) :=

case

Cont.CT0 : up;

Cont.CT1 : Off;

Cont.CT2 : Off;

Cont.CT3 : Off;

Cont.CT4 : up;

Cont.CT5 : down;

Cont.CT6 : Off;

Cont.CT7 : down;

Cont.CT8 : Off;

Cont.CT9 : down;

Cont.CT10 : Off;

Cont.CT11 : Off;

Cont.CT12 : up;

Cont.CT13 : down;

Cont.CT14 : up;

Cont.CT15 : Off;

Cont.CT16 : down;

Cont.CT17 : down;

Cont.CT18 : Off;

Cont.CT19 : Off;

Cont.CT20 : up;

Cont.CT21 : Off;

Cont.CT22 : up;

Cont.CT23 : Off;

A.2 The subsystem for the feedbelt components 281

1 : tablemotor;

esac;

A.2 The subsystem for the feedbelt components

MODULE main

VAR

C : Controller;

Mbeltmotor : beltmotor(C);

SPEC

MODULE Controller

VAR

-- state : (sw, s2, Stm)

state : { Off_Off_NotStm, Off_Off_Stm, Off_On_NotStm, Off_On_Stm,

On_Off_NotStm, On_Off_Stm, On_On_NotStm, On_On_Stm };

event : { swon, swoff, s2on, s2off, stmon, stmoff };

fail-safe : boolean;

DEFINE

CT0 := event = swon & state = Off_Off_NotStm;

CT1 := event = swon & state = Off_Off_Stm;

CT2 := event = swon & state = Off_On_NotStm;

CT3 := event = swon & state = Off_On_Stm;

CT4 := event = swoff & state = On_Off_NotStm;

CT5 := event = swoff & state = On_Off_Stm;

CT6 := event = swoff & state = On_On_NotStm;

CT7 := event = swoff & state = On_On_Stm;

CT8 := event = s2on & state = Off_Off_NotStm;

CT9 := event = s2on & state = Off_Off_Stm;

CT10 := event = s2on & state = On_Off_NotStm;

CT11 := event = s2on & state = On_Off_Stm;

CT12 := event = s2off & state = Off_On_NotStm;

CT13 := event = s2off & state = Off_On_Stm;

CT14 := event = s2off & state = On_On_NotStm;

CT15 := event = s2off & state = On_On_Stm;

CT16 := event = stmon & state = Off_Off_NotStm;

CT17 := event = stmon & state = Off_On_NotStm;

CT18 := event = stmon & state = On_Off_NotStm;

CT19 := event = stmon & state = On_On_NotStm;

CT20 := event = stmoff & state = Off_Off_Stm;

CT21 := event = stmoff & state = Off_On_Stm;

CT22 := event = stmoff & state = On_Off_Stm;

CT23 := event = stmoff & state = On_On_Stm;

ASSIGN

init(state) := Off_Off_NotStm;

next(state) :=

case

CT0 : On_Off_NotStm;

A.2 The subsystem for the feedbelt components 282

CT1 : On_Off_Stm;

CT2 : On_On_NotStm;

CT3 : On_On_Stm;

CT4 : Off_Off_NotStm;

CT5 : Off_Off_Stm;

CT6 : Off_On_NotStm;

CT7 : Off_On_Stm;

CT8 : Off_On_NotStm;

CT9 : Off_On_Stm;

CT10 : On_On_NotStm;

CT11 : On_On_Stm;

CT12 : Off_Off_NotStm;

CT13 : Off_Off_Stm;

CT14 : On_Off_NotStm;

CT15 : On_Off_Stm;

CT16 : Off_Off_Stm;

CT17 : Off_On_Stm;

CT18 : On_Off_Stm;

CT19 : On_On_Stm;

CT20 : Off_Off_NotStm;

CT21 : Off_On_NotStm;

CT22 : On_Off_NotStm;

CT23 : On_On_NotStm;

1 : state;

esac;

init(fail-safe) := 0;

next(fail-safe) :=

case

state = next(state) : 1;

1 : fail-safe;

esac;

MODULE beltmotor(C)

VAR

beltmotor : { Off, On };

ASSIGN

init(beltmotor) := Off;

next(beltmotor) :=

case

C.CT0 : On;

C.CT1 : On;

C.CT2 : Off;

C.CT3 : On;

C.CT4 : Off;

C.CT5 : Off;

C.CT6 : Off;

C.CT7 : Off;

C.CT8 : Off;

C.CT9 : Off;

C.CT10 : Off;

C.CT11 : On;

C.CT12 : Off;

C.CT13 : Off;

C.CT14 : On;

A.2 The subsystem for the feedbelt components 283

C.CT15 : On;

C.CT16 : Off;

C.CT17 : Off;

C.CT18 : On;

C.CT19 : On;

C.CT20 : Off;

C.CT21 : Off;

C.CT22 : On;

C.CT23 : Off;

1 : beltmotor;

esac;

APPENDIX B

SMV code generated for the Gas Burner System

B.1 Using the translation in [CAB+98]

MODULE main

VAR

--Events

event : {none, swoff, swon, fdoff, fdon};

sw1 : boolean;

sw2 : boolean;

fd1 : boolean;

fd2 : boolean;

av_close : boolean;

av_open : boolean;

gv_close : boolean;

gv_open : boolean;

ig_close : boolean;

ig_open : boolean;

--And-states

Switch : {on, off};

FlameDetector :{absent, present};

Controller : {off_absent, on_absent, off_present, on_present};

AirValve : {open, closed};

GasValve : {open, closed};

Ignitor : {on, off};

DEFINE

stable := event=none & !av_close & !av_open & !gv_close &

!gv_close & !ig_close & !ig_open;

in-Sys := 1;

in-Switch := in-Sys;

in-SwOff := in-Switch & Switch = off;

in-SwOn := in-Switch & Switch = on;

B.1 Using the translation in [CAB+98] 285

in-FlameDtc := in-Sys;

in-FDAbs := in-FlameDtc & FlameDetector = absent;

in-FDPrs := in-FlameDtc & FlameDetector = present;

in-Cont := in-Sys;

in-OffAbs := in-Cont & Controller = off_absent;

in-OnAbs := in-Cont & Controller = on_absent;

in-OffPrs := in-Cont & Controller = off_present;

in-OnPrs := in-Cont & Controller = on_present;

in-AirValve := in-Sys;

in-AVopen := in-AirValve & AirValve = open;

in-AVclosed := in-AirValve & AirValve = closed;

in-GasValve := in-Sys;

in-GVopen := in-GasValve & GasValve = open;

in-GVclosed := in-GasValve & GasValve = closed;

in-Ignitor := in-Sys;

in-IGopen := in-Ignitor & Ignitor = open;

in-IGclosed := in-Ignitor & Ignitor = closed;

ST1 := in-SwOn & event = swoff;

ST2 := in-SwOff & event = swon;

ST3 := in-FDAbs & event = fdon;

ST4 := in-FDPrs & event = fdoff;

CT1 := in-OffAbs & sw1;

CT2 := in-OnAbs & sw2;

CT3 := in-OnPrs & sw2;

CT4 := in-OffPrs & sw1;

CT5 := in-OnPrs & fd2;

CT6 := in-OnAbs & fd1;

CT7 := in-OffAbs & fd1;

CT8 := in-OffPrs & fd2;

AT1 := in-AVopen & av_close;

AT2 := in-AVclosed & av_open;

AT3 := in-GVopen & gv_close;

AT4 := in-GVclosed & gv_open;

AT5 := in-IGopen & ig_close;

AT6 := in-IGclosed & ig_open;

ASSIGN

init(Switch) := off;

next(Switch) :=

case

ST2 : off;

ST1 : on;

1 : Switch;

esac;

init(FlameDetector) := absent;

next(FlameDetector) :=

case

ST3 : present;

ST4 : absent;

B.1 Using the translation in [CAB+98] 286

1 : FlameDetector;

esac;

init(Controller) := off_absent;

next(Controller) :=

case

CT1|CT5 : on_absent;

CT2|CT8 : off_absent;

CT3|CT7 : off_present;

CT4|CT6 : on_present;

1 : Controller;

esac;

init(AirValve) := closed;

next(AirValve) :=

case

AT2 : open;

AT1 : closed;

1 : AirValve;

esac;

init(GasValve) := closed;

next(GasValve) :=

case

AT4 : open;

AT3 : closed;

1 : GasValve;

esac;

init(Ignitor) := off;

next(Ignitor) :=

case

AT6 : on;

AT5 : off;

1 : Ignitor;

esac;

--external events

next(event) :=

case

stable & !next(stable) : {swon, swoff, fdoff, fdon, none};

1: none;

esac;

--generated (internal) events

init(sw1) := 0;

next(sw1) := ST1;

init(sw2) := 0;

next(sw2) := ST2;

init(fd1) := 0;

next(fd1) := ST3;

init(fd2) := 0;

next(fd2) := ST4;

B.2 Using the alternative translation 287

init(av_close) := 0;

next(av_close) := CT2|CT8;

init(av_open) := 0;

next(av_open) := CT1|CT7|CT4|CT6 ;

init(gv_close) := 0;

next(gv_close) := CT2|CT3 ;

init(gv_open) := 0;

next(gv_open) := CT1|CT4 ;

init(ig_close) := 0;

next(ig_close) := CT3|CT6|CT2 ;

init(ig_open) := 0;

next(ig_open) := CT7|CT1|CT5 ;

SPEC

AG(Ignitor = on -> GasValve = open)

SPEC

AG(GasValve = open -> AirValve = open)

B.2 Using the alternative translation

B.2.1 The coarse-grain view of the system

MODULE main

VAR

Fd : FlameDetector;

Sw : Switch;

Av : AirValve(Sw,Fd);

Gv : GasValve(Sw,Fd);

Ig : Ignitor(Sw,Fd);

SPEC

AG(Gv.gv = open -> Av.av = open)

SPEC

AG(Ig.ig=on -> Gv.gv = open)

--

MODULE FlameDetector

VAR

fd: {Absent, Present};

event : {fdon, fdoff};

DEFINE

FDT1 := fd = Absent & event = fdon;

FDT2 := fd = Present & event = fdon;

FDT3 := fd = Absent & event = fdoff;

FDT4 := fd = Present & event = fdoff;

ASSIGN

init(fd) := Absent;

B.2 Using the alternative translation 288

next(fd) :=

case

FDT1 | FDT2 : Present;

FDT3 | FDT4 : Absent;

1 : fd;

esac;

--

MODULE Switch

VAR

sw: {On, Off};

event : {swon, swoff};

DEFINE

SWT1 := sw = On & event = swon;

SWT2 := sw = Off & event = swon;

SWT3 := sw = On & event = swoff;

SWT4 := sw = Off & event = swoff;

ASSIGN

init(sw) := Off;

next(sw) :=

case

SWT1 | SWT2 : On;

SWT3 | SWT4 : Off;

1 : sw;

esac;

--

MODULE AirValve(Sw, Fd)

VAR

av : { closed, open };

DEFINE

T1 := Sw.event = swon & Sw.sw = Off & Fd.fd = Absent;

T2 := Sw.event = swoff & Sw.sw = On & Fd.fd = Absent;

T4 := Sw.event = swon & Sw.sw = Off & Fd.fd = Present;

T5 := Fd.event = fdon & Sw.sw = Off & Fd.fd = Absent;

T6 := Fd.event = fdon & Sw.sw = On & Fd.fd = Absent;

T8 := Fd.event = fdoff & Sw.sw = Off & Fd.fd = Present;

ASSIGN

init(av) := closed;

next(av) :=

case

T1 : open;

T2 : closed;

T4 : open;

T5 : open;

T6 : open;

T8 : closed;

1 : av;

esac;

B.2 Using the alternative translation 289

--

MODULE GasValve(Sw, Fd)

VAR

gv : { closed, open };

DEFINE

GT1 := Sw.event = swon & Sw.sw = Off & Fd.fd = Absent;

GT2 := Sw.event = swoff & Sw.sw = On & Fd.fd = Absent;

GT3 := Sw.event = swoff & Sw.sw = On & Fd.fd = Present;

GT4 := Sw.event = swon & Sw.sw = Off & Fd.fd = Present;

ASSIGN

init(gv) := closed;

next(gv) :=

case

GT1 : open;

GT2 : closed;

GT3 : closed;

GT4 : open;

1 : gv;

esac;

--

MODULE Ignitor(Sw, Fd)

VAR

ig : { on, off };

DEFINE

IT1 := Sw.event = swon & Sw.sw = Off & Fd.fd = Absent;

IT2 := Sw.event = swoff & Sw.sw = On & Fd.fd = Absent;

IT3 := Sw.event = swoff & Sw.sw = On & Fd.fd = Present;

IT5 := Fd.event = fdon & Sw.sw = Off & Fd.fd = Absent;

IT6 := Fd.event = fdon & Sw.sw = On & Fd.fd = Absent;

IT7 := Fd.event = fdoff & Sw.sw = On & Fd.fd = Present;

ASSIGN

init(ig) := off;

next(ig) :=

case

IT1 : on;

IT2 : off;

IT3 : off;

IT5 : off;

IT6 : off;

IT7 : on;

1 : ig;

esac;

B.2.2 The fine-grain view of the system

MODULE main

VAR

Sw : Switch(Qu);

Fd : FlameDetector(Qu);

B.2 Using the alternative translation 290

Av : AirValve(Qu);

Gv : GasValve(Qu);

Ig : Ignitor(Qu);

Qu : Queue(Sw, Fd, Av, Gv, Ig);

SPEC

AG(Gv.gv = open & Qu.is_empty = 1 -> Av.av = open)

SPEC

AG(Ig.ig=on & Qu.is_empty = 1 -> Gv.gv = open)

SPEC

AG(Qu.is_empty = 0 -> AF Qu.is_empty = 1)

--

MODULE FlameDetector(q)

VAR

fd: {Absent, Present};

event : {fdon, fdoff};

DEFINE

FDT1 := fd = Absent & event = fdon & q.is_empty = 1;

FDT2 := fd = Present & event = fdon & q.is_empty = 1;

FDT3 := fd = Absent & event = fdoff & q.is_empty = 1;

FDT4 := fd = Present & event = fdoff & q.is_empty = 1 ;

ASSIGN

init(fd) := Absent;

next(fd) :=

case

FDT1 | FDT2 : Present;

FDT3 | FDT4 : Absent;

1 : fd;

esac;

--

MODULE Switch(q)

VAR

sw: {On, Off};

event : {swon, swoff};

DEFINE

SWT1 := sw = On & event = swon & q.is_empty = 1;

SWT2 := sw = Off & event = swon & q.is_empty = 1;

SWT3 := sw = On & event = swoff & q.is_empty = 1;

SWT4 := sw = Off & event = swoff & q.is_empty = 1;

ASSIGN

init(sw) := Off;

next(sw) :=

case

SWT1 | SWT2 : On;

SWT3 | SWT4 : Off;

1 : sw;

B.2 Using the alternative translation 291

esac;

--

MODULE AirValve(q)

VAR

av : { closed, open };

DEFINE

AVT1 := q.is_empty = 0 & q.Q[1] = av1; -- & av = open;

AVT2 := q.is_empty = 0 & q.Q[1] = av2; -- & av = closed;

ASSIGN

init(av) := closed;

next(av) :=

case

AVT1: closed;

AVT2: open;

1 : av;

esac;

--

MODULE GasValve(q)

VAR

gv : { closed, open };

DEFINE

GVT1 := q.is_empty = 0 & q.Q[1] = gv1; -- & gv = open;

GVT2 := q.is_empty = 0 & q.Q[1] = gv2; -- & gv = closed;

ASSIGN

init(gv) := closed;

next(gv) :=

case

GVT1: closed;

GVT2: open;

1 : gv;

esac;

--

MODULE Ignitor(q)

VAR

ig : { on, off };

