
A Racket-Based Robot to Teach First-Year Computer
Science

K.Androutsopoulos, N. Gorogiannis, M. Loomes, M. Margolis,
G. Primiero, F. Raimondi, P. Varsani, N. Weldin, A.Zivanovic

School of Science and Technology
Middlesex University

London, UK
{K.Androutsopoulos|N.Gkorogiannis|M.Loomes|M.Margolis|G.Primiero|F.Raimondi|P.Varsani|N.Weldin|A.Zivanovic}@mdx.ac.uk

ABSTRACT
A novel approach to teaching Computer Science has been de-
veloped for the academic year 2013/14 at Middlesex Univer-
sity, UK. The whole first year is taught in an holistic fashion,
with programming at the core, using a number of practical
projects to support learning and inspire the students. The
Lisp derivative, Racket, has been chosen as the main pro-
gramming language for the year. An important feature of
the approach is the use of physical computing so that the
students are not always working “through the screen”, but
can experience physical manifestations of behaviours result-
ing from programs. In this paper we describe the MIddlesex
Robotic plaTfOrm (MIRTO), an open-source platform built
using Raspberry Pi, Arduino, and with Racket as the core
coordination mechanism. We describe the architecture of
the platform and how it can be used to support teaching of
core Computer Science topics, we describe our teaching and
assessment strategies, we present students’ projects and we
provide a preliminary evaluation of our approach.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Theory,Human Factors.

Keywords
Educational approaches and perspectives, Experience reports
and case studies

1. INTRODUCTION
Designing a new undergraduate programme requires a num-

ber of choices to be made: what programming language
should we teach? Which development environments? Should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
European LISP Symposium 2014 Paris, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

mathematical foundations play a dominant role, or will they
discourage students from attending? Moreover, the cur-
rent stand of our educational system with respect to in-
dustry seems to rely on a discouraging contradiction: on
the one hand, it is tempting to market new undergraduate
programmes with the claim that they will provide the skills
required by industry. On the other hand, we argue that
the only certainty is that students will live in a continuously
evolving environment when they leave education, and that
it is not possible to forecast market requests in a few years’
time.

In the design of a new Computer Science programme for
the academic year 2013/2014 we have been driven by the re-
quirement that we should prepare students for change, and
that we should teach them how to learn new skills autonom-
ously. Students entering academia may not be prepared for
this: they could be arriving from high school where the fo-
cus is on achieving good grades in specific tests. How do we
achieve the objective of preparing good learners?

We decided to employ the Lisp-derivative Racket to sup-
port the delivery of a solid mathematical background and
the creation of language-independent programming skills.
Moreover, we decided to work on real hardware so that the
students could appreciate the result of executed code. The
work is organised around projects involving Arduino, Rasp-
berry Pi, and a Robot that we describe here.

We have completely revised our delivery and assessment
methods to support our aims. There are no modules or
courses and the activities run seamlessly across the projects.
The assessment method is not based on exams, but on Stu-
dent Observable Behaviours (SOBs), that are fine-grained
decompositions of learning outcomes providing evidence of
students’ progress.

Many of the elements in this approach have been tried
elsewhere, including problem-based learning, assessment thro-
ugh profiling and using Lisp as a first programming lan-
guage. We believe, however, that this programme takes
these ideas further than previously, and also blends these in
ways that are unique. The integration of Lisp (Scheme) and
formalisms in an holistic way was introduced at Hertford-
shire by one of the authors many years ago [8], but only in
the context of a single module. Several years earlier, a highly
integrated curriculum was designed in a project funded by a
large company in the UK, to develop formal methods in soft-
ware engineering practice [7], but this was for small cohorts
of students at Master level. From a pedagogical viewpoint,
our approach broadly recalls a fine-grained outcome-based

learning path model, but the theoretical implications remain
to be assessed in their full meaning, especially for the ped-
agogical support (see [14] for a recent overview). Finally, an
essential aspect of our course structure is the integration of
the Lisp-based programming methodology with a range of
issues in electrical engineering, robotics and web-based ap-
plications. While other educational programmes have often
preferred to drop Lisp variants in favour of other more ded-
icated programming environments (e.g. in the famous case
of MIT 6.001 course based on Scheme and [1] redesigned
with Python for Robotics applications) we intend to pre-
serve the more in-depth and foundational understanding of
programming that a Lisp-style language can offer and at the
same time offer a greater flexibility with respect to real-world
challenges.