DEFINE

IGT1 := q.is_empty = 0 & q.Q[1] = ig1; --- & ig = on;

IGT2 := q.is_empty = 0 & q.Q[1] = ig2; --- & ig = off;

ASSIGN

init(ig) := off;

next(ig) :=

case

B.2 Using the alternative translation 292

IGT1: off;

IGT2: on;

1 : ig;

esac;

MODULE Queue(SW, FD, AV, GV, IG)

VAR

Q:array 1..3 of {av1, av2, gv1, gv2, ig1,ig2, null}; --- 1 = off and 2 = on

is_empty : boolean;

DEFINE

CT1 := SW.SWT2 & FD.fd = Absent & is_empty = 1;

CT2 := SW.SWT3 & FD.fd = Absent & is_empty = 1 ;

CT3 := SW.SWT3 & FD.fd = Present & is_empty = 1 ;

CT4 := SW.SWT2 & FD.fd = Present & is_empty = 1 ;

CT5 := FD.FDT1 & SW.sw = Off & is_empty = 1 ;

CT6 := FD.FDT1 & SW.sw = On & is_empty = 1 ;

CT7 := FD.FDT4 & SW.sw = On & is_empty = 1 ;

CT8 := FD.FDT1 & SW.sw = Off & is_empty = 1 ;

ASSIGN

init(is_empty) := 1;

next(is_empty) :=

case

CT1 : 0;

CT2 : 0;

CT3 : 0;

CT4 : 0;

CT5 : 0;

CT6 : 0;

CT7 : 0;

CT8 : 0;

AV.AVT1 & Q[2]=null : 1;

AV.AVT2 & Q[2]=null : 1;

GV.GVT1 & Q[2]=null : 1;

GV.GVT2 & Q[2]=null : 1;

IG.IGT1 & Q[2]=null : 1;

IG.IGT2 & Q[2]=null : 1;

1:is_empty;

esac;

init(Q[1]) := null;

next(Q[1]) :=

case

CT1 : av2;

CT2 : ig1;

CT3 : ig1;

CT4 : av2;

CT5 : ig1;

CT6 : ig1;

CT7 : ig2;

CT8 : av1;

AV.AVT1:Q[2];

AV.AVT2:Q[2];

GV.GVT1:Q[2];

B.2 Using the alternative translation 293

GV.GVT2:Q[2];

IG.IGT1:Q[2];

IG.IGT2:Q[2];

1:Q[1];

esac;

init(Q[2]) := null;

next(Q[2]) :=

case

CT1 : gv2;

CT2 : gv1;

CT3 : gv1;

CT4 : gv2;

CT5 : av2;

CT6 : av2;

CT7 : null;

CT8 : null;

AV.AVT1:Q[3];

AV.AVT2:Q[3];

GV.GVT1:Q[3];

GV.GVT2:Q[3];

IG.IGT1:Q[3];

IG.IGT2:Q[3];

1:Q[2];

esac;

init(Q[3]) := null;

next(Q[3]) :=

case

CT1 : ig2;

CT2 : av1;

CT3 : null;

CT4 : null;

CT5 : null;

CT6 : null;

CT7 : null;

CT8 : null;

AV.AVT1:null;

AV.AVT2:null;

GV.GVT1:null;

GV.GVT2:null;

IG.IGT1:null;

IG.IGT2:null;

1:Q[3];

esac;

APPENDIX C

The SMV and B Code Generated for the Autopilot System

C.1 The SMV Code Generated for the Autopilot System

We have annotated the source with the number of the invariants from which the code was derived.

MODULE main

VAR

c1 : CAScont;

cas : CASdisplay(c1);

c2 : ALTcont;

mo : Mode(c2, alt, en);

en : ALTengage(c2, mo, alt);

fpa : FPAdisplay(c2, mo, en, alt);

alt : ALTdisplay(c2, mo);

-- CAS properties

SPEC AG (c1.cas_event = CASdialed -> AX (cas.state = desired))

SPEC AG (AX(c1.cas_event = CASdialed) -> AF (cas.state = desired))

-- ALT properties

SPEC AG (c2.state = away -> EF c2.state = near)

SPEC AG (en.Alt_armed = armed -> mo.mode = FPA)

SPEC AG (!(mo.mode= ATT) -> EF mo.mode = ATT)

SPEC AG (!(mo.mode= ATT) & c2.event = ATTpressed -> AF mo.mode = ATT)

SPEC AG(!(mo.mode = ATT & alt.ast = desired& fpa.fst = desired)) --from \ref{ap26}

SPEC AG(c2.event = FPAdialed -> AX(fpa.fst = desired)) --from \ref{ap6}

-- SCR properties

SPEC AG(mo.mode = FPA -> AX(!(mo.mode = FPA) -> fpa.fst = current)) -- from \ref{24}

SPEC AG(mo.mode = ALT -> AX(!(mo.mode = ALT) -> alt.ast = current)) -- from \ref{25}

-- The CAS Subsystem

C.1 The SMV Code Generated for the Autopilot System 295

MODULE CAScont

VAR

state : {on, off};

cas_event : {CASpressed, CASdialed, CASreached};

DEFINE

CT1 := state = off & cas_event = CASpressed; --from 4.1

CT2 := state = on & cas_event = CASpressed; --from 4.2 & 4.3

CT3 := state = off & cas_event = CASdialed; --from 4.4

CT4 := state = on & cas_event = CASdialed; --from 4.4

CT5 := state = off & cas_event = CASreached; --from 4.5

CT6 := state = on & cas_event = CASreached; --from 4.5

ASSIGN

init(state) := off;

next(state) :=

case

CT1: on;

CT2 : off;

1 : state;

esac;

MODULE CASdisplay(cont)

VAR

state : {desired, current};

DEFINE

DT1 := cont.CT2 & state = desired ;

DT2 := (cont.CT3 | cont.CT4) & state = current;

DT3 := (cont.CT5 | cont.CT6) & state = desired;

ASSIGN

init(state) := current;

next(state) :=

case

DT1 : current;

DT2 : desired;

DT3 : current;

1 : state;

esac;

--The ALT subsystem

MODULE ALTcont

VAR

state : {near, away, at};

event : {ATTpressed, FPApressed, ALTpressed, ALTgetsNear,

ALTreached, FPAreached, ALTdialed, FPAdialed, ALTgetsAway};

DEFINE

CT1 :=event = ATTpressed & state = near;

CT2 :=event = ATTpressed & state = away;

CT3 :=event = ATTpressed & state = at;

C.1 The SMV Code Generated for the Autopilot System 296

CT4 :=event = FPApressed & state = near;

CT5 :=event = FPApressed & state = away;

CT6 :=event = FPApressed & state = at;

CT7 :=event = ALTpressed & state = near;

CT8 :=event = ALTpressed & state = away;

CT9 :=event = ALTpressed & state = at;

CT10 :=event = ALTgetsNear & state = near;

CT11 :=event = ALTgetsNear & state = away;

CT12 :=event = ALTgetsNear & state = at;

CT13 :=event = ALTreached & state = near;

CT14 :=event = ALTreached & state = away;

CT15 :=event = ALTreached & state = at;

CT16 :=event = ALTdialed & state = near;

CT17 :=event = ALTdialed & state = away;

CT18 :=event = ALTdialed & state = at;

CT19 :=event = FPAdialed & state = near;

CT20 :=event = FPAdialed & state = away;

CT21 :=event = FPAdialed & state = at;

CT22 :=event = FPAreached & state = near;

CT23 :=event = FPAreached & state = away;

CT24 :=event = FPAreached & state = at;

CT25 :=event = ALTgetsAway & state = near;

CT26 :=event = ALTgetsAway & state = away;

CT27 :=event = ALTgetsAway & state = at;

ASSIGN

init(state):=away;

next(state) :=

case

CT11 : near;

CT12 : near;

CT13 | CT14 : at;

CT25 : away ;

1 : state;

esac;

--

MODULE Mode(OC, a, En)

VAR

mode : {ATT, ALT, FPA};

DEFINE

MT1 := !(mode = ATT) & (OC.CT1 | OC.CT2 | OC.CT3) ; --from 4.11 & 4.12

MT2 := !(mode = FPA) & (OC.CT4 | OC. CT5 | OC.CT6) ; --from 4.8

MT3 := mode = FPA & (OC.CT4 | OC.CT5 | OC.CT6) ; --from 4.7

MT4 := !(mode = ALT) & a.ast = desired & OC.CT8 ; --from 4.15

MT5 := !(mode = ALT) & a.ast = desired & (OC.CT7 | OC.CT9); --from 4.24

MT6 := mode = FPA & En.Alt_armed = armed & (OC.CT10 | OC.CT11 | OC.CT12); --from 4.16

MT7 := mode = FPA & En.Alt_armed = armed & (OC.CT13 | OC.CT14 | OC.CT15);

C.1 The SMV Code Generated for the Autopilot System 297

MT8 := mode = FPA & En.Alt_armed = armed & (OC.CT16 | OC.CT17 | OC.CT18); --from 4.23

MT9 := mode = ALT & !(a.ast = desired) & OC.CT8 ;

MT10 := mode = ALT & (OC.CT16 | OC.CT17 | OC.CT18); --from 4.17

ASSIGN

init(mode) := ATT;

next(mode) := case

MT1 : ATT ;

MT2 : FPA ;

MT3 : ATT ;

MT4 : FPA ;

MT5 : ALT ;

MT6 : ALT;

MT7 : ALT ;

MT8 : ATT;

MT9 : FPA;

1 : mode;

esac;

--

MODULE ALTengage(C, M, AL)

VAR

Alt_armed : {armed, not_armed};

DEFINE

ET1 := C.CT8 & !(M.mode = ALT) & AL.ast = desired & Alt_armed = not_armed; --from 4.15

ET2 := (C.CT16 | C.CT17 | C.CT18) & M.mode = ALT & Alt_armed = armed; --from 4.22

ET3 := (C.CT16 | C.CT17 | C.CT18) & Alt_armed = armed; --from 4.23

ET4 := (C.CT10 | C.CT11 | C.CT12) & M.mode = FPA & Alt_armed = armed; --from 4.16

ET5 := !(M.mode = ATT) & (C.CT1 | C.CT2 | C.CT3) ; --from 4.11 & 4.12

ET6 := M.mode = FPA & (C.CT4 | C.CT5 | C.CT6) ; --from 4.7

ET7 := M.mode = FPA & Alt_armed = armed & (C.CT13 | C.CT14 | C.CT15);

ASSIGN

init(Alt_armed) := not_armed;

next(Alt_armed) :=

case

ET1 : armed;

ET2 : not_armed ;

ET3 : not_armed ;

ET4 : not_armed ;

ET5 : not_armed ;

ET6 : not_armed ;

ET7 : not_armed ;

1 : Alt_armed;

esac;

--

MODULE FPAdisplay(C, M, En, Al)

VAR

fst : {desired, current};

DEFINE

FT1 := (C.CT19 | C.CT20 | C.CT21) & fst = desired; --from 4.6

C.1 The SMV Code Generated for the Autopilot System 298

FT2 := (C.CT19 | C.CT20 | C.CT21) & fst = current; --from 4.6

FT3 := (C.CT22 | C.CT23 | C.CT24) & fst = current; --from 4.9

FT4 := (C.CT22 | C.CT23 | C.CT24) & fst = desired; --from 4.9

FT5 := (C.CT10 | C.CT11 | C.CT12) & M.mode = FPA & En.Alt_armed = armed

& fst = desired; --from 4.16

FT6 := (C.CT10 | C.CT11 | C.CT12) & M.mode = FPA & En.Alt_armed = armed

& fst = current; --from 4.16

FT7 := (C.CT1 | C.CT2 | C.CT3) & !(M.mode = ATT) & fst = desired; --from 4.12

FT8 := (C.CT1 | C.CT2 | C.CT3) & !(M.mode = ATT) & fst = current; --from 4.12

FT9 := (C.CT16 | C.CT17 | C.CT18) & En.Alt_armed = armed & fst = desired; --from 4.23

FT10 := (C.CT16 | C.CT17 | C.CT18) & En.Alt_armed = armed & fst = current; --from 4.23

FT11 := (C.CT7 | C.CT9) & !(M.mode = ALT) & Al.ast = desired & fst = desired; --from 4.24

FT12 := (C.CT7 | C.CT9) & !(M.mode = ALT) & Al.ast = desired & fst = current; --from 4.24

FT13 := (C.CT16 | C.CT17 | C.CT18) & En.Alt_armed = not_armed & fst = current; --from R2

FT14 := (C.CT16 | C.CT17 | C.CT18) & En.Alt_armed = not_armed & fst = desired; --from R2

FT15 := M.mode = FPA & (C.CT4 | C.CT5 | C.CT6) & fst = current; --from 4.7

FT16 := M.mode = FPA & (C.CT4 | C.CT5 | C.CT6) & fst = desired; --from 4.7

FT17 := M.mode = FPA & (C.CT13 | C.CT14 | C.CT15) & fst = current;

FT18 := M.mode = FPA & (C.CT13 | C.CT14 | C.CT15) & fst = desired;

ASSIGN

init(fst) := current;

next(fst):=

case

FT1 | FT2 : desired ;

FT3 | FT4 : current ;

FT5 | FT6 : current ;

FT7 | FT8 : current ;

FT9 | FT10 : current ;

FT11 | FT12 : current ;

FT13 | FT14 : current ;

FT15 | FT16 : current;

FT17 | FT18 : current;

1: fst;

esac;

MODULE ALTdisplay(C, M)

VAR

ast : {desired, current};

DEFINE

AT1 := (C.CT4 | C.CT5 | C.CT6) & !(M.mode = FPA) & ast = desired ; --from 4.8

AT2 := (C.CT4 | C.CT5 | C.CT6) & !(M.mode = FPA) & ast = current; --from 4.8

AT3 := (C.CT16 | C.CT17 | C.CT18) & ast = current; --from 4.13

AT4 := (C.CT16 | C.CT17 | C.CT18) & ast = desired; --from 4.13

C.2 The B Code Generated for the Autopilot System 299

AT5 := (C.CT13 | C.CT14 | C.CT15) & ast = desired; --from 4.14

AT6 := (C.CT13 | C.CT14 | C.CT15) & ast = current; --from 4.14

AT7 := (C.CT1 | C.CT2 | C.CT3) & !(M.mode = ATT) & ast = desired; --from 4.12

AT8 := (C.CT1 | C.CT2 | C.CT3) & !(M.mode = ATT) & ast = current; --from 4.12

ASSIGN

init(ast) := current;

next(ast):=

case

AT1 | AT2 : current ;

AT3 | AT4 : desired ;

AT5 | AT6 : current ;

AT7 | AT8 : current ;

1:ast;

esac;

C.2 The B Code Generated for the Autopilot System

/*--*/

MACHINE

CASModeCont

SEES

APTypes

INCLUDES /* actuator */

CASdisplay

VARIABLES

CASmode

INVARIANT

CASmode : Switch

INITIALISATION

CASmode := off

OPERATIONS

CASpressed =

IF

CASmode = off

THEN

CASmode := on

ELSE

CASmode := off ||

set_cur_CASdisplay

END;

/* -------------------------------*/

CASdialed =

IF

CASmode = off

THEN

set_pre_CASdisplay

C.2 The B Code Generated for the Autopilot System 300

END

END

/*--*/

MACHINE

CASdisplay

SEES

APTypes

VARIABLES

CASdisplay

INVARIANT

CASdisplay : Display

INITIALISATION

CASdisplay := current

OPERATIONS

/* The CAS dispaly is shows the given value */

set_cur_CASdisplay =

IF CASdisplay = desired

THEN

CASdisplay := current

END;

set_pre_CASdisplay =

IF

CASdisplay = current

THEN

CASdisplay := desired

END

END

/*--*/

MACHINE

Altitude

SEES

APTypes

VARIABLES

Alt

INVARIANT

Alt : ALT_val

INITIALISATION

Alt := away

OPERATIONS

AltgetsNear =

C.2 The B Code Generated for the Autopilot System 301

IF

Alt /= near

THEN

Alt := near

END;

/*-------------------------------*/

AltgetsAway =

IF

Alt /= away

THEN

Alt := away

END;

/*------------------------------*/

Altreached =

IF

Alt /= at

THEN

Alt := at

END

END

/*--*/

MACHINE

OtherCont

SEES

APTypes

INCLUDES /* Actuators */

FPAdisplay,

ALTdisplay,

Altitude /* Sensor */

PROMOTES

set_Alt_away

VARIABLES

ModeState,

ALT_armed

INVARIANT

ModeState : SysState &

ALT_armed : ALTarmed &

(ALT_armed = armed => ModeState = FPAmode)

INITIALISATION

ModeState := ATTmode ||

ALT_armed := not_armed

OPERATIONS

ATT_pressed =

C.2 The B Code Generated for the Autopilot System 302

IF

ModeState = ALTmode or

ModeState = FPAmode

THEN

ModeState := ATTmode ||

set_cur_ALTdisplay ||

set_cur_FPAdisplay ||

ALT_armed := not_armed

END;

/* --------------------------------*/

FPA_pressed =

IF

ModeState = ALTmode or

ModeState = ATTmode

THEN

ModeState := FPAmode ||

set_cur_ALTdisplay

ELSE

ModeState := ATTmode ||

set_cur_ALTdisplay ||

set_cur_FPAdisplay

END;

/*--------------------------------*/

ALT_pressed =

IF

ModeState /= ALTmode &

ALT_display = pre_selected

THEN

IF

Alt /= away

THEN

ModeState := ALTmode ||

ALT_armed := not_armed ||

set_cur_FPAdisplay

ELSE

ModeState := FPAmode ||

ALT_armed := armed

END

END;

/*--------------------------------*/

ALT_gets_near =

IF

ModeState = FPAmode &

ALT_armed = armed

THEN

set_Alt_near ||

ModeState := ALTmode ||

set_cur_FPAdisplay ||

ALT_armed := not_armed

END;

C.2 The B Code Generated for the Autopilot System 303

/*---------------------------------*/

ALT_reached =

IF

ALT_armed = armed

THEN

set_Alt_at ||

set_cur_ALTdisplay ||

ModeState := ALTmode ||

set_cur_FPAdisplay ||

ALT_armed := not_armed

ELSE

set_Alt_at ||

set_cur_ALTdisplay

END;

/*-----------------------------*/

FPA_reached =

BEGIN

set_cur_FPAdisplay

END;

/*-----------------------------*/

ALT_input_dial =

IF

ModeState = ALTmode or

ALT_armed = armed

THEN

ModeState := ATTmode ||

set_pre_ALTdisplay ||

set_cur_FPAdisplay ||

ALT_armed := not_armed

ELSE IF

ModeState = FPAmode or

ModeState = ATTmode

THEN

set_pre_ALTdisplay

END

END;

/*-----------------------------*/

FPA_input_dial =

IF

ModeState /= FPAmode

THEN

set_pre_FPAdisplay

END

END

C.2 The B Code Generated for the Autopilot System 304

/*--*/

MACHINE

ALTdisplay

SEES

APTypes

VARIABLES

ALTdisplay

INVARIANT

ALTdisplay : Display

INITIALISATION

ALTdisplay := current

OPERATIONS

/* The if state is not needed because we want to change the

value no matter what was there before */

set_cur_ALTdisplay =

IF ALTdisplay = desired

THEN

ALTdisplay := current

END;

/*-------------------------------------*/

set_pre_ALTdisplay =

IF ALTdisplay = current

THEN

ALTdisplay := desired

END

END

/*--*/

MACHINE

FPAdisplay

SEES

APTypes

VARIABLES

FPAdisplay

INVARIANT

FPAdisplay : Display

INITIALISATION

FPAdisplay := current

OPERATIONS

/* The FPA display shows the given value */

C.2 The B Code Generated for the Autopilot System 305

set_cur_FPAdisplay =

IF

FPAdisplay = desired

THEN

FPAdisplay := current

END;

set_pre_FPAdisplay =

IF

FPAdisplay = current

THEN

FPAdisplay := desired

END

END

/*--*/

MACHINE

APTypes

SETS

SysState = {ALTmode, FPAmode, ATTmode};

ALTarmed = {armed, not_armed};

Switch = {on, off};

Display = {desired, current}; /* actual desired = desired value */

ALT_val = {away, near, at}

/* away -------------- the desired value > 1200 feet away

near - the desired value <= 1200 feet away

at - the desired value = the actual altitude */

END

/*--*/

MACHINE

OuterCont

SEES

APTypes

INCLUDES /* Controllers */

OtherCont,

CASModeCont

VARIABLES /* These are the old values that we set and compare

against in the cycle operation. */

ALTsw,

ATTsw,

CASsw,

FPAsw,

desiredALT,/* Target values */

actualALT,

Fpa

INVARIANT

C.2 The B Code Generated for the Autopilot System 306

ALTsw : Switch &

ATTsw : Switch &

CASsw : Switch &

FPAsw : Switch &

desiredALT : NAT &

actualALT : NAT &

Fpa : NAT

INITIALISATION

ALTsw := off ||

ATTsw := off ||

CASsw := off ||

FPAsw := off ||

desiredALT := 0 ||

actualALT := 0 ||

Fpa := 0

OPERATIONS

cycle (new_ALT, new_ATT, new_CAS, new_FPA, input_alt, actual_alt,

dialed_alt, input_fpa, actual_fpa, dialed_fpa, input_cas)=

PRE

new_ALT : Switch &

new_FPA : Switch &

new_ATT : Switch &

new_CAS : Switch &

input_alt : BOOL &

input_fpa : BOOL &

input_cas : BOOL &

actual_alt : NAT &

dialed_alt : NAT & /* target value*/

actual_fpa : NAT &

dialed_fpa : NAT

THEN

skip

END

END

/*--*/

IMPLEMENTATION

OuterCont_1

REFINES

OuterCont

SEES

APTypes,

Bool_TYPE

IMPORTS

/* These are the old values that we set and compare

against in the cycle operation. */

ALTsw1_Vvar(Switch),

ATTsw1_Vvar(Switch),

CASsw1_Vvar(Switch),

FPAsw1_Vvar(Switch),

C.2 The B Code Generated for the Autopilot System 307

desiredALT1_Nvar(3000),/* Target values */

actualALT1_Nvar(3000),

Fpa1_Nvar(3000)

INITIALISATION

ALTsw1_STO_VAR(off) ;

ATTsw1_STO_VAR(off);

CASsw1_STO_VAR(off);

FPAsw1_STO_VAR(off);

desiredALT1_STO_NVAR(0);

actualALT1_STO_NVAR(0);

Fpa1_STO_NVAR(0)

OPERATIONS

cycle(new_ALT, new_ATT, new_CAS, new_FPA, input_alt, actual_alt,

dialed_alt, input_fpa, actual_fpa, dialed_fpa, input_cas) =

VAR

alt_sw1, att_sw1,

cas_sw1, fpa_sw1,

desired, actual,

fpa1

IN

alt_sw1 <-- ALTsw1_VAL_VAR;

att_sw1 <-- ATTsw1_VAL_VAR;

cas_sw1 <-- CASsw1_VAL_VAR;

fpa_sw1 <-- FPAsw1_VAL_VAR;

desired <-- desiredALT1_VAL_NVAR;

actual <-- actualALT1_VAL_NVAR;

fpa1 <-- Fpa1_VAL_NVAR;

IF

(new_ALT = on & alt_sw1 = off)

THEN

ALTpressed

END ;

IF

(new_ATT = on & att_sw1 = off)

THEN

ATTpressed

END ;

IF

(new_CAS = on & cas_sw1 = off)

THEN

CASpressed

END ;

IF

(new_FPA = on & fpa_sw1 = off)

THEN

FPApressed

END ;

C.2 The B Code Generated for the Autopilot System 308

/* Check whether a new CAS has been dialed in */

IF

input_cas = TRUE

THEN

CASdialed

END ;

/* Check whether a new FPA has been dialed in */

IF

input_fpa = TRUE

THEN

FPAdialed ;

Fpa1_STO_NVAR(dialed_fpa);

fpa1 <-- Fpa1_VAL_NVAR

END ;

/* Checks whether the actual FPA has reached the target FPA */

IF

actual_fpa = fpa1

THEN

FPAreached

END ;

/* Check whether a new altitude has been dialed in */

IF

input_alt = TRUE

THEN

ALTdialed ;

desiredALT1_STO_NVAR(dialed_alt);

desired <-- desiredALT1_VAL_NVAR

END;

/* Update the actualALT so that we can ensure that the

operations maintain the invariants */

IF

actual_alt /= actual

THEN

actualALT1_STO_NVAR(actual_alt);

actual <-- actualALT1_VAL_NVAR

END ;

/* Checks the realtionship between the actual and the

target desiredALT */

IF

desiredALT <= 1200 + actual

THEN

ALTgetsNear

ELSE IF

desired = actual

THEN

ALTreached

ELSE

AltgetsAway

END

END

END ;

C.2 The B Code Generated for the Autopilot System 309

/* Update the sensor values (switches) */

ALTsw1_STO_VAR(new_ALT) ;

ATTsw1_STO_VAR(new_ATT) ;

CASsw1_STO_VAR(new_CAS) ;

FPAsw1_STO_VAR(new_FPA)

END

END APPENDIX D

SMV code generated for RSDS/UML specifications

D.1 SMV code for the gas burner system

The alive variable has been added to the property descriptions as we are only interested in the

value of actuator instances that are alive.

MODULE main

VAR

C : Controller(Av, Gv, Ig);

Av : Valve(C,1);

Gv : Valve(C,2);

Ig : Igniter(C);

SPEC

AG((Gv.alive = 1 & Av.alive = 1) -> (Gv.va = open -> Av.va = open))

SPEC

AG((Ig.alive & Gv.alive) -> (Ig.ig=on -> Gv.va = open))

SPEC

AG(Ig.alive -> C.CtoIG)

SPEC

AG(Av.alive -> C.CtoV[1])

SPEC

AG(Gv.alive -> C.CtoV[2])

--

MODULE Controller(Va, Vg, iG)

VAR

state : { Off_Absent, On_Absent, Off_Present, On_Present, newActs, Shutdown };

event : { swon, swoff, fdon, fdoff, shutdown, newV, newIG, start, none};

idV : 1..2;

CtoV : array 1..2 of boolean;

D.1 SMV code for the gas burner system 311

CtoIG : boolean; --only one instance of each

DEFINE

CT1 := event = swon & state = Off_Absent & Va.alive & Vg.alive & iG.alive;

CT2 := event = swoff & state = On_Absent & Va.alive & Vg.alive & iG.alive;

CT3 := event = swoff & state = On_Present & Va.alive & Vg.alive & iG.alive;

CT4 := event = swon & state = Off_Present & Va.alive & Vg.alive & iG.alive;

CT5 := event = fdon & state = Off_Absent & Va.alive & Vg.alive & iG.alive;

CT6 := event = fdon & state = On_Absent & Va.alive & Vg.alive & iG.alive;

CT7 := event = fdoff & state = On_Present & Va.alive & Vg.alive & iG.alive;

CT8 := event = fdoff & state = Off_Present & Va.alive & Vg.alive & iG.alive;

CT9 := event = newV & idV = 1 & state = newActs & Va.alive & Vg.alive & iG.alive;

CT10 := event = newV & idV = 2 & state = newActs & Va.alive & Vg.alive & iG.alive;

CT11 := event = newIG & state = newActs;

CT12 := event = start & state = newActs;

CT13 := event = shutdown & state = Off_Absent;

CT14 := event = shutdown & idV= 1 & state = Shutdown;

CT15 := event = shutdown & idV= 2 & state = Shutdown;

ASSIGN

init(state) := newActs;

next(state) :=

case

CT1 : On_Absent;

CT2 : Off_Absent;

CT3 : Off_Present;

CT4 : On_Present;

CT5 : Off_Present;

CT6 : On_Present;

CT7 : On_Absent;

CT8 : Off_Absent;

CT9 : newActs;

CT10 : newActs;

CT11 : newActs;

CT12 : Off_Absent;

CT13 : Shutdown;

1 : state;

esac;

init(CtoIG) := 0;

next(CtoIG) :=

case

CT11 : 1;

CT13 : 0;

1: CtoIG;

esac;

init(CtoV[1]) := 0;

next(CtoV[1]) :=

case

CT9 : 1;

CT14 : 0;

1 : CtoV[1];

esac;

init(CtoV[2]) := 0;

next(CtoV[2]) :=

case

D.1 SMV code for the gas burner system 312

CT10 : 1;

CT15 : 0;

1 : CtoV[2];

esac;

MODULE Valve(C,id)

VAR

va : { closed, open };

alive : boolean;

DEFINE

AT1 := C.CT1 & id = 1;

AT2 := C.CT2 & id = 1;

AT3 := C.CT3 & id = 2;

AT4 := C.CT4 & id = 1;

AT5 := C.CT5 & id = 1;

AT6 := C.CT6 & id = 1;

AT7 := C.CT8 & id = 1;

AT8 := C.CT9 & id = 1;

AT9 := C.CT10 & id = 2;

AT10 := C.CT1 & id = 2;

AT11 := C.CT2 & id = 2;

AT12 := C.CT4 & id = 2;

AT13 := C.CT10 & id = 2;

ASSIGN

init(va) := closed;

next(va) :=

case

-- for air-valve --

AT1: open;

AT2: closed;

AT4: open;

AT5: open;

AT6: open;

AT7: closed;

AT8: closed;

-- for gas valve --

AT10: open;

AT11: closed;

AT3: closed;

AT12: open;

AT13: closed;

1 : va;

esac;

init(alive) := 0;

D.2 SMV code for the Railway System (2D Array) 313

next(alive) :=

case

C.CT9 & id = C.idV : 1;

C.CT10 & id = C.idV : 1;

C.CT14 & id = C.idV : 0;

C.CT15 & id = C.idV : 0;

1:alive;

esac;

--

MODULE Igniter(C)

VAR

ig : { on, off };

alive : boolean;

DEFINE

AT1 := C.CT1;

AT2 := C.CT2;

AT3 := C.CT3;

AT4 := C.CT5;

AT5 := C.CT6;

AT6 := C.CT7;

AT7 := C.CT9;

AT8 := C.CT10;

AT9 := C.CT11;

ASSIGN

init(ig) := off;

next(ig) :=

case

C.CT1 : on;

C.CT2 : off;

C.CT3 : off;

C.CT5 : off;

C.CT6 : off;

C.CT7 : on;

C.CT9 : off;

C.CT10 : off;

C.CT11 : off;

1 : ig;

esac;

init(alive) := 0;

next(alive) :=

case

C.CT11 : 1;

C.CT13 : 0;

1:alive;

esac;

D.2 SMV code for the Railway System (2D Array)

We have removed some of the similar sections of SMV code for improving its representation.

MODULE main

VAR

D.2 SMV code for the Railway System (2D Array) 314

L0: Location(C,0);

L1: Location(C,1);

L2: Location(C,2);

...