In this paper we focus on how Racket has provided a solid
support for our new strategy: in Section 2 we describe the
overall structure of the first year and the progress of stu-
dents from simple examples to more complex scenarios; this
progress enables the students to control a real robot, de-
scribed in Section 3. In section 4 we describe our assessment
strategy and we present a tool to support it. An evaluation
of our approach is provided in Section 5, where we describe
students’ projects and various measures for engagement, at-
tendance and overall progress.

2. OVERVIEW OF THE FIRST YEAR
In our new first year of Computer Science, there are no

modules or courses and all the activities run across vari-
ous sessions during the week. The idea is that employing
a problem-driven approach, we give students the confidence
needed to study independently. In essence, this is our way
to teach them “how to learn”.

Each week consists of the following structured sessions:
lecture, design workshop, programming workshop, physical
computing workshop, synoptic workshop.

• General Lecture. A two-hour lecture is given, in-
troducing or developing a topic and related projects.
However, this is not where learning should happen: we
envisage our lectures as motivational and high-level de-
scriptions of the activities that will follow during the
week.

• Design Workshop. In these workshops students de-
velop skills required to work in a design environment.
Design might be built in software (programming) or
hardware, it might involve bolting existing systems to-
gether (systems engineering), or developing processes
for people who are using the systems (HCI). We cover
ways of generating ideas, ways of representing designs
so that they can be discussed, professional ways of
criticising designs and ways teams of people work to-
gether to produce and deliver designs. Delivery hap-
pens in an open-space flexible environment, with large
tables that can be moved around and arranged in small
groups, and the workshop lasts two hours. Students
may be asked to present in front of the class the result
of their work.

• Programming Workshop. In the two-hour pro-
gramming workshops we help the students with ex-
ercises, master-classes, coaching sessions, to develop
their fluency in coding. We have restricted the first

year to looking at just one main language, Racket [11],
a functional language derived from LISP. Racket should
be new to most students, thus ensuring that the stu-
dents are all at the same level of experience so that we
can focus on teaching best practises rather than undo-
ing bad habits. The choice of a programming language
was one of the most carefully debated issues in the
design of this new course. Racket was selected for the
availability of a number of libraries that support teach-
ing, for its integrated environment (DrRacket) that al-
lows obtaining results with very minimal set-up, and
for the availability of a large number of extensions in-
cluding libraries to interact with networking applica-
tions such as Twitter, libraries for Arduino integration
and environments for graphics, music and live-coding.

• Physical Computing Workshop. The output of
software systems increasingly results in tangible ac-
tions in the real world. It is very likely that the most
common piece of software students will see in their jobs
is not a relational database to store sales, but a proced-
ure to manage self-driving cars. As a result, we think
that students should be exposed to a wide variety of
physical devices that are crucial to understanding com-
puter science. These will range from simple logic gates
(the building blocks of every computer currently com-
mercially available), to microcontrollers (Arduino) and
other specialist devices. The emphasis is on program-
ming using Racket, not building, these devices. In this
two-hour workshop we also explore how to interface
these, and how people interact with computers using
such devices.

• Synoptic Workshop. This is where we“pull everything
together” by taking multiple strands of activity and fit
all of the bits together. It is longer than the other
workshops (4 hours) to allow time to design, build,
test and discuss projects. This is not simply about
‘applying’ what has been learnt - it is about learning
and extending what is known in a larger context.

In each of the Programming, Physical and Synoptic Work-
shops, one staff member and two Graduate Teaching Assist-
ants attend to around 20 students. In the Design session the
number of students rises to 40. Students do most of their
study during class hours, but handouts contain exercises for
self-study and they have almost continuous access to the
laboratories to work independently on physical computing.

2.1 Growing Racket skills
Our delivery of Racket starts with the aim of supporting

the development of a traffic light system built using Ardu-
ino boards [2, 9], LEDs and input switches. The final res-
ult should be a system with three traffic lights to control
a temporary road-work area where cars are only allowed in
alternate one-way flow and with a pedestrian crossing with
request button.

Arduino is a microcontroller that can run a specific code or
can be driven using a protocol called Firmata [3]. We employ
this second approach to control Arduino boards from a dif-
ferent machine. To this end, we have extended the Firmata
Racket library available on PLaneT [13] to support Windows
platforms, to automatically recognise the USB/serial port
employed for connection and to support additional kinds of

Figure 1: A screenshot of the Dungeon Game Inter-
face

messages for analog output and for controlling a robot (see
next section). Our library is available from [12].

Students employ this library in the first week to start in-
teracting with DrRacket using simple code such as the fol-
lowing:

1 #lang racket

2 (require "firmata.rkt")

3 (open-firmata)

4 (set-pin-mode! 13 OUTPUT_MODE)

5 (set-arduino-pin! 13)

6 (sleep 1)

7 (clear-arduino-pin! 13)

This code turns an LED on for a second and then turns
it off. Students then start working on lists and see traffic
lights as lists of LEDs. High order functions are introduced
to perform actions on lists of LEDs, such as in the following
code that sets Arduino PINs 7, 8 and 9 to OUTPUT mode:

1 #lang racket

2 (require "firmata.rkt")

3 (open-firmata)

4 (define pins ’(7 8 9))

5 (map (lambda (pin)

6 (set-pin-mode! pin OUTPUT_MODE))

7 pins)

As part of this project students learn how to control events
in a timed loop using clocks and by making use of the Racket
function (current-inexact-milliseconds). This also en-
ables students to read the values of input switches and to
modify the control loop accordingly.

The result of this project is typically approximately 200
to 500 lines of Racket code with simple data structures, high
order functions and the implementation of control loops us-
ing clocks.

Following this Arduino project, students explore a number
of other Racket applications, including:

• A dungeon game with a GUI to learn Racket data
structures. See Figure 1.

• The Racket OAuth library to interact with the Twitter
API. A Racket bot is currently running at https://

twitter.com/mdxracket, posting daily weather fore-
cast for London. A description of this bot is available

Figure 2: The Middlesex Robotic Platform

at http://jura.mdx.ac.uk/mdxracket/index.php/Racket_
and_the_Twitter_API.

• A Racket web server to control an Arduino board.
More details about this are available at http://www.

rmnd.net/wp-content/uploads/2014/02/w2-programming.

pdf (this is the handout given to students for their pro-
gramming and physical computing workshop in one
week).

All these elements contribute towards the final project:
develop Racket applications for the Middlesex Robotic Plat-
form (MIRTO), described in the next section.

3. MIRTO ARCHITECTURE
The MIddlesex Robotic plaTfOrm (MIRTO, also known

as Myrtle), shown in Figure 2, has been developed as an
open-source platform that can be used across different courses;
its current design and all the source code are available on-
line [10]. The Middlesex Robotic platform shown is com-
posed of two units (from bottom to top):

1. The base platform provides wheels, power, basic sens-
ing and low level control. It has two HUB-ee wheels [4],
which include motors and encoders (to measure actual
rotation) built in, front and rear castors, two bump
sensors and an array of six infra-red sensors (mounted
under the base), a rechargeable battery pack, which is
enough to cover a full day of teaching (8 hours) and an
Arduino microcontroller board with shield to interface
to all of these. An extended version of Firmata (to
read the wheel encoders) is running on the Arduino,
which provides a convenient interface for Racket code
to control and monitor the robot.

2. The top layer (the panel on top in Figure 2) is where
higher level functions are run in Racket and consists of
a Raspberry Pi, which is connected to the the Ardu-
ino by the serial port available on its interface connec-
tion. The Raspberry Pi is running a bespoke Linux

Figure 3: MIRTO Arduino layer connected directly
to a PC

image that extends the standard Raspbian image; it
includes Racket (current version 5.93), and is using
a USB WiFi adapter to enable remote connections via
SSH and general network activities. This layer enabled
us to also use cameras, microphones and text to speech
with speakers to extend the range of activities avail-
able to students. Additional layers can be added to
the modular design to extend the robots capabilities.

The robotic platform is certainly a helpful artifact to en-
gage students more, but it also represents a way to combine
our crucial interest in the formal and theoretical aspects un-
derlying computing. In fact, students start using the robot
to investigate product of finite state machines (computing
the product of the state space of the two wheels) and con-
tinue studying all the relevant formal properties that they
see implemented on MIRTO. They then move to connect-
ing the Arduino layer directly to a PC, see Figure 3. We
have built a bespoke Racket module for this interaction (see
Section 3.1); from the students’ point of view, this is es-
sentially a step forward with respect to a “simple” traffic
light system, and they can re-use the control loops tech-
niques employed for the first project to interact with wheels
and sensors. After getting familiar with this library, stu-
dents progress to study networking and operating systems
concepts: this allows the introduction of the top layer, the
Raspberry Pi. Students can now transfer their code from
a PC to the Raspberry Pi and they control MIRTO over
a wireless connection. This allows the introduction of con-
trol theory to follow a line and other algorithms (such as
maze solving). We present some details of the code in the
following section.