L27: Location(C,27);

L28: Location(C,28);

L29: Location(C,29);

L30: Location(C,30);

R0: Route(C,0);

R1: Route(C,1);

R2: Route(C,2);

R3: Route(C,3);

R4: Route(C,4);

R5: Route(C,5);

R6: Route(C,6);

R7: Route(C,7);

R8: Route(C,8);

R9: Route(C,9);

R10: Route(C,10);

R11: Route(C,11);

R12: Route(C,12);

R13: Route(C,13);

R14: Route(C,14);

R15: Route(C,15);

C: Controller(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,

L17,L18,L19,L20,L21,L22,L23,L24,L25,L26,L27,L28,L29,L30,R0,R1,R2,R3,R4,

R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15);

SPEC

AG(C.Location_Route[0][0] & L0.location = occupied -> R0.route = occupied)

SPEC

AG(C.Location_Route[0][1] & L0.location = occupied -> R1.route = occupied)

SPEC

AG(C.Location_Route[0][2] & L0.location = occupied -> R2.route = occupied)

SPEC

AG(C.Location_Route[0][3] & L0.location = occupied -> R3.route = occupied)

SPEC

AG(C.Location_Route[0][4] & L0.location = occupied -> R4.route = occupied)

SPEC

AG(C.Location_Route[0][5] & L0.location = occupied -> R5.route = occupied)

SPEC

AG(C.Location_Route[0][6] & L0.location = occupied -> R6.route = occupied)

SPEC

s AG(C.Location_Route[0][7] & L0.location = occupied -> R7.route = occupied)

SPEC

AG(C.Location_Route[0][8] & L0.location = occupied -> R8.route = occupied)

SPEC

AG(C.Location_Route[0][9] & L0.location = occupied -> R9.route = occupied)

SPEC

AG(C.Location_Route[0][10] & L0.location = occupied -> R10.route = occupied)

SPEC

AG(C.Location_Route[0][11] & L0.location = occupied -> R11.route = occupied)

SPEC

AG(C.Location_Route[0][12] & L0.location = occupied -> R12.route = occupied)

D.2 SMV code for the Railway System (2D Array) 315

SPEC

AG(C.Location_Route[0][13] & L0.location = occupied -> R13.route = occupied)

SPEC

AG(C.Location_Route[0][14] & L0.location = occupied -> R14.route = occupied)

SPEC

AG(C.Location_Route[0][15] & L0.location = occupied -> R15.route = occupied)

...

SPEC

AG(C.Location_Route[30][0] & L30.location = occupied -> R0.route = occupied)

SPEC

AG(C.Location_Route[30][1] & L30.location = occupied -> R1.route = occupied)

SPEC

AG(C.Location_Route[30][2] & L30.location = occupied -> R2.route = occupied)

SPEC

AG(C.Location_Route[30][3] & L30.location = occupied -> R3.route = occupied)

SPEC

AG(C.Location_Route[30][4] & L30.location = occupied -> R4.route = occupied)

SPEC

AG(C.Location_Route[30][5] & L30.location = occupied -> R5.route = occupied)

SPEC

AG(C.Location_Route[30][6] & L30.location = occupied -> R6.route = occupied)

SPEC

AG(C.Location_Route[30][7] & L30.location = occupied -> R7.route = occupied)

SPEC

AG(C.Location_Route[30][8] & L30.location = occupied -> R8.route = occupied)

SPEC

AG(C.Location_Route[30][9] & L30.location = occupied -> R9.route = occupied)

SPEC

AG(C.Location_Route[30][10] & L30.location = occupied -> R10.route = occupied)

SPEC

AG(C.Location_Route[30][11] & L30.location = occupied -> R11.route = occupied)

SPEC

AG(C.Location_Route[30][12] & L30.location = occupied -> R12.route = occupied)

SPEC

AG(C.Location_Route[30][13] & L30.location = occupied -> R13.route = occupied)

SPEC

AG(C.Location_Route[30][14] & L30.location = occupied -> R14.route = occupied)

SPEC

AG(C.Location_Route[30][15] & L30.location = occupied -> R15.route = occupied)

--

MODULE Controller(L0,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,L17,

L18,L19,L20,L21,L22,L23,L24,L25,L26,L27,L28,L29,L30,R0,R1,R2,R3,R4,R5,R6,R7,R8,

R9,R10,R11,R12,R13,R14,R15)

VAR

event: {locationoccupied,locationunoccupied,newL, newR, killL, killR, link};

locationid: 0..30;

routeid: 0..15;

Location_Route: array 0..30 of array 0..15 of boolean;

DEFINE

CT1 := event = locationoccupied;

D.2 SMV code for the Railway System (2D Array) 316

CT2 := event = locationunoccupied;

ASSIGN

init(Location_Route[0][0]) := 0;

init(Location_Route[0][1]) := 0;

init(Location_Route[0][2]) := 0;

init(Location_Route[0][3]) := 0;

init(Location_Route[0][4]) := 0;

init(Location_Route[0][5]) := 0;

init(Location_Route[0][6]) := 0;

init(Location_Route[0][7]) := 0;

init(Location_Route[0][8]) := 0;

init(Location_Route[0][9]) := 0;

init(Location_Route[0][10]) := 0;

init(Location_Route[0][11]) := 0;

init(Location_Route[0][12]) := 0;

init(Location_Route[0][13]) := 0;

init(Location_Route[0][14]) := 0;

init(Location_Route[0][15]) := 0;

...

init(Location_Route[30][0]) := 0;

init(Location_Route[30][1]) := 0;

init(Location_Route[30][2]) := 0;

init(Location_Route[30][3]) := 0;

init(Location_Route[30][4]) := 0;

init(Location_Route[30][5]) := 0;

init(Location_Route[30][6]) := 0;

init(Location_Route[30][7]) := 0;

init(Location_Route[30][8]) := 0;

init(Location_Route[30][9]) := 0;

init(Location_Route[30][10]) := 0;

init(Location_Route[30][11]) := 0;

init(Location_Route[30][12]) := 0;

init(Location_Route[30][13]) := 0;

init(Location_Route[30][14]) := 0;

init(Location_Route[30][15]) := 0;

next(Location_Route[0][0]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 0 & R0.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 0): 0;

1: Location_Route[0][0];

esac;

next(Location_Route[0][1]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 1 & R1.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 1): 0;

1: Location_Route[0][1];

esac;

next(Location_Route[0][2]) :=

case

D.2 SMV code for the Railway System (2D Array) 317

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 2 & R2.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 2): 0;

1: Location_Route[0][2];

esac;

next(Location_Route[0][3]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 3 & R3.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 3): 0;

1: Location_Route[0][3];

esac;

next(Location_Route[0][4]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 4 & R4.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 4): 0;

1: Location_Route[0][4];

esac;

next(Location_Route[0][5]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 5 & R5.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 5): 0;

1: Location_Route[0][5];

esac;

next(Location_Route[0][6]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 6 & R6.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 6): 0;

1: Location_Route[0][6];

esac;

next(Location_Route[0][7]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 7 & R7.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 7): 0;

1: Location_Route[0][7];

esac;

next(Location_Route[0][8]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 8 & R8.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 8): 0;

1: Location_Route[0][8];

esac;

next(Location_Route[0][9]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 9 & R9.alive : 1;

D.2 SMV code for the Railway System (2D Array) 318

(event = killL & locationid = 0) | (event = killR & routeid = 9): 0;

1: Location_Route[0][9];

esac;

next(Location_Route[0][10]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 10 & R10.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 10): 0;

1: Location_Route[0][10];

esac;

next(Location_Route[0][11]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 11 & R11.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 11): 0;

1: Location_Route[0][11];

esac;

next(Location_Route[0][12]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 12 & R12.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 12): 0;

1: Location_Route[0][12];

esac;

next(Location_Route[0][13]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 13 & R13.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 13): 0;

1: Location_Route[0][13];

esac;

next(Location_Route[0][14]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 14 & R14.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 14): 0;

1: Location_Route[0][14];

esac;

next(Location_Route[0][15]) :=

case

event = link & locationid = 0 & L0.location = unoccupied & L0.alive &

routeid = 15 & R15.alive : 1;

(event = killL & locationid = 0) | (event = killR & routeid = 15): 0;

1: Location_Route[0][15];

esac;

...

next(Location_Route[30][0]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 0 & R0.alive : 1;

D.2 SMV code for the Railway System (2D Array) 319

(event = killL & locationid = 30) | (event = killR & routeid = 0): 0;

1: Location_Route[30][0];

esac;

next(Location_Route[30][1]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 1 & R1.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 1): 0;

1: Location_Route[30][1];

esac;

next(Location_Route[30][2]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 2 & R2.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 2): 0;

1: Location_Route[30][2];

esac;

next(Location_Route[30][3]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 3 & R3.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 3): 0;

1: Location_Route[30][3];

esac;

next(Location_Route[30][4]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 4 & R4.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 4): 0;

1: Location_Route[30][4];

esac;

next(Location_Route[30][5]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 5 & R5.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 5): 0;

1: Location_Route[30][5];

esac;

next(Location_Route[30][6]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 6 & R6.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 6): 0;

1: Location_Route[30][6];

esac;

next(Location_Route[30][7]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 7 & R7.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 7): 0;

1: Location_Route[30][7];

D.2 SMV code for the Railway System (2D Array) 320

esac;

next(Location_Route[30][8]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 8 & R8.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 8): 0;

1: Location_Route[30][8];

esac;

next(Location_Route[30][9]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 9 & R9.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 9): 0;

1: Location_Route[30][9];

esac;

next(Location_Route[30][10]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 10 & R10.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 10): 0;

1: Location_Route[30][10];

esac;

next(Location_Route[30][11]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 11 & R11.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 11): 0;

1: Location_Route[30][11];

esac;

next(Location_Route[30][12]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 12 & R12.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 12): 0;

1: Location_Route[30][12];

esac;

next(Location_Route[30][13]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 13 & R13.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 13): 0;

1: Location_Route[30][13];

esac;

next(Location_Route[30][14]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 14 & R14.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 14): 0;

1: Location_Route[30][14];

esac;

D.2 SMV code for the Railway System (2D Array) 321

next(Location_Route[30][15]) :=

case

event = link & locationid = 30 & L30.location = unoccupied & L30.alive &

routeid = 15 & R15.alive : 1;

(event = killL & locationid = 30) | (event = killR & routeid = 15): 0;

1: Location_Route[30][15];

esac;

MODULE Location(C,id)

VAR

location: {occupied,unoccupied};

alive : boolean;

ASSIGN

init(location) := unoccupied;

next(location) :=

case

C.CT1 & C.locationid = id & C.routeid = 0 & C.Location_Route[id][0]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 1 & C.Location_Route[id][1]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 2 & C.Location_Route[id][2]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 3 & C.Location_Route[id][3]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 4 & C.Location_Route[id][4]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 5 & C.Location_Route[id][5]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 6 & C.Location_Route[id][6]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 7 & C.Location_Route[id][7]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 8 & C.Location_Route[id][8]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 9 & C.Location_Route[id][9]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 10 & C.Location_Route[id][10]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 11 & C.Location_Route[id][11]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 12 & C.Location_Route[id][12]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 13 & C.Location_Route[id][13]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 14 & C.Location_Route[id][14]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 15 & C.Location_Route[id][15]:

occupied;

C.CT2 & C.locationid = id & C.routeid = 0 & C.Location_Route[id][0]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 1 & C.Location_Route[id][1]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 2 & C.Location_Route[id][2]:

D.2 SMV code for the Railway System (2D Array) 322

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 3 & C.Location_Route[id][3]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 4 & C.Location_Route[id][4]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 5 & C.Location_Route[id][5]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 6 & C.Location_Route[id][6]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 7 & C.Location_Route[id][7]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 8 & C.Location_Route[id][8]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 9 & C.Location_Route[id][9]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 10 & C.Location_Route[id][10]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 11 & C.Location_Route[id][11]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 12 & C.Location_Route[id][12]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 13 & C.Location_Route[id][13]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 14 & C.Location_Route[id][14]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 15 & C.Location_Route[id][15]:

unoccupied;

1: location;

esac;

init(alive) := 0;

next(alive) :=

case

C.event = newL & C.locationid = id : 1;

C.event = killL & C.locationid = id : 0;

1:alive;

esac;

MODULE Route(C,id)

VAR

route: {occupied, unoccupied};

alive : boolean;

ASSIGN

init(route) := unoccupied;

-- If CT1 occurs then and there is a connection then we know that

-- L0.lcoation = occupied and we need to update all the routes state to

-- occupied if they are connected to L0

next(route) :=

case

C.CT1 & C.locationid = 0 & C.Location_Route[0][id]: occupied;

C.CT1 & C.locationid = 1 & C.Location_Route[1][id]: occupied;

C.CT1 & C.locationid = 2 &C.Location_Route[2][id]: occupied;

D.3 SMV code for the Railway System (1D Array) 323

C.CT1 & C.locationid = 3 &C.Location_Route[3][id]: occupied;

C.CT1 & C.locationid = 4 &C.Location_Route[4][id]: occupied;

C.CT1 & C.locationid = 5 &C.Location_Route[5][id]: occupied;

C.CT1 & C.locationid = 6 & C.Location_Route[6][id]: occupied;

C.CT1 & C.locationid = 7 & C.Location_Route[7][id]: occupied;

C.CT1 & C.locationid = 8 &C.Location_Route[8][id]: occupied;

C.CT1 & C.locationid = 9 &C.Location_Route[9][id]: occupied;

C.CT1 & C.locationid = 10 &C.Location_Route[10][id]: occupied;

C.CT1 & C.locationid = 11 &C.Location_Route[11][id]: occupied;

C.CT1 & C.locationid = 12 & C.Location_Route[12][id]: occupied;

C.CT1 & C.locationid = 13 & C.Location_Route[13][id]: occupied;

C.CT1 & C.locationid = 14 &C.Location_Route[14][id]: occupied;

C.CT1 & C.locationid = 15 &C.Location_Route[15][id]: occupied;

C.CT1 & C.locationid = 16 &C.Location_Route[16][id]: occupied;

C.CT1 & C.locationid = 17 &C.Location_Route[17][id]: occupied;

C.CT1 & C.locationid = 18 & C.Location_Route[18][id]: occupied;

C.CT1 & C.locationid = 19 & C.Location_Route[19][id]: occupied;

C.CT1 & C.locationid = 20 &C.Location_Route[20][id]: occupied;

C.CT1 & C.locationid = 21 &C.Location_Route[21][id]: occupied;

C.CT1 & C.locationid = 22 &C.Location_Route[22][id]: occupied;

C.CT1 & C.locationid = 23 &C.Location_Route[23][id]: occupied;

C.CT1 & C.locationid = 24 & C.Location_Route[24][id]: occupied;

C.CT1 & C.locationid = 25 & C.Location_Route[25][id]: occupied;

C.CT1 & C.locationid = 26 &C.Location_Route[26][id]: occupied;

C.CT1 & C.locationid = 27 &C.Location_Route[27][id]: occupied;

C.CT1 & C.locationid = 28 &C.Location_Route[28][id]: occupied;

C.CT1 & C.locationid = 29 &C.Location_Route[29][id]: occupied;

C.CT1 & C.locationid = 30 & C.Location_Route[30][id]: occupied;

1: route;

esac;

init(alive) := 0;

next(alive) :=

case

C.event = newR & C.routeid =id : 1;

C.event = killR & C.routeid =id : 0;

1:alive;

esac;

D.3 SMV code for the Railway System (1D Array)

Again, we have removed some of the similar sections of SMV code for improving its representation.

MODULE main

VAR

L0: Location(C,0);

L1: Location(C,1);

L2: Location(C,2);

L3: Location(C,3);

...