3.1 A Racket library for MIRTO
We have built a Racket library for MIRTO that allows

students to interact with the robot by abstracting away from
the actual messages exchanged at the Firmata level (see the
file MIRTOlib.rkt available from [10]). The library provides
the following functions:

• setup is used to initialise the connection between a
Racket program and the Arduino layer (this function

initialises Firmata and performs some initial set-up for
counters). Correspondingly, shutdown closes the con-
nection.

• w1-stopMotor and w2-stopMotor stop, respectively, the
left and the right wheel. The function stopMotors stop
both wheels.

• (setMotor wheel power) sets wheel (either 1 or 2)
to a certain power, where power ranges between -100
(clockwise full power) and +100 (anti-clockwise full
power). (setMotors power1 power2) sets both mo-
tors with one instruction.

• (getCount num) (where num ∈ {1, 2}) returns the“count”
for a wheel. This is an integer counter that increases
with the rotation of the wheel. A full rotation cor-
responds to an increase of 64 units for this counter.
Given that the wheel has a diameter of 60 mm, it is
thus possible to compute the distance travelled by each
wheel.

• enableIR enables infra-red sensors (these are initial-
ised in an “off” state to save battery); (getIR num)

(where num ∈ {1, 2, 3}) returns the value of the infra-
red sensor. This is a number between 0 (white, per-
fectly reflecting surface) and 2000 (black, perfectly ab-
sorbing surface).

• leftBump? and rightBump? are Boolean functions re-
turning true (resp. false) when a bump sensor is pressed
(resp. not pressed).

The following is the first exercise that students are asked
to do to move the wheels for one second:

1 #lang racket

2 (require "MIRTOlib.rkt")

3 (define (simpleTest)

4 (setup)

5 (setMotors 75 75)

6 (sleep 1)

7 (stopMotors)

8 (shutdown))

This code moves the wheels for one second and then stops
them. Students test this code using the Arduino layer only,
as shown in Figure 3. Similarly to the traffic light project,
students then move to more complex control loops and start
using the Raspberry Pi layer using SSH and command-line
Racket. The following snippet of code extracted from a con-
trol loop prints the values of the infra-red sensors every two
seconds:

1 ;; [...]

2 (set! currentTime (current-inexact-milliseconds))

3 ;;

4 (cond ((> (- currentTime previousTime) 2000)

5 (map (lambda (i)

6 (printf " IR sensor ~a -> ~a\n" i

7 (getIR i)))

8 ’(1 2 3))

9 (set! previousTime

10 (current-inexact-milliseconds))))

11 ;; [...]

The functions provided by the library allow the imple-
mentation of a Racket-based PID controller [6] for MIRTO.
Students are also introduced to maze solving algorithms,
which can be implemented using the infra-red sensors and
the bump sensors. The Racket code for both programs is
available from [10] in the servos-and-distance branch.

After these exercises and guided projects, students are
asked to develop an independent project. We report some
of these projects in Section 5.

4. ASSESSMENT STRATEGY
As mentioned above, the delivery of the first year of Com-

puter Science has been substantially modified, modules have
been removed and students are exposed to a range of activ-
ities that contribute to projects.

As a result, we have introduced a new assessment strategy
to check that students have understood and masters the ba-
sic concepts required during the second year and are able
to demonstrate these through practical demonstration. We
use the term Student Observable Behaviours (SOBs)
to refer to fine-grained decompositions of learning outcomes
that provide the evidence that the students are progressing.
Passing the year involves demonstrating SOBs. There are
three types of SOBs:

1. Threshold level SOBs are those that must be ob-
served in order to progress and pass the year. Students
must pass all of these; a continuous monitoring of the
progress using the tool described below ensures that
any student who is at risk of not doing so is offered
extra support to meet this level.

2. Typical level SOBs represent what we would expect
a typical student to achieve in the first year to obtain
a good honours degree. Monitoring this level provides
a very detailed account of how each student is meeting
expectations. Students are supported in their weak
areas, encouraged not to hide them and not to focus
only on the things they can do well. Our aspiration
is to get the majority of students to complete all the
typical level SOBs.