L26: Location(C,26);

L27: Location(C,27);

L28: Location(C,28);

L29: Location(C,29);

D.3 SMV code for the Railway System (1D Array) 324

L30: Location(C,30);

R0: Route(C,0);

R1: Route(C,1);

R2: Route(C,2);

R3: Route(C,3);

R4: Route(C,4);

R5: Route(C,5);

R6: Route(C,6);

R7: Route(C,7);

R8: Route(C,8);

R9: Route(C,9);

R10: Route(C,10);

R11: Route(C,11);

R12: Route(C,12);

R13: Route(C,13);

R14: Route(C,14);

R15: Route(C,15);

C: Controller(R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,L0,L1,L2,L3,L4,

L5,L6,L7,L8,L9, L10,L11,L12,L13,L14,L15,L16,L17,L18,L19,L20,L21,L22,L23,L24,L25,L26,L27,

L28,L29,L30);

SPEC

AG(L0.LocRoute[0] & R0.RouteLoc[0] & L0.location = occupied -> R0.route = occupied)

SPEC

AG(L0.LocRoute[1] & R1.RouteLoc[0] & L0.location = occupied -> R1.route = occupied)

SPEC

AG(L0.LocRoute[2] & R2.RouteLoc[0] & L0.location = occupied -> R2.route = occupied)

SPEC

AG(L0.LocRoute[3] & R3.RouteLoc[0] & L0.location = occupied -> R3.route = occupied)

SPEC

AG(L0.LocRoute[4] & R4.RouteLoc[0] & L0.location = occupied -> R4.route = occupied)

SPEC

AG(L0.LocRoute[5] & R5.RouteLoc[0] & L0.location = occupied -> R5.route = occupied)

SPEC

AG(L0.LocRoute[6] & R6.RouteLoc[0] & L0.location = occupied -> R6.route = occupied)

SPEC

AG(L0.LocRoute[7] & R7.RouteLoc[0] & L0.location = occupied -> R7.route = occupied)

SPEC

AG(L0.LocRoute[8] & R8.RouteLoc[0] & L0.location = occupied -> R8.route = occupied)

SPEC

AG(L0.LocRoute[9] & R9.RouteLoc[0] & L0.location = occupied -> R9.route = occupied)

SPEC

AG(L0.LocRoute[10] & R10.RouteLoc[0] & L0.location = occupied -> R10.route = occupied)

SPEC

AG(L0.LocRoute[11] & R11.RouteLoc[0] & L0.location = occupied -> R11.route = occupied)

SPEC

AG(L0.LocRoute[12] & R12.RouteLoc[0] & L0.location = occupied -> R12.route = occupied)

SPEC

AG(L0.LocRoute[13] & R13.RouteLoc[0] & L0.location = occupied -> R13.route = occupied)

SPEC

AG(L0.LocRoute[14] & R14.RouteLoc[0] & L0.location = occupied -> R14.route = occupied)

SPEC

AG(L0.LocRoute[15] & R15.RouteLoc[0] & L0.location = occupied -> R15.route = occupied)

...

D.3 SMV code for the Railway System (1D Array) 325

MODULE Controller(R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,L0,L1,L2,L3,L4,

L5,L6,L7,L8,L9, L10,L11,L12,L13,L14,L15,L16,L17,L18,L19,L20,L21,L22,L23,L24,L25,L26,L27,

L28,L29,L30)

VAR

event: {locationoccupied, locationunoccupied, newL, newR, killL, killR, link};

locationid: 0..30;

routeid: 0..15;

DEFINE

CT1 := event = locationoccupied;

CT2 := event = locationunoccupied;

CT3 := event = link & L0.location = unoccupied & L0.alive & R0.alive;

CT4 := event = link & L0.location = unoccupied & L0.alive & R1.alive;

CT5 := event = link & L0.location = unoccupied & L0.alive & R2.alive;

CT6 := event = link & L0.location = unoccupied & L0.alive & R3.alive;

CT7 := event = link & L0.location = unoccupied & L0.alive & R4.alive;

CT8 := event = link & L0.location = unoccupied & L0.alive & R5.alive;

CT9 := event = link & L0.location = unoccupied & L0.alive & R6.alive;

CT10 := event = link & L0.location = unoccupied & L0.alive & R7.alive;

CT11 := event = link & L0.location = unoccupied & L0.alive & R8.alive;

CT12 := event = link & L0.location = unoccupied & L0.alive & R9.alive;

CT13 := event = link & L0.location = unoccupied & L0.alive & R10.alive;

CT14 := event = link & L0.location = unoccupied & L0.alive & R11.alive;

CT15 := event = link & L0.location = unoccupied & L0.alive & R12.alive;

CT16 := event = link & L0.location = unoccupied & L0.alive & R13.alive;

CT17 := event = link & L0.location = unoccupied & L0.alive & R14.alive;

CT18 := event = link & L0.location = unoccupied & L0.alive & R15.alive;

...

CT484 := event = link & L30.location = unoccupied & L30.alive & R0.alive;

CT485 := event = link & L30.location = unoccupied & L30.alive & R1.alive;

CT486 := event = link & L30.location = unoccupied & L30.alive & R2.alive;

CT487 := event = link & L30.location = unoccupied & L30.alive & R3.alive;

CT488 := event = link & L30.location = unoccupied & L30.alive & R4.alive;

CT489 := event = link & L30.location = unoccupied & L30.alive & R5.alive;

CT490 := event = link & L30.location = unoccupied & L30.alive & R6.alive;

CT491 := event = link & L30.location = unoccupied & L30.alive & R7.alive;

CT492 := event = link & L30.location = unoccupied & L30.alive & R8.alive;

CT493 := event = link & L30.location = unoccupied & L30.alive & R9.alive;

CT494 := event = link & L30.location = unoccupied & L30.alive & R10.alive;

CT495 := event = link & L30.location = unoccupied & L30.alive & R11.alive;

CT496 := event = link & L30.location = unoccupied & L30.alive & R12.alive;

CT497 := event = link & L30.location = unoccupied & L30.alive & R13.alive;

CT498 := event = link & L30.location = unoccupied & L30.alive & R14.alive;

CT499 := event = link & L30.location = unoccupied & L30.alive & R15.alive;

MODULE Location(C,id)

VAR

location: {occupied,unoccupied};

alive : boolean;

LocRoute : array 0..15 of boolean;

D.3 SMV code for the Railway System (1D Array) 326

ASSIGN

init(LocRoute[0]) := 0;

init(LocRoute[1]) := 0;

init(LocRoute[2]) := 0;

init(LocRoute[3]) := 0;

init(LocRoute[4]) := 0;

init(LocRoute[5]) := 0;

init(LocRoute[6]) := 0;

init(LocRoute[7]) := 0;

init(LocRoute[8]) := 0;

init(LocRoute[9]) := 0;

init(LocRoute[10]) := 0;

init(LocRoute[11]) := 0;

init(LocRoute[12]) := 0;

init(LocRoute[13]) := 0;

init(LocRoute[14]) := 0;

init(LocRoute[15]) := 0;

next(LocRoute[0]) :=

case

C.CT3 & C.locationid = id & id = 0 : 1;

C.CT19 & C.locationid = id & id = 1 : 1;

C.CT35 & C.locationid = id & id = 2 : 1;

C.CT51 & C.locationid = id & id = 3 : 1;

C.CT67 & C.locationid = id & id = 4 : 1;

C.CT83 & C.locationid = id & id = 5 : 1;

C.CT100 & C.locationid = id & id = 6 : 1;

C.CT116 & C.locationid = id & id = 7 : 1;

C.CT132 & C.locationid = id & id = 8 : 1;

C.CT148 & C.locationid = id & id = 9 : 1;

C.CT164 & C.locationid = id & id = 10 : 1;

C.CT180 & C.locationid = id & id = 11 : 1;

C.CT196 & C.locationid = id & id = 12 : 1;

C.CT212 & C.locationid = id & id = 13 : 1;

C.CT228 & C.locationid = id & id = 14 : 1;

C.CT244 & C.locationid = id & id = 15 : 1;

C.CT260 & C.locationid = id & id = 16 : 1;

C.CT276 & C.locationid = id & id = 17 : 1;

C.CT292 & C.locationid = id & id = 18 : 1;

C.CT308 & C.locationid = id & id = 19 : 1;

C.CT324 & C.locationid = id & id = 20 : 1;

C.CT340 & C.locationid = id & id = 21 : 1;

C.CT356 & C.locationid = id & id = 22 : 1;

C.CT372 & C.locationid = id & id = 23 : 1;

C.CT388 & C.locationid = id & id = 24 : 1;

C.CT404 & C.locationid = id & id = 25 : 1;

C.CT420 & C.locationid = id & id = 26 : 1;

C.CT436 & C.locationid = id & id = 27 : 1;

C.CT452 & C.locationid = id & id = 28 : 1;

C.CT468 & C.locationid = id & id = 29 : 1;

C.CT484 & C.locationid = id & id = 30 : 1;

(C.event = killL & C.locationid = id) | (C.event = killR & C.routeid = 0): 0;

1: LocRoute[0];

esac;

...

D.3 SMV code for the Railway System (1D Array) 327

next(LocRoute[15]) :=

case

C.CT18 & C.locationid = id & id = 0 : 1;

C.CT34 & C.locationid = id & id = 1 : 1;

C.CT50 & C.locationid = id & id = 2 : 1;

C.CT66 & C.locationid = id & id = 3 : 1;

C.CT82 & C.locationid = id & id = 4 : 1;

C.CT98 & C.locationid = id & id = 5 : 1;

C.CT115 & C.locationid = id & id = 6 : 1;

C.CT131 & C.locationid = id & id = 7 : 1;

C.CT147 & C.locationid = id & id = 8 : 1;

C.CT162 & C.locationid = id & id = 9 : 1;

C.CT179 & C.locationid = id & id = 10 : 1;

C.CT195 & C.locationid = id & id = 11 : 1;

C.CT211 & C.locationid = id & id = 12 : 1;

C.CT227 & C.locationid = id & id = 13 : 1;

C.CT243 & C.locationid = id & id = 14 : 1;

C.CT259 & C.locationid = id & id = 15 : 1;

C.CT275 & C.locationid = id & id = 16 : 1;

C.CT291 & C.locationid = id & id = 17 : 1;

C.CT307 & C.locationid = id & id = 18 : 1;

C.CT323 & C.locationid = id & id = 19 : 1;

C.CT339 & C.locationid = id & id = 20 : 1;

C.CT353 & C.locationid = id & id = 21 : 1;

C.CT371 & C.locationid = id & id = 22 : 1;

C.CT387 & C.locationid = id & id = 23 : 1;

C.CT403 & C.locationid = id & id = 24 : 1;

C.CT419 & C.locationid = id & id = 25 : 1;

C.CT435 & C.locationid = id & id = 26 : 1;

C.CT451 & C.locationid = id & id = 27 : 1;

C.CT467 & C.locationid = id & id = 28 : 1;

C.CT483 & C.locationid = id & id = 29 : 1;

C.CT499 & C.locationid = id & id = 30 : 1;

(C.event = killL & C.locationid = id) | (C.event = killR & C.routeid = 15): 0;

1: LocRoute[15];

esac;

init(location) := unoccupied;

next(location) :=

case

C.CT1 & C.locationid = id & C.routeid = 0 & LocRoute[0]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 1 & LocRoute[1]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 2 & LocRoute[2]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 3 & LocRoute[3]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 4 & LocRoute[4]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 5 & LocRoute[5]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 6 & LocRoute[6]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 7 & LocRoute[7]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 8 & LocRoute[8]:

D.3 SMV code for the Railway System (1D Array) 328

occupied;

C.CT1 & C.locationid = id & C.routeid = 9 & LocRoute[9]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 10 & LocRoute[10]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 11 & LocRoute[11]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 12 & LocRoute[12]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 13 & LocRoute[13]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 14 & LocRoute[14]:

occupied;

C.CT1 & C.locationid = id & C.routeid = 15 & LocRoute[15]:

occupied;

C.CT2 & C.locationid = id & C.routeid = 0 & LocRoute[0]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 1 & LocRoute[1]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 2 & LocRoute[2]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 3 & LocRoute[3]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 4 & LocRoute[4]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 5 & LocRoute[5]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 6 & LocRoute[6]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 7 & LocRoute[7]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 8 & LocRoute[8]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 9 & LocRoute[9]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 10 & LocRoute[10]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 11 & LocRoute[11]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 12 & LocRoute[12]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 13 & LocRoute[13]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 14 & LocRoute[14]:

unoccupied;

C.CT2 & C.locationid = id & C.routeid = 15 & LocRoute[15]:

unoccupied;

1: location;

esac;

init(alive) := 0;

next(alive) :=

case

C.event = newL & C.locationid = id : 1;

C.event = killL & C.locationid = id : 0;

1:alive;

esac;

D.3 SMV code for the Railway System (1D Array) 329

MODULE Route(C,id)

VAR

route: {occupied, unoccupied};

alive : boolean;

RouteLoc : array 0..30 of boolean;

ASSIGN

init(RouteLoc[0]) := 0;

init(RouteLoc[1]) := 0;

init(RouteLoc[2]) := 0;

init(RouteLoc[3]) := 0;

init(RouteLoc[4]) := 0;

init(RouteLoc[5]) := 0;

init(RouteLoc[6]) := 0;

init(RouteLoc[7]) := 0;

init(RouteLoc[8]) := 0;

init(RouteLoc[9]) := 0;

init(RouteLoc[10]) := 0;

init(RouteLoc[11]) := 0;

init(RouteLoc[12]) := 0;

init(RouteLoc[13]) := 0;

init(RouteLoc[14]) := 0;

init(RouteLoc[15]) := 0;

init(RouteLoc[16]) := 0;

init(RouteLoc[17]) := 0;

init(RouteLoc[18]) := 0;

init(RouteLoc[19]) := 0;

init(RouteLoc[20]) := 0;

init(RouteLoc[21]) := 0;

init(RouteLoc[22]) := 0;

init(RouteLoc[23]) := 0;

init(RouteLoc[24]) := 0;

init(RouteLoc[25]) := 0;

init(RouteLoc[26]) := 0;

init(RouteLoc[27]) := 0;

init(RouteLoc[28]) := 0;

init(RouteLoc[29]) := 0;

init(RouteLoc[30]) := 0;

next(RouteLoc[0]) :=

case

C.CT3 & C.routeid = id & id = 0 : 1;

C.CT4 & C.routeid = id & id = 0 : 1;

C.CT5 & C.routeid = id & id = 0 : 1;

C.CT6 & C.routeid = id & id = 0 : 1;

C.CT7 & C.routeid = id & id = 0 : 1;

C.CT8 & C.routeid = id & id = 0 : 1;

C.CT9 & C.routeid = id & id = 0 : 1;

C.CT10 & C.routeid = id & id = 0 : 1;

C.CT11 & C.routeid = id & id = 0 : 1;

C.CT12 & C.routeid = id & id = 0 : 1;

C.CT13 & C.routeid = id & id = 0 : 1;

C.CT14 & C.routeid = id & id = 0 : 1;

C.CT15 & C.routeid = id & id = 0 : 1;

D.3 SMV code for the Railway System (1D Array) 330

C.CT16 & C.routeid = id & id = 0 : 1;

C.CT17 & C.routeid = id & id = 0 : 1;

C.CT18 & C.routeid = id & id = 0 : 1;

(C.event = killL & C.locationid = 0) | (C.event = killR & C.routeid = 0): 0;

1: RouteLoc[0];

esac;

...

next(RouteLoc[30]) :=

case

C.CT484 & C.routeid = id & id = 0 : 1;

C.CT485 & C.routeid = id & id = 0 : 1;

C.CT486 & C.routeid = id & id = 0 : 1;

C.CT487 & C.routeid = id & id = 0 : 1;

C.CT488 & C.routeid = id & id = 0 : 1;

C.CT489 & C.routeid = id & id = 0 : 1;

C.CT490 & C.routeid = id & id = 0 : 1;

C.CT491 & C.routeid = id & id = 0 : 1;

C.CT492 & C.routeid = id & id = 0 : 1;

C.CT493 & C.routeid = id & id = 0 : 1;

C.CT494 & C.routeid = id & id = 0 : 1;

C.CT495 & C.routeid = id & id = 0 : 1;

C.CT496 & C.routeid = id & id = 0 : 1;