3. Excellent level SOBs identify outstanding achieve-
ments. These are used to present real challenges of
different types to students who have demonstrated to
be ready for them.

Projects have been designed to offer assessment opportun-
ities both en-route and in the final project delivery. Projects
are posed in such a way as to ensure that students who en-
gage with the process have the opportunity to demonstrate
threshold level SOBs. As a result, “failure” to successfully
complete a project does not lead to failure to complete the
threshold SOBs. Projects have a well-defined set of core
ideas and techniques (threshold), with suggestions for en-
hancements (typical), and open-ended questions (excellent).
Note that there is no concept of averaging or summation:
in theory a student could complete all of the excellent level
SOBs, but fail the year as a consequence of not meeting one
threshold SOB. This is virtually impossible in practice, as
staff are aware that there are outstanding threshold SOBs,
and take the opportunity of observing them en-route. Of
course, if a student really can’t do something that has been
judged threshold, we will deem it a failure.

Students who fail to demonstrate all threshold SOBs by
the end of the academic year will, at the discretion of the
Examination Board and within the University Regulations,
be provided with a subsequent demonstration opportunity.
This will normally be over the Summer in the same academic
year. Resources including labs and support staff will be
made available during this period.

The process of assessment and feedback is thus continuous
via a “profiling” method. This method allows us to track
every student in detail, to ensure that we are supporting
development and progression. This means we have compre-
hensive feedback to the teaching team available in real time.
Also, students have a detailed mechanism available to mon-
itor their own progress. This includes ways of viewing their
position relative to our expectations, but also to the rest
of the group. The students have multiple opportunities to
pass SOBs. There are no deadlines and SOBs can be demon-
strated anytime during the year, although each SOB carries
a “suggested” date range in which it should be observed. Al-
though the formal aspect of the profiling method appears
to be a tick-box exercise, discussion and written comments
(where appropriate) are provided at several points through-
out the year.

4.1 The Student Observable (SOB) Tool
Overall, we have defined 119 SOBs: 34 threshold, 50 typ-

ical and 35 excellent. In terms of Racket-specific SOBs, 10
of them are threshold and include behaviours such as “Use
define, lambda and cond, with other language features as
appropriate, to create and use a simple function.”; 15 SOBs
are typical, such as “Define functions to write the contents
of a data structure to disk and read them back”; there are 13
SOBs at the excellent level, for instance: “The student can
build an advanced navigation system for a robot in Racket
that uses different data streams”

Our first year cohort consists of approximately 120 stu-
dents. An appropriate tool is crucially needed to keep track
of the progress of each student and to alert the teaching team
as soon as problems arise (students not attending, students
not being observed for SOBs, etc.). We have developed an
on-line application that takes care of this aspect, in collab-
oration with research associates in our department.

Figure 4 presents a screenshot of the tool when entering or
querying SOBs. The first column identifies the SOB by num-
ber; the second the level (threshold, typical, excellent); the
third the topic (Racket, Fundamentals, Computer Systems,
Project Skills); the fourth offers a description; the fifth and
sixth column indicate respectively start and expected com-
pletion dates; the last column is an edit option. In addition
to this facility, the tool provides a set of graphs to monitor
overall progress and attendance. Background processes gen-
erate reports for the teaching team about non-attending or
non-performing students. As an example, Figure 5 shows in
tabular form the list of students (id number, first and last
name, email), highlighting those who have (threshold) SOBs
that should have been observed at the current date.

Figure 6 shows a screenshot of the “observation” part of
the tool. In this case a demo student is selected and then
the appropriate SOBs can be searched using the filters on
the right. Different colours are used to highlight the most
relevant SOBs. In addition, for each level a progress bar dis-
plays the overall progress of the student in green against the
overall average progress of the cohort (vertical black bar);

Figure 4: Entering and searching SOBs

Figure 5: Student list with SOBs

in this case, the student is slightly ahead of the overall class
for threshold SOBs. The “Notes” tab can be used to provide
feedback and to record intermediate attempts at a SOB. In
addition to the design presented in the figure we have also
implemented a tablet-friendly design to be used in the labs.

Students are provided a separate access to the database to
check their progress. A dashboard provides immediate and
quick access to key information (number of SOBs expected
to be observed in the coming week, number of SOBs that
are “overdue”, etc.). More detailed queries are possible for
self-assessment with respect to the overall set of SOBs and
with respect to the cohort in order to motivate students.
As an example, Figure 7 shows the student progress (green
bar) with respect to the whole class (yellow bars) for typical
SOBs.