C.CT497 & C.routeid = id & id = 0 : 1;

C.CT498 & C.routeid = id & id = 0 : 1;

(C.event = killL & C.locationid = 30) | (C.event = killR & C.routeid = id): 0;

1: RouteLoc[30];

esac;

init(route) := unoccupied;

-- If CT1 occurs then and there is a connection then we know that

-- L0.lcoation = occupied and we need to update all the routes state to

-- occupied if they are connected to L0

next(route) :=

case

C.CT1 & C.locationid = 0 & RouteLoc[0]: occupied;

C.CT1 & C.locationid = 1 & RouteLoc[1]: occupied;

C.CT1 & C.locationid = 2 & RouteLoc[2]: occupied;

C.CT1 & C.locationid = 3 & RouteLoc[3]: occupied;

C.CT1 & C.locationid = 4 & RouteLoc[4]: occupied;

C.CT1 & C.locationid = 5 & RouteLoc[5]: occupied;

C.CT1 & C.locationid = 6 & RouteLoc[6]: occupied;

C.CT1 & C.locationid = 7 & RouteLoc[7]: occupied;

C.CT1 & C.locationid = 8 & RouteLoc[8]: occupied;

C.CT1 & C.locationid = 9 & RouteLoc[9]: occupied;

C.CT1 & C.locationid = 10 & RouteLoc[10]: occupied;

C.CT1 & C.locationid = 11 & RouteLoc[11]: occupied;

C.CT1 & C.locationid = 12 & RouteLoc[12]: occupied;

C.CT1 & C.locationid = 13 & RouteLoc[13]: occupied;

C.CT1 & C.locationid = 14 & RouteLoc[14]: occupied;

C.CT1 & C.locationid = 15 & RouteLoc[15]: occupied;

C.CT1 & C.locationid = 16 & RouteLoc[16]: occupied;

C.CT1 & C.locationid = 17 & RouteLoc[17]: occupied;

C.CT1 & C.locationid = 18 & RouteLoc[18]: occupied;

C.CT1 & C.locationid = 19 & RouteLoc[19]: occupied;

D.3 SMV code for the Railway System (1D Array) 331

C.CT1 & C.locationid = 20 & RouteLoc[20]: occupied;

C.CT1 & C.locationid = 21 & RouteLoc[21]: occupied;

C.CT1 & C.locationid = 22 & RouteLoc[22]: occupied;

C.CT1 & C.locationid = 23 & RouteLoc[23]: occupied;

C.CT1 & C.locationid = 24 & RouteLoc[24]: occupied;

C.CT1 & C.locationid = 25 & RouteLoc[25]: occupied;

C.CT1 & C.locationid = 26 & RouteLoc[26]: occupied;

C.CT1 & C.locationid = 27 & RouteLoc[27]: occupied;

C.CT1 & C.locationid = 28 & RouteLoc[28]: occupied;

C.CT1 & C.locationid = 29 & RouteLoc[29]: occupied;

C.CT1 & C.locationid = 30 & RouteLoc[30]: occupied;

1: route;

esac;

init(alive) := 0;

next(alive) :=

case

C.event = newR & C.routeid =id : 1;

C.event = killR & C.routeid =id : 0;

1:alive;

esac;

Bibliography

[501] CELENEC EN 50128. Railway applications - software for railway control and pro-

tection systems.

[ABB+03] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,

Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen

Schlager, and Peter H. Schmitt. The KeY tool. Technical report in computing science

no. 2003-5, Department of Computing Science, Chalmers University and Göteborg

University, Göteborg, Sweden, February 2003.

[Abr96] J. Abrial. The B Boook: Assigning programs to meanings. Cambridge University

Press, 1996.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-

time. Information and Computation, 104(1):2–34, 1993.

[AGM00] Rajeev Alur, Radu Grosu, and M. McDougall. Efficient reachability analysis of

hierarchical reactive machines. In CAV ’00: Proceedings of the 12th International

Conference on Computer Aided Verification, pages 280–295. Springer-Verlag, 2000.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in

System Design: An International Journal, 15(1):7–48, July 1999.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-

poral logic. J. ACM, 49(5):672–713, 2002.

[AHM+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Ra-

jamani, and Serdar Tasiran. MOCHA: Modularity in model checking. In Computer

Aided Verification, pages 521–525, 1998.

[AJKV97] Rajeev Alur, Lalita Jategaonkar Jagadeesan, Joseph J. Kott, and James E. Von

Olnhausen. Model-checking of real-time systems: a telecommunications application:

experience report. In Proceedings of the 19th international conference on Software

engineering, pages 514–524. ACM Press, 1997.

BIBLIOGRAPHY 333

[AK86] K R Apt and D C Kozen. Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett., 22(6):307–309, 1986.

[AK95] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems

III: Verification and Control, volume 1066, pages 220–231, Rutgers University, New

Brunswick, NJ, USA, 22–25 October 1995. Springer.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating hierarchi-

cal state machines. In ICAL ’99: Proceedings of the 26th International Colloquium

on Automata, Languages and Programming, pages 169–178. Springer-Verlag, 1999.

[AL01] K. Androutsopoulos and K. Lano. Reactive system specification and verification in

RSDS. In Proceedings of the workshop on automated verification of critical systems

(AVOCS’01), Oxford, UK, 2001.

[AM98] J. Abrial and L. Mussat. Introducing dynamic constraints in B. In Second Conference

on the B Method, LNCS 1393, Nantes, France, pages 83–128. Springer Verlag, 1998.

[And96] Charles Andr. Representation and analysis of reactive behaviors: A synchronous

approach. In Invited talk at CESA’96, IEEE-SMC,, July 1996.

[And02] Charles Andr. SyncCharts: A visual representation of reactive behaviors. Technical

report, University Nice Sophia Antipolis, 2002.

[ARA+01] Sanchez A., G. E. Rotstein, N. Alsop, J. P. Bromberg, C. Gollain, S. Sorensen,

S. Macchietto, and C. Jakeman. Improving the development of event-driven control

systems in the batch processing industry. A case study. Submitted Elsevier Science,

ISA Transactions, 2001.

[Ate] Atelier B. www.dmi.usherb.ca/documentations − logiciels/atelierb/fr/atb −
01.htm/.

[AY01] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state machines.

ACM Trans. Program. Lang. Syst., 23(3):273–303, 2001.

[Bae04] J.C.M. Baeten. A brief history of process algebra. Technical Report Rapport CSR

04-02, Vakgroep Informatica, Technische Universiteit Eindhoven, 2004.

[BB99] M. Büchi and R. Back. Compositional symmetric sharing in B. In Proceedings of

FM. Springer-Verlag LNCS, 1999.

[BBC+96] Nikolaj Bjrner, Anca Browne, Eddie Chang, Michael Coln, Arjun Kapur, Zohar

Manna, Henny B. Sipma, and Toms E. Uribe. STeP: Deductive-algorithmic verifi-

cation of reactive and real-time systems. In International Conference on Computer

Aided Verification, Lecture Notes in Computer Science, volume 1102, pages 415–418.

Springer-Verlag, 1996.

BIBLIOGRAPHY 334

[BBF+01] Beatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit,

Laure Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software

Verification: Model-Checking Techniques and Tools. Springer Verlag, August 2001.

[BCC98] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional reasoning

in model checking. Lecture Notes in Computer Science, 1536:81–102, 1998.

[BCJ02] F. Bellegarde, S. Chouali, and J. Julliand. Verification of dynamic constraints for

B event systems under fairness assumptions. In Proceeding of ZB 2002: Formal

Specification and Development in Z and B. Springer, August 2002.

[BCM90] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

states and beyond. In In Proc. of the 5th Annual IEEE Symposium on Logic in

Computer Science, pages 428–439, 1990.

[BCR00a] E. Börger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML Activity

Diagrams. In Teodor Rus, editor, Algebraic Methodology and Software Technology,

8th International Conference, AMAST 2000, Iowa City, Iowa, USA, May 20-27,

2000 Proceedings, volume 1816 of LNCS, pages 293–308. Springer-Verlag, 2000.

[BCR00b] E. Börger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State

Machines. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor,

Abstract State Machines: Theory and Applications, volume 1912 of LNCS, pages

223–241. Springer-Verlag, 2000.

[BCY02] L. Brim, J. Crhova, and K. Yorav. Using assumptions to distribute ctl model check-

ing, 2002.

[BDJK00] F. Bellegarder, C. Darlot, J. Julliand, and O. Kouchnarenko. Reformulate dynamic

properties during B refinement and forget variants and loop invariants. In Proceeding

of ZB 2000: Formal Specification and Development in Z and B, August 2000.

[BDK+02] Jrgen Bohn, Werner Damm, Jochen Klose, Adam Moik, and Hartmut Wittke. Mod-

eling and validating train system applications using Statemate and Live Sequence

Charts. In H. Ehrig, B. J. Krmer, and A. Ertas, editors, Proceedings of the Confer-

ence on Integrated Design and Process Technology (IDPT2002), Society for Design

and Process Science, Pasadena, California, June 2002.

[BDL+01] Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Mller, Paul Pettersson,

and Wang Yi. Uppaal - present and future. In Proc. of 40th IEEE Conference on

Decision and Control. IEEE Computer Society Press, 2001.

[Ber98] Grard Berry. The foundations of esterel. In Proof, Language and Interaction: Essays

in Honour of Robin Milner, G. Plotkin, C. Stirling and M. Tofte. MIT Press, 1998.

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of formal methods.

IEEE Software, 12(3):34–41, 1995.

BIBLIOGRAPHY 335

[BH96] Ramesh Bharadwaj and Connie Heitmeyer. Applying the SCR requirements specifi-

cation method to practical systems: A case study. In Presented at the 21st Software

Engineering Workshop, NASA GSFC, Greenbelt MD, USA, Dec 4-5, 1996.

[BH97a] Ramesh Bharadwaj and Connie Heitmeyer. Applying the SCR requirements method

to a simple autopilot. In Proceedings of the Fourth NASA Langley Formal Methods

Workshop, September 1997.

[BH97b] Ramesh Bharadwaj and Constance L. Heitmeyer. Verifying eSCR requirements spec-

ifications using state exploration. In Proceedings of First ACM SIGPLAN Workshop

on Automatic Analysis of Software, Paris, France, January 1997.

[BH99] R. Bharadwaj and C. Heitmeyer. Model checking complete requirements specifica-

tions using abstraction. In Proceedings of Automated Software Engineering, 6, 37-68,

1999.

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - a second generation

of a Java model checker. In Workshop on Advances in Verification, July 2000.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. In

Information and control, 1984.

[Bör95] E. Börger. Why Use Evolving Algebras for Hardware and Software Engineering? In

M. Bartosek, J. Staudek, and J. Wiederman, editors, Proceedings of SOFSEM’95,

22nd Seminar on Current Trends in Theory and Practice of Informatics, volume

1012 of LNCS, pages 236–271. Springer, 1995.

[BPR96] D. Bert, M.-L. Potet, and Y. Rouzaud. A study on components and assembly prim-

itives in B. In Proceedings of 1st Conference on the B method, pages 47–62, 1996.

[BR91] Juan Bicarregui and Brian Ritchie. Reasoning about VDM developments using the

VDM support tool in mural. In S. Prehn and W. J. Toetenel, editors, VDM ’91

– Formal Software Development Methods, pages 371–388. Springer-Verlag, October

1991.

[BR01] Thomas Ball and Sriram K. Rajamani. The slam toolkit. In Proceedings of the 13th

International Conference on Computer Aided Verification, pages 260–264. Springer-

Verlag, 2001.

[BR04] Purandar Bhaduri and S. Ramesh. Model checking of statechart models: Survey and

research directions. Technical report, ACM-class: D.2.4 Software/Program Verifica-

tion, 2004.

[Bry85] Randal E. Bryant. Symbolic manipulation of boolean functions using a graphical

representation. In Proceedings of the 22nd ACM/IEEE conference on Design au-

tomation, 1985.

BIBLIOGRAPHY 336

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[Bry92] Randal E. Bryant. Symbolic manipulation with ordered binary decision diagrams.

In ACM Computing Surveys 24, pages 293–318, 1992.

[BS00a] Ramesh Bharadwaj and Steve Sims. Salsa: Combining constraint solvers with BDDs

for automatic invariant checking. In Proceedings of the International Workshop on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2000),

Lecture Notes in Computer Science, Berlin, Germany, 2000. Springer-Verlag.

[BS00b] Michael Butler and Colin Snook. Tool-supported use of UML for constructing B

specifications. In Technical Report, 2000.

[BS00c] Michael Butler and Colin Snook. Verifying dynamic properties of UML models by

translation to the B language and toolkit. In In Proceedings UML 2000 Workshop,

Dynamic Behaviour in UML Models: Semantic Questions, 2000.

[BTo] BToolkit B-Core(UK)Ltd. http : //www.b − core.com/.

[But96] Ricky W. Butler. An introduction to requirements capture using PVS: Specification

of a simple autopilot. In NASA Technical Memorandum 110255, May 1996.

[CAB+98] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Mod-

ugno, David Notkin, and Jon D. Reese. Model checking large software specifications.

IEEE Transactions on Software Engineering, 24(7):498–520, July 1998.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.

NUSMV: A new symbolic model checker. International Journal on Software Tools

for Technology Transfer, 2(4):410–425, 2000.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.

Păsăreanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models

from java source code. In International Conference on Software Engineering, pages

439–448, 2000.

[CE81] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for branching

time temporal logic. In In Logic of Programs: Workshop Lecture Notes in Computer

Science, volume 131, Yorktown Heights, New York, 1981. Springer-Verlag.

[CGB86] E M Clarke, O Grumberg, and M C Browne. Reasoning about networks with many

identical finite-state processes. In Proceedings of the fifth annual ACM symposium

on Principles of distributed computing, pages 240–248. ACM Press, 1986.

[CGH+93] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long, K. McMillan, and L. Ness. Ver-

ification of the Futurebus+ Cache Coherence Protocol. In D. Agnew, L. Claesen, and

BIBLIOGRAPHY 337

R. Camposano, editors, The Eleventh International Symposium on Computer Hard-

ware Description Languages and their Applications, pages 5–20, Ottawa, Canada,

1993. Elsevier Science Publishers B.V., Amsterdam, Netherland.

[CGH97] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-

ing. In Formal Methods in System Design, volume 10(1), pages 57–71, February

1997.

[CGL93] E. M. Clarke, O. Grumberg, and D. E. Long. Verification Tools for Finite State

Concurrent Systems. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,

A Decade of Concurrency-Reflections and Perspectives, volume 803, pages 124–175,

Noordwijkerhout, Netherlands, 1993. Springer-Verlag.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and ab-

straction. ACM Transactions on Programming Languages and Systems, 16(5):1512–

1542, September 1994.

[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient Generation

of Counterexamples and Witnesses in Symbolic Model Checking. In 32nd Design

Automation Conference (DAC 95), pages 427–432, San Francisco, CA, USA, 1995.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT

Press, 1999.

[CH00] E. M. Clarke and W. Heinle. Modular translation of statecharts to SMV. Technical

report, Carnegie Mellon University, 2000. Technical report.

[Cle90] R. Cleaveland. Tableau-based model checking in the propositional mu-calculus. Acta

Informatica, 27(8):725–748, 1990.

[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In

Proceedings. Fourth Annual Symposium on Logic in Computer Science Pacific Grove,

pages 353–62, 1989.

[CM02] M. Calder and A. Miller. Five ways to use symmetry and induction in the verifi-

cation of networks of processes using model-checking. In Proceedings of Automated

Verification of Critical Systems (AVoCS), 2002.

[Com93] International Electrotechnical Commission. IEC 61131: Programmable controllers -

part 3: Programming languages, 1993.

[Com99] International Electrotechnical Commission. IEC 61508: Functional safety of electri-

cal/electronic/programmable electronic safety related systems, 1999.

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam Srivas. A

tutorial introduction to PVS. In Workshop on Industrial-Strength Formal Specifica-

tion Techniques, Boca Raton, Florida, April 1995.

BIBLIOGRAPHY 338

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative language

for real-time programming. In POPL ’87: Proceedings of the 14th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages 178–188. ACM

Press, 1987.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-

bench: A semantics-based tool for the verification of concurrent systems. ACM

Transactions on Programming Languages and Systems, 15(1):36–72, January 1993.

[CVWY92] Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.

Memory-efficient algorithms for the verification of temporal properties. Formal Meth-

ods in System Design, 1(2/3):275–288, 1992.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and

future directions. In ACM Computing Surveys,28(4):626-643, 1996.

[D. 96] D. L. Dill. The murphi verification system. In Rajeev Alur and Thomas A. Hen-

zinger, editors, Proceedings of the Eighth International Conference on Computer

Aided Verification CAV, volume 1102, pages 390–393, New Brunswick, NJ, USA, /

1996. Springer Verlag.

[dAAG+00] L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang,

C. Meyer-Kirsch, and B.Y. Wang. MOCHA: Exploiting modularity in model check-

ing, August 2000. http : //www − cad.eecs.berkeley.edu/mocha.

[Day98] Nancy Ann Day. A Framework for Multi-Notation, Model-Oriented Requirements

Analysis. PhD thesis, Department of Computer Science, Univercity of British

Columbia, 1998.

[DBMM00] T. Dimitrakos, J. Bicarregui, B. Matthews, and T. Maibaum. Compositional struc-

turing in the B-method: a logical viewpoint of the static context. In ZB2000, Inter-

national Conference of B and Z Users, York, UK, August-September 2000.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive

systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[dMGMP02] Mara del Mar Gallardo, Pedro Merino, and Ernesto Pimentelis. Debugging UML

designs with model checking. In In Journal of Object Technology, vol. 1, no. 2,, pages

101–117, July-August 2002. http : //www.jot.fm/issues/issue 2002 07/article1.

[DN87] D. Bjørner, C.B. Jones, M. Mac an Airchinnigh and E. J. Neuhold, editors. VDM

’87 VDM – A Formal Method at Work, volume 252 of Lecture Notes in Computer

Science. Springer-Verlag, March 1987.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In In Proceedings

of Hybrid Systems III, Verification and Control,Lecture Notes in Computer Science

1066. Springer-Verlag, 1996.

BIBLIOGRAPHY 339

[Dov] DOVE manual. http : //www.dsto.defence.gov.au/esrl/itd/dove/.

[DT96] Jonathan Draper and Helen Treharne. The refinement of embedded software with the

B-method. In Northern Formal Methods Workshops in Computer Science, Bradford,

1996. Springer-Verlag.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: on

branching versus linear time temporal logic. Journal of the ACM (JACM), 33(1):151–

178, 1986.

[Eme90] E. Allen Emerson. Temporal and modal logic. pages 995–1072, 1990.

[ES96] F. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal

Methods in System Design: An International Journal, 9(1/2):105–131, August 1996.

[FM91] J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects. In

J. De Bakker, W.-P. de Roever, and G. Rozenberg, editors, Foundations of Object

Oriented Languages, LNCS 489, pages 274–310. Springer-Verlag, 1991.

[FM92] Jose Luiz Fiadeiro and T. S. E. Maibaum. Temporal theories as modularisation

units for concurrent system specification. Formal Aspects of Computing, 4(3):239–

272, 1992.

[FSMS92] J.L. Fiadeiro, C. Sernadas, T. Maibaum, and A. Sernadas. Describing and struc-

turing objects for conceptual schema development. In P.Loucopoulos and R.Ziccari,

editors, Conceptual Modelling, Databases and CASE: An Integrated View of Infor-

mation Systems Development, pages 117–138. John Wiley, 1992.

[GH99] Angelo Gargantini and Constance L. Heitmeyer. Using model checking to generate

tests from requirements specifications. In ESEC / SIGSOFT FSE, pages 146–162,

1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patters : Elements of

Reusable Object-Oriented Software. Addison-Wesley Publishing Company, 1995.

[GHP92] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-space caching

revisited. Formal Methods in System Design: An International Journal, 7(3):227–

241, November 1992.

[Gia99] Dimitra Giannakopoulou. Model checking for concurrrent software architectures.

PhD thesis, Imperial College, London, 1999.

[GLM99] S. Gnesi, Diego Latella, and Mieke Massink. Model checking UML statechart di-

agrams using JACK. In Raymond Paul and Catherine Meadows, editors, Proc. of

the Fourth IEEE International Symposium on High Assurance Systems Engineering.

IEEE, 1999.

BIBLIOGRAPHY 340

[GMMP02a] M. M. Gallardo, J. Martnez, P. Merino, and E. Pimentel. A tool for abstraction in

model checking. In 7th International Workshop on Formal Methods for Industrial

Critical Systems,Electronic Notes in Theoretical Computer Science, volume 66.2,

July 2002.

[GMMP02b] M.M Gallardo, J. Martinez, P. Merino, and E. Pimentel. aSPIN: Extending SPIN

with abstraction. In 9th International SPIN Workshop,LNCS 2318, pages 254–258,

Grenoble, France, 2002.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods. In

Proc. of Computer Aided Verification. Spinger, 1990.

[God97a] Patrice Godefroid. Model checking for programming languages using VeriSoft. In

Symposium on Principles of Programming Languages, pages 174–186, 1997.

[God97b] Patrice Godefroid. VeriSoft: A tool for the automatic analysis of concurrent reactive

software. In In Proc. 9 th International Conference on Computer Aided Verication

(CAV), LNCS 1254. Springer-Verlag, 1997.

[GPE02] M. M. Gallardo, P.Merino, and E.Pimentel. Refinement of LTL formulas for abstract

model checking. In Proceedings of the 9th International Static Analysis Symposium

SAS ’02, Lecture notes in Computer Science, volume 2477, September 2002.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly

automatic verification of linear temporal logic. In Protocol Specification Testing and

Verification, pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

[GR] J. Groote and M. Reniers. Algebraic process verification.

[Gro00] The VDM Tool Group. VDM++ Method Guidelines. Technical report, IFAD,

October 2000. ftp://ftp.ifad.dk /pub/vdmtools/doc/guidelines letter.pdf.

[Gur91] Y. Gurevich. Evolving Algebras. A Tutorial Introduction. Bulletin of EATCS,

43:264–284, 1991.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifica-

tion and Validation Methods, pages 9–36. Oxford University Press, 1995.

[Hal93] N. Halbwachs. A tutorial of lustre. 1993.

[HB00] C. Heitmeyer and R. Bharadwaj. Applying the SCR requirements method to the

light control case study. In Journal of Universal Computer Science (JUCS), August

2000.

[HBGL95] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying

and analyzing requirements. In Proceedings of the Tenth Annual Conference on

Computer Assurance, Gaithersburg, MD, June 25-29, pp. 109-122., 1995.

BIBLIOGRAPHY 341

[HD01] John Hatcliff and Matthew Dwyer. Using the Bandera Tool set to model-check

properties of concurrent java software. In Proceedings of CONCUR 2001 (invited

tutorial paper), June 2001.

[Hei02] C. Heitmeyer. Encyclopedia of software engineering. In Two Volumes, John J.

Marciniak, editor. ISBN: 0-471-02895-9, January 2002.

[HHK96] R.H. Hardin, Z. Harel, and R. P. Kurshan. COSPAN. In In 8th International

Conference on Computer Aided Verification CAV’96, LNCS 1102, pages 421–427.

Springer-Verlag, 1996.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model

checker for hybrid systems. International Journal on Software Tools for Technology

Transfer, 1(1–2):110–122, 1997.

[HJGP99] Wai Ming Ho, Jean-Marc Jquel, Alain Le Guennec, and Francois Pennaneac’h. UM-

LAUT: An extendible UML transformation framework. In Automated Software En-

gineering, pages 275–278, 1999.

[HJL96] Connie Heitmeyer, Ralph Jeffords, and Bruce Labaw. Automated consistency check-

ing of requirements specifications. In ACM Transactions on Software Engineering

and Methodology, Vol. 5, No. 3, pages 231–261, July 1996.

[HJM+02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Gregoire

Sutre, and Westley Weimer. Temporal-safety proofs for systems code. In Proceedings

of the 14th International Conference on Computer-Aided Verification (CAV), Lecture

Notes in Computer Science 2404, pages 526–538. Springer-Verlag, 2002.

[HLN+90] David Harel, Hagi Lachover, Amnon Naamad, Amir Pnueli, Michal Politi, Rivi Sher-

man, Aharon Shtull-Trauring, and Mark B. Trakhtenbrot. STATEMATE: A working

environment for the development of complex reactive systems. Software Engineering,

16(4):403–414, 1990.

[HLSC01] H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test generation from statecharts

using model checking, 2001.

[HN96] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. In ACM

Transactions on Software Engineering and Methodology, pages 5(4):293–333, October

1996.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol95] G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int. Conf on Pro-

tocol Specification, Testing, and Verification, INWG/IFIP, pages 301–314, Warsaw,

Poland, 1995. Chapman & Hall.

[Hol97] Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,

1997.

BIBLIOGRAPHY 342

[HP85] D. Hare1 and A. Pnueli. On the development of reactive systems. In Logics and

Models of Concurrent Systems, pages 477–498, Berlin, Heidelberg, New York, Tokyo,

1985. Springer-Verlag.

[HP96] G.J. Holzmann and D. Peled. The state of SPIN. In In CAV’96: 8th International

Conference on Computer Aided Verification,, volume 1102, pages 385–389. LNCS,

1996.

[HR99] N. Halbwachs and P. Raymond. Validation of synchronous reactive systems: from

formal verification to automatic testing. In ASIAN’99, Asian Computing Science

Conference, Phuket (Thailand), December 1999. LNCS 1742, Springer Verlag.

[HR00] Michael R A Huth and H. Mark D Ryan. Logic in computer science: Modelling and

reasoning about systems. Cambridge University Press, 2000.

[HTZ96] H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. In Rajeev

Alur and Thomas A. Henzinger, editors, Proceedings of the Eighth International

Conference on Computer Aided Verification CAV, volume 1102, pages 208–219, New

Brunswick, NJ, USA, / 1996. Springer Verlag.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[IS99] R. Iosif and R. Sisto. dSPIN: A dynamic extension of SPIN. In In Proc. of the 6th

SPIN Workshop, LNCS 1680, pages 261 – 276, September 1999.

[Jac96] Daniel Jackson. Nitpick: A checkable specification language. In In Proceedings of

the Workshop on Formal Methods in Software Practice, San Diego, January 1996.

[Jav] The source for Java technology. http : //java.sun.com/.

[JGF98] Jean-Marc Jézéquel, Alain Le Guennec, and cois Pennaneac’h. Fran˙Validating dis-

tributed software modelled with UML. In In Proc. Int. Workshop UML98, Mulhouse,

France, June 1998.

[JJFM92] Claude Jard, T. Jeron, J. C. Fernandez, and L. Mounier. On-the-fly verification of

finite transition systems. Technical Report RR-1861, INRIA, 1992.

[JMM99] J. Julliand, P.A. Masson, and H. Mountassir. Modular verification of dynamic prop-

erties for reactive systems. In International Workshop on Integrated Formal Methods,

York, Great Britain, pages 89–108. Springer, 1999.

[JS93] Jeffrey J. Joyce and Carl-Johan H. Seger. Linking bdd-based symbolic evaluation

to interactive theorem-proving. In Proceedings of the 30th international on Design

automation conference, pages 469–474. ACM Press, 1993.

[JSS00] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: The Alloy Constraint Analyzer.

In In proceedings of International Conference of Software Engineering, June 2000.

BIBLIOGRAPHY 343

[KG02] Shmuel Katz and Orna Grumberg. A framework for translating models and spec-

ifications. In Proceedings of Third International Conference of Integrated Formal

Methods IFM, Turku, Finland, 2002.

[Kli96] Rob Kling. Systems safety, normal accidents, and social vulnerability. pages 746–763,

1996.

[KM02] Alexander Knapp and Stephan Merz. Model checking and code generation for uml

state machines and collaborations. In G. Schellhorn and W. Reif, editors, FM-

TOOLS 2002: 5th Workshop on Tools for System Design and Verification, Report

2002-11, Reisensburg, Germany, July 2002. Institut für Informatik, Universität Augs-

burg.

[KV98] Orna Kupferman and Moshe Y. Vardi. Modular model checking. Lecture Notes in

Computer Science, 1536:381–401, 1998.

[Kwo00] Gihwon Kwon. Rewrite rules and operational semantics for model checking UML

statecharts. In Proceedings of UML 2000, York, 2000.

[LA99] K. Lano and K. Androutsopoulos. Reactive system refinement of distributed systems

in B. In Proceedings of 1st International Conference on Integrated Formal Methods,

York, 1999. Springer-Verlag.

[LAC00] K. Lano, K. Androutsopoulos, and D. Clark. Structuring and design of reactive

systems using RSDS and B. In Proceedings of FASE, ETAPS 2000, Berlin, Germany,

2000.

[LAC03] K. Lano, K. Androutsopoulos, and D. Clark. Formal specification and verification of

railway systems using UML. In FORMS Symposium on Formal Methods for Railway

Operation and Control Systems, 15-16 May, Budapest, Hungary, 2003.

[LAK00] K. Lano, K. Androutsopoulos, and P. Kan. Structuring reactive systems in B AMN.

In Third IEEE International Conference on Formal Methods (ICFEM), pages 25–34,

York, UK, September 2000.

[Lan05] Kevin Lano. Design for Change: Advanced System Design with Java, UML and

MDA. Elsevier, March 2005.

[LB03] Michael Leuschel and Michael Butler. ProB: A model-checker for B. In In Proceedings

FME, Pisa, Italy, September 2003.

[LBA99] K. Lano, J. Bicarregui, and A.Sanchez. Invariant-based synthesis and composition of

control algorithms using B. In FM’99 workshop on The B-Method at FM’99 World

Congress On Formal Methods In The Development Of Computing Systems, Toulouse,

France, September, 1999.

[LC99] G. Lüttgen and V. Carreño. Analyzing mode confusion via model checking, 1999.

BIBLIOGRAPHY 344

[LCA01] K. Lano, D. Clark, and K. Androutsopoulos. Semantic foundations of RSDS. Tech-

nical report, Kings College, 2001.

[LCA02a] K. Lano, D. Clark, and K. Androutsopoulos. Formalising inter-model consistency

of the UML. In UML 2002, Workshop on Consistency Problems in UML-Based

Software Development, Dresden, Germany, 2002.

[LCA02b] K. Lano, D. Clark, and K. Androutsopoulos. From implicit specifications to explicit

designs in reactive system development. In The Third International Conference,

Integrated Formal Methods (IFM) 2002, Turku, Finland, 2002.

[LCA02c] K. Lano, D. Clark, and K. Androutsopoulos. RSDS: A subset of UML with pre-

cise semantics. In The fourth workshop on rigorous object-oriented methods, King’s

College London,UK, 2002.

[LCA02d] K. Lano, D. Clark, and K. Androutsopoulos. Safety and security analysis of object-

oriented models. In SAFECOMP 2002, pages 82–93, Italy, 2002.

[LCA+02e] K. Lano, D. Clark, K. Androutsopoulos, P. Kan, and A. Sanchez. Formal synthesis

of PLC-based control systems. In Internal report, Department of Computer Science,

King’s College London, 2002.

[LCA04] K. Lano, D. Clark, and K. Androutsopoulos. UML to B: Formal verification of

object-oriented models. In IFM, Kent, England, April 2004.