Figure 6: Observing a SOB for a student

Figure 7: Student view: position with respect to
class

As described in the following section, this tool has enabled
the teaching team to provide continuous support to the stu-
dents who needed it most, by identifying non-attending or
dis-engaged students very early in the year.

5. EVALUATION
We provide here an overview of two forms of evaluation:

a list of students’ projects built using Racket and MIRTO,
and an evaluation of average attendance, progression rate
and engagement.

5.1 Student projects
In the final 3 weeks of their first year, students have been

asked to work in teams and submit projects using MIRTO
and Racket. Members of staff have provided support, but all
the projects have been designed and implemented entirely
by the students. The following is a list of some of these final
projects.

• Dancing robots: this has been a popular theme, with
more than one group working at coordinating the move-
ment of multiple robots in a choreography of their
choice. Two example videos are available at https://
www.youtube.com/watch?v=V-NfC4WK2Sg and https:

//www.youtube.com/watch?v=nMjdH9TCKOU.

• A student has developed a GUI running on the Rasp-
berry Pi. By tunnelling an X connection through SSH
the robot can be controlled from a remote computer.
The project also includes the possibility of taking pic-
tures and a sequence of instructions to be executed.
The video is available at the following link: https:

//www.youtube.com/watch?v=FDi2TSCe3-4

• A student has implemented a web server running on
the Raspberry Pi, so that the robot can be controlled
using a browser. The web interface enables keyboard
control of the movements and detects the values of
infra-red and bump sensors. Additionally, from the
web interface a user could take a picture or start line
following (on a separate thread). Finally, the stu-
dent has also implemented a voice recognition feature
by combining Racket and Pocketsphinx [5]: when the
name of a UK city is pronounced, the local weather is
retrieved. The video is available at this link: https:

//www.youtube.com/watch?v=lwsG0lD55wk.

• Finally, a student has taken a commercially available
robotic platform (4tronix initio robot) built on top of

Arduino and has modified it by installing firmata and
by adding a Raspberry Pi running Racket. To this
end, the student has developed a bespoke version of
MIRTOlib.rkt for this new robotic platform, adding
support for servo motors. The video of this project
is available at this link: https://www.youtube.com/

watch?v=hfByxWhyXkc.

More importantly, through the projects and the threshold
SOBs we have been able to assess the ability of nearly all
students to control a robot from Racket, thus ensuring that
they have achieved the minimal level of familiarity with the
language to progress to the second year.

5.2 Attendance, engagement and progression
The teaching team has been concerned with various risks

associated to this new structure of delivery for a whole first
year cohort:

• Would students attend all the sessions, or only drop-in
to tick SOBs?

• Would students engage with the new material?

• Would students focus on threshold SOBs only, and not
progress beyond this level?

The delivery of this year has now nearly completed, with
only two weeks left in our academic year. In “standard”
programmes these are typically dedicated to revision before
the exams. In our case, instead, we are in a position of
analysing the data collected over the year to answer the
questions above.

5.2.1 Attendance
Figure 8 shows the weekly attendance rate in percentage

for the new first year programme (in blue) and for two other
first year modules from another programme (in green and
red, anonymised). Unfortunately, no aggregated attendance
data is available for the other programme. As a result, we
can only compare attendance of the whole first year with
these two modules, one of which has compulsory attendance.

The graph displays attendance per week; a student is con-
sidered to have attended in a week if s/he has attended at
least one session during the week. “Standard” modules have
an attendance ranging between 50% and 70% for the “core”
module with compulsory attendance, and between 40% and
60% for the “non-core” module. There is also a decreasing
trend as weeks progress.

We have been positively surprised by the attendance for
the new programme, which has been oscillating between 80%
and 90% with only a minimal drop over the year (the two
“low” peaks around week 10 and 17 correspond to British
“half-term” periods, when family may go on holiday). Un-
fortunately, no aggregated attendance data is available for
other programmes. As a result, we can only compare at-
tendance of the whole first year with a compulsory module
in another programme and for a standard first year module.