[LCAK00] K. Lano, D. Clark, K. Androutsopoulos, and P. Kan. Invariant-based synthesis of

fault-tolerant systems. In Mathai Joseph, editor, ”Formal Techniques in Real-Time

and Fault-Tolerant Systems, 6th International Symposium (FTRTFT 2000), pages

46–57, Pune, India, 2000. Springer-Verlag.

[Lec02] Thierry Lecomte. Event driven B: methodology, language, tool support and experi-

ments. In Workshop on Refinement of Critical Systems, January 2002.

[Led91] Y. Ledru. Developing reactive systems in a vdm framework. In IWSSD ’91: Proceed-

ings of the 6th international workshop on Software specification and design, pages

130–139. IEEE Computer Society Press, 1991.

[Lev97] N. Leveson. Analyzing software specifications for mode confusion potential, 1997.

[LFA02] Kevin Lano, Jose Luiz Fiadeiro, and Luis Filipe De Andrade. Software Design Using

Java 2. Palgrave Macmillan; ISBN: 1403902305, 2002.

[LFK02] Harry Li, Kathi Fisler, and Shriram Krishnamurthi. The influence of software module

systems on modular verification. In 9th International SPIN Workshop on Model

Checking of Software, April 2002.

[LG98] Karen Laster and Orna Grumberg. Modular model checking of software. In TACAS

’98: Proceedings of the 4th International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 20–35. Springer-Verlag, 1998.

BIBLIOGRAPHY 345

[LH96] K. Lano and H. Haughton. Specification in B: An introduction using the B Toolkit.

Imperial College Press, 1996.

[LH02] Karsten Loer and Michael D. Harrison. Towards usable and relevant model checking

techniques for the analysis of dependable interactive systems. In Proceedings of 17

th IEEE International Conference on Automated Software Engineering (ASE’02),

pages 223–226, Edinburgh, UK, 2002.

[LHHR94] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon

Reese. Requirements specification for process-control systems. Software Engineering,

20(9):684–707, 1994.

[LHR99] Nancy G. Leveson, Mats Per Erik Heimdahl, and Jon Damon Reese. Designing

specification languages for process control systems: Lessons learned and steps to the

future. In ESEC / SIGSOFT FSE, pages 127–145, 1999.

[LK98] K. Lano and P. Kan. Reactive system development in B. In 1st YUFORIC Workshop,

Brisbane, Australia, 1998.

[LMM99a] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic verification of a be-

havioural subset of UML statechart diagrams using the SPIN model-checker. Formal

Aspects of Computing, 11(6):637–664, 1999.

[LMM99b] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational se-

mantics of UML statechart diagrams. In Proc. FMOODS’99, IFIP TC6/WG6.1

Third International Conference on Formal Methods for Open Object-Based Dis-

tributed Systems, Florence, Italy, February 15-18, 1999. Kluwer, 1999.

[Lot96] A. Lotzbeyer. Task description of a fault-tolerant production cell, 1996.

[LP99] Johan Lilius and Ivan Porres Paltor. vUML: a tool for verifying UML models.

Technical Report TUCS-TR-272, Abo Akademi University, 18, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal

on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[LS95] F. Laroussinie and Ph. Schnoebelen. A hierarchy of temporal logics with past. The-

oretical Computer Science, 148:303–324, 1995.

[LS97] F.William Lawvere and Stephen H. Schanuel. Conceptual Mathematics: A first

introduction to categories. Cambridge University Press, 1997.

[Mar91] F. Maraninchi. The argos language: Graphical representation of automata and

description of reactive systems. In IEEE Workshop on Visual Languages, oct 1991.

[MB02] I. Majzik and B. Beny. Verification of UML statechart models of embedded systems.

In In B. Straube, E.J. Marinissen, Z. Kotasek, O. Novak, J. Hlavicka, R. Ruzicka

(editors): Proc. 5th IEEE Design and Diagnostics of Electronic Circuits and Systems

Workshop, pages 70–77, April 2002.

BIBLIOGRAPHY 346

[MC03] A. Miller and M. Calder. An application of abstraction and induction techniques

to degenerating systems of processes. In Proceedings of the International Workshop

on Model-Checking for Dependable Software Intensive Systems (MCDSIS). IEEE

Computer Society Press, 2003.

[McM92a] K. L. McMillan. The SMV system. Carnegie Mellon University, 1992.

[McM92b] Kenneth L. McMillan. Symbolic Model Checking : An approach to the state space

explosion problem. PhD thesis, Carnegie Mellon University, 1992.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[McM95] K. L. McMillan. A technique of state space search based on unfolding. Formal

Methods in System Design: An International Journal, 6(1):45–65, January 1995.

[McM98a] K. L. McMillan. Getting Started with SMV: User’s Manual. Cadence Berkeley Lab-

oratories, 1998.

[McM98b] K. L. McMillan. Verification of an implementation of tomasulo’s algorithm by compo-

sitional model checking. In Alan Hu, editor, Computer Aided Verification (CAV98),

Vancouver, Canada, June 1998.

[ME03] Madanlal Musuvathi and Dawson R. Engler. Some lessons from using static analysis

and software model checking for bug finding. Electr. Notes Theor. Comput. Sci.,

89(3), 2003.

[Mil80] R. Milner. A calculus on communicating systems. In Lecture Notes in Computer

Science, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[ML02] R. Marcano and N. Levy. Transformation rules of OCL constraints into B formal ex-

pressions. In Workshop on critical systems development with UML. 5th International

Conference on the Unified Modeling Language., October 2002.

[MOSS99] Markus Muller-Olm, David Schmidt, and Bernhard Steffen. Model-checking: A

tutorial introduction. In G. File and A. Cortesi, editors, In Proceedings of the 6th

International Static Analysis Symposium (SAS’99), volume 1694, pages 331–354.

Springer LNCS 1694, September 1999.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems:Specification. Springer Verlag, 1992.

[MR01] F. Maraninchi and Y. Rémond. Argos: an automaton-based synchronous language.

Computer Languages, (27):61–92, 2001.

[MS91] K.L. McMillan and J. Schwalbe. Formal verification of the Gigamax cache consis-

tency protocol. In In Proceedings of the International Symposium on Shared Memory

Multiprocessing, pages 242–51, Tokyo, Japan, 1991.

BIBLIOGRAPHY 347

[MS00] Eric Meyer and Thomas Santen. Behavioral conformance verification in an integrated

approach using UML and B. In In IFM 2000: 2nd International Workshop on

Integrated Formal Methods, pages 358–379, 2000.

[MtSg96] Zohar Manna and the STeP group. Step: The stanford temporal prover (educa-

tional release), user’s manual. Technical Report STAN-CS-TR-95-1562, Stanford

University, 1996. Technical report.

[MV86] P. Wolper M. Vardi. An automata-theoretic approach to automatic program veri-

fication. In In Proc. of the IEEE Symposium on Logic in Computer Science, pages

332–344, 1986.

[Nag] The Nagoya Crash. http : //www.flightsafety.org.au/articles/c0003.php.

[NuS] The NuSMV User Manual. http : //nusmv.irst.itc.it/NuSMV/userman/index−
v2.html.

[oD97] Ministry of Defence. Defence standard 00-55: Requirements for safety related soft-

ware in defence equipment, 1997.

[Ove81] W. T. Overman. Verification of concurrent systems: function and timing. PhD

thesis, University of California, 1981.

[PDH99] Corina S. Pasareanu, Matthew B. Dwyer, and Michael Huth. Assume-guarantee

model checking of software: A comparative case study. In SPIN, pages 168–183,

1999.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking. In

In Proceedings of the 6th International Conference on Computer Aided Verification,,

volume LNCS 818. Springer-Verlag, 1994.

[Pep] Pep tool. http : //theoretica.informatik.uni− oldenburg.de/ pep/.

[Pet] Petri nets, by armin zimmermann. http : //pdv.cs.tu− berlin.de/ azi/petri.html.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computing Scientists. The MIT

Press, 1991.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57, Prov-

idence, Rhode Island, 31– 2 1977. IEEE Computer Society Press.

[Pnu86] A. Pnueli. Applications of temporal logic in the specification and verification of

reactive systems: a survey of current trends, lecture notes in computer science 224:

Current trends in concurrency, 1986.

[PPSM03] M. Pradella, P. San Pietro, P. Spoletini, and A. Morzenti. Practical model checking

of ltl with past. In 1st Int. Workshop on Automated Technology for Verification and

Analysis, National Taiwan University, December 2003.

BIBLIOGRAPHY 348

[PR91] H. Plunnecke and W. Reisig. Bibliography of petri nets 1990. In G. Rozenberg,

editor, Advances in Petri Nets 1991, LNCS, volume 524, page 317, Germany, 1991.

Springer-Verlag.

[Pro] Prod 3.3.10. http : //www.tcs.hut.fi/Software/prod/.

[PS91] A. Pneuli and M. Shalev. What is in a step: On the semantics of statecharts.

In Theoretical Aspects of Computer Software, International Conference TACS’91,

volume 526 of Lecture Notes in Computer Science, pages 244–264, Japan, September

1991. Springer-Verlag.

[PSS98] Amir Pnueli, M. Siegel, and Eli Singerman. Translation validation. In Tools and

Algorithms for Construction and Analysis of Systems, pages 151–166, 1998.

[PT98] H. Peng and S. Tahar. A survey on compositional verification, 1998.

[QS82] J. Quelle and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Symposium proceedings, LNCS 137, pages 337–351. Springer-Verlag,

1982.

[Ram00] S. Ramesh. Refinement and efficient verification of synchronous programs. In In

proc. IFAC Distributed Computing and Control Conference. Pergamon Press, 2000.

[RG00] Mark Richters and Martin Gogolla. Validating UML models and OCL constraints.

In Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified

Modeling Language. Advancing the Standard. Third International Conference, York,

UK, October 2000, Proceedings, volume 1939 of LNCS, pages 265–277. Springer,

2000.

[RGA+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.

Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,

S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system for verification

and synthesis. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of

the Eighth International Conference on Computer Aided Verification CAV, volume

1102, pages 428–432, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[Rod] The rodin (rigorous open development environment for complex systems) project.

http : //rodin.cs.ncl.ac.uk.

[Ros98] Roscoe. Proving security protocols with model checkers by data independence tech-

niques. In PCSFW: Proceedings of The 11th Computer Security Foundations Work-

shop. IEEE Computer Society Press, 1998.

[Ros03] Bill Roscoe. Compiling statemate statecharts into csp and verifying them using fdr.

In Extended Abstract, January 2003.

BIBLIOGRAPHY 349

[RSG99] J.N. Reed, J.E. Sinclair, and F. Guigand. Deductive reasoning versus model checking:

Two formal approaches for system development. In Proceedings of 1st International

Conference on Integrated Formal Methods, York, 1999. Springer-Verlag.

[San96] A. Sanchez. Formal Specification and Synthesis of Procedural Controllers for Process

Systems (Lecture Notes in Control and Information Sciences, 212). Springer Verlag;

ISBN 3540760210, 1996.

[Sch01] Steve Schneider. The B-method: an introduction. Palgrave, 2001.

[Sch02a] P. Schnoebelen. The complexity of temporal logic model checking, 2002.

[SCH02b] Wuwei Shen, Kevin Compton, and James K. Huggins. A toolset for supporting UML

static and dynamic model checking. In In Proceedings, IEEE Computer Society, 26th

International Computer Software and Applications Conference (COMPSAC 2002),

Prolonging Software Life: Development and Redevelopment, pages 147–152, Oxford,

England, August 2002.

[Sha96] N. Shankar. PVS: combining specification, proof checking, and model checking.

In Mandayam Srivas and Albert Camilleri, editors, Formal Methods in Computer-

Aided Design (FMCAD ’96), volume 1166 of Lecture Notes in Computer Science,

pages 257–264, Palo Alto, CA, nov 1996. Springer-Verlag.

[Sha98] Natarajan Shankar. Lazy compositional verification. Lecture Notes in Computer

Science, 1536:541–564, 1998.

[SKM01] Timm Schfer, Alexander Knapp, and Stephan Merz. Model checking UML state ma-

chines and collaborations. In Scott D. Stoller and Willem Visser, editors, Electronic

Notes in Theoretical Computer Science, volume 55. Elsevier, 2001.

[Smi00] Graeme Smith. The Object-Z Specification Language. Advances in Formal Methods

Series, Kluwer Academic Publishers, ISBN 0-7923-8684-1, 2000.

[Sno02] Colin Snook. Combining uml and b. In In Proceedings of Forum on specification and

design languages, Marseille, France, 2002.

[SRI] SRI International Computer Science Laboratory. http : //pvs.csl.sri.com/.

[SSE03] Claus Schrter, Stefan Schwoon, and Javier Esparza. The Model-Checking Kit. In

Applications and Theory of Petri Nets 2003,Lecture Notes in Computer Science,

volume 2679, pages 463–472. Springer, June 2003.

[Sta] I-Logix’ Statemate MAGNUM. http : //www.ilogix.com/products/magnum/index.cfm.

[Sto96] Neil Storey. Safety-critical Computer Systems. Addison-Wesley; ISBN: 0201427877,

1996.

BIBLIOGRAPHY 350

[SW91] Colin Stirling and David Walker. Local model checking in the modal mu-calculus. In

2nd international joint conference on Theory and practice of software development,

pages 161–177. Elsevier Science Publishers B. V., 1991.

[SZ01] E. Sekerinski and R. Zurob. iState: A statechart translator. In UML 2001 - The

Unified Modeling Language, Lecture Notes in Computer Science 2185,, pages 376 –

390, Toronto, Canada, October 2001. Springer-Verlag.

[Tan01] Meyer C. Tanuan. Automated analysis of unified modeling language (UML) specifi-

cations. Master’s thesis, Department of Computer Science, University of Waterloo,

Ontaria, Canada, 2001.

[Tre02] Helen Treharne. Supplementing a UML development process with B. In In proceed-

ings of FME, July 2002.

[UMLa] The unified modeling language (UML), Version 1.5, Specification provided by the

OMG. http : //www.omg.org/technology/documents/formal/uml.htm.

[UMLb] UML profile for schedulability, performance, and time), Version 1.0, Specifi-

cation provided by the OMG, 2003. http : //http : //www.omg.org/cgi −
bin/doc?formal/2003− 09 − 01.

[Val90] A. Valmari. A stubborn attack on state explosion. In Workshop on Computer Aided

Verification, June 1990.

[Var98] Moshe Y. Vardi. Linear vs. branching time: A complexity-theoretic perspective. In

Logic in Computer Science, pages 394–405, 1998.

[VBW94] M. Y. Vardi, O. Bernholtz, and P. Wolper. An automata-theoretic approach to

branching-time model checking. In David L. Dill, editor, Proceedings of the sixth

International Conference on Computer-Aided Verification CAV, volume 818, pages

142–155, Standford, California, USA, 1994. Springer-Verlag.

[Ver] Verilog dot com. http : //www.verilog.com/.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Infor-

mation and Computation, 115(1):1–37, 15 1994.

[Wie03] R. J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate and the

UML. Morgan Kaufmann; ISBN 1-55860-755-2, 2003.

[Win01] Kirsten Winter. Model Checking Abstract State Machines. PhD thesis, Technischen

Universität, Berlin, 2001.

[Wol95] P. Wolper. An introduction to model checking. In In Proc. of the Software Quality

Week (SQW’95), San Francisco, May 1995.

BIBLIOGRAPHY 351

[WVF95] Jeannette M. Wing and Mandana Vaziri-Farahani. Model Checking Software Sys-

tems: A Case Study. In Proceedings of SIGSOFT’95 Third ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering, pages 128–139, 1995.

[Yov97] S. Yovine. Kronos: A verification tool for real-time systems. International Journal

of Software Tools for Technology Transfer, 1(1/2):123–133, October 1997.