5.2.2 Engagement
Engagement is strictly correlated with attendance, but

it may be difficult to provide a direct metric for it. We
typically assess engagement by checking log-in rates in our
VLE environment and, in our case, we could also measure

Figure 8: Weekly attendance (comparison)

Figure 9: Example lab session

SOB progression. We were able to identify approximately
10% of the cohort being “not engaged”. Thanks to our tool,
we have been able to address these students individually.

In addition to SOB progression, we could also measure
usage of the MIRTO platforms. We have built 10 yellow and
10 blue robots. We have used 4 of these for research and 2
for demo purposes, leaving a total of 7 blue and 7 yellow
robots for teaching in the workshops. There are typically 20
students allocated to each workshop, working in groups of 2
or 3 (see Figure 9); all sessions required all robots, showing
that all students were engaged with the material.

5.2.3 Progression
Finally, there was a risk that the majority of the class

would focus just on the achievement of threshold SOBs. Our
first year is not graded and therefore, once the threshold
SOBs have been achieved, there is no formal difference between
students with different numbers of SOBs.

Besides anecdotal evidence of students working on op-
tional projects, our monitoring tool has allowed us to en-
courage the best students to work on new challenges for the
whole year. This has resulted in the vast majority of stu-

dents progressing beyond the “threshold” level. This is con-
firmed by the results presented in Figure 10: the majority of
students has progressed well beyond the 34 threshold SOB
mark (red line in the figure). The same trend is confirmed if
Racket-specific SOBs are considered. Figure 11 shows that
approximately 70% of the students have completed SOBs
beyond the required threshold level (the same distribution
occurs for other SOB categories).

The tool has also shown interesting approaches to this
new structure, both in general and for Racket-specific SOBs:
some students have focussed on threshold SOBs first and
only moved to typical and excellent SOBs later. Other stu-
dents, instead, have worked at typical and excellent SOBs
with many threshold SOBs still outstanding.

6. CONCLUSION
In designing a new Computer Science programme for Mid-

dlesex University we have decided to make use of Racket
and to design and build a robotic platform to support our
delivery. To the best of our knowledge, this is the first time
that this approach is applied at such a large scale. The
preparation of this new programme has required the joint
effort of a large team of academics and teaching assistants
for more than a year before the actual delivery. However,
the results obtained are very encouraging: attendance and
engagement are well above average, and the large majority
of students are progressing beyond the level required to pass
this first year.

7. REFERENCES
[1] Harold Abelson and Gerald J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, USA, 2nd edition, 1996.

[2] Massimo Banzi. Getting Started with Arduino. Make
Books - Imprint of: O’Reilly Media, Sebastopol, CA,
ill edition, 2008.

[3] The Firmata protocol. http://firmata.org/.
Accessed: 2014-03-20.

[4] The MIddlesex Robotic plaTfOrm (MIRTO). http:
//www.creative-robotics.com/About-HUBee-Wheels.
Accessed: 2014-03-20.

[5] David Huggins-daines, Mohit Kumar, Arthur Chan,
Alan W Black, Mosur Ravishankar, and Alex I.
Rudnicky. Pocketsphinx: A free, real-time continuous
speech recognition system for hand-held devices. In in
Proceedings of ICASSP, 2006.

[6] Myke King. Process Control: A Practical Approach.
John Wiley & Sons, 2010.

[7] M. Loomes, A. Jones, and B. Show. An education
programme for software engineers. In Proceedings of
the First British Software Engineering Conference,
1986.

[8] Martin Loomes, Bruce Christianson, and Neil Davey.
Formal systems, not methods. In Teaching Formal
Methods, pages 47–64. 2004.

[9] M. Margolis. Arduino Cookbook. O’Reilly Media, 2011.

[10] The MIddlesex Robotic plaTfOrm (MIRTO).
https://github.com/fraimondi/myrtle. Accessed:
2014-03-20.

[11] The Racket Language. http://racket-lang.org.
Accessed: 2013-10-21.

[12] Racket Firmata for Middlesex Students.
https://bitbucket.org/fraimondi/racket-firmata.
Accessed: 2014-03-20.

[13] Racket Firmata. http://planet.racket-lang.org/
display.ss?package=firmata.plt&owner=xtofs.
Accessed: 2014-03-20.

[14] Fan Yang, Frederick W. B. Li, and Rynson W. H.
Lau. A fine-grained outcome-based learning path
model. IEEE T. Systems, Man, and Cybernetics:
Systems, 44(2):235–245, 2014.

Figure 10: SOB overview (end of year)

Figure 11: Threshold SOBs for Racket (end of year)

