

Survey of Slicing Finite State Machine Models

K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, L. Tratt

14 December 2010

Abstract

Slicing is a technique, traditionally applied to programs, for extracting
the parts of a program that affect the values computed at a statement of
interest. In recent years authors have begun to consider slicing at the
model level. We present a detailed review of existing work on slicing at
the level of finite state machine-based models. We focus on state based
modelling notations because these have received sufficient attention from
the slicing community that there is now a coherent body of hitherto un-
surveyed work. We also identify the challenges that state based slicing
present and how the existing literature has addressed these. We conclude
by identifying problems that remain open either because of the challenges
involved in addressing them or because the community simply has yet to
turn its attention to solving them.

1 Introduction

Program slicing is a source code analysis and manipulation technique, in which
a subprogram is identified using dependence analysis based on a user-specified
slicing criterion. The criterion captures the point of interest within the program,
while the process of slicing consists of following dependencies to locate those
parts of the program that may affect the slicing criterion [Wei79].

In recent years authors have begun to consider slicing at the model level.
There are many reasons why this migration from code level to model level is
interesting for researchers and practitioners concerned with program dependence
analyses such as slicing e.g.:

1. Increasingly, software production happens at the design level, particularly
during specification and design phases. which makes dependence analysis
a worthwhile application domain.

2. As the prevalence of modelling increases and the techniques become more
involved, the size and complexity of models is increasing. Therefore slicing,
with its ability to focus on a chosen subproblem of interest is increasingly
attractive.

1

3. As this paper will show, the nature of the problem of slicing (state based)
modelling notations presents interesting and challenging research problems
for the community.

We present a detailed review of existing work on slicing at the level of mod-
els, specifically state based models. By state based models we mean program
models which are graphical specifications based on finite state machines, often
with additional features such as a store, hierarchy, and parallelism. Examples
include extended finite state machines, UML statecharts, STATEMATE stat-
echarts and RSML to mention only some. We focus on state based modelling
notations because these have received sufficient attention from the slicing com-
munity as to necessitate a survey paper. This paper sets out the challenges that
state based model slicing presents and how the existing literature has addressed
them. The paper also sets out problems that remain open either because of the
challenges involved in addressing them or because the community has yet to
turn its attention to them.

1.1 Why slicing models is interesting and useful

Let us elaborate on why slicing state based models is interesting in its own right.
It is possible, but in our opinion not appropriate, to reduce the problem

of slicing models to the problem of slicing programs. This is for two reasons.
The first relates to the strong relation between slicing and concrete syntax.
State based models are graphs whereas programs are sequences of characters.
Program slicing often operates at the most natural human-orientated level of
granularity—a line of code. Program slices are thus typically subsets of the
lines of code in the original program. There is no equivalent level of granularity
for a state based model to be sliced at—an individual node may represent the
equivalent of several lines of code, or several nodes may represent the equivalent
of a single line of code. Translating state based models into programs may lead
to slices that make little sense to a modeller, where the level of granularity is
an individual node.

The second relates to the semantics of programming languages and state
based modelling languages. The most obvious difference between the two is
that the majority of state based modelling languages allow non-determinism
(i.e. when a branch in a state based model can validly take more than route); in
contrast, programming languages go out of their way to avoid non-determinism.
Translating a non-deterministic state based model into a deterministic program-
ming language requires encodings. Even assuming that an accurate encoding
can be found, the program slicing algorithm will have no understanding of it—it
is as likely to slice a small part of the encoding as it is any other part of the pro-
gram. Translating the sliced (encoded) program back into a state based model
can lead to bizarre state machines that appear to bear little resemblance to the
original.

Translating state based models into programs and slicing at the program
level is of limited use, particularly when the resulting slices need to be rein-

2

terpreted by humans. If, as is likely, the slice bears little obvious relation to
the original input, a human is likely to discard the slice as useless. State based
slicing needs to be considered as a distinct type of slicing from program slicing.

Another reason slicing state machines is interesting is that it can involve
problems for which there is a loose analog of a corresponding program level
feature to be found in the state based model level abstraction e.g. hierarchical
state machines raise similar issues to those posed by procedural abstraction at
the program level. There is also unstructured control flow, interaction with
the environment, concurrency, non-termination, and multiple exit points. State
based models tend to have a simpler syntax than programming languages which
makes dealing with these problems a little simpler and easier. However, if one
were to view the task that confronts an approach for slicing a state based model
through the eyes of traditional program slicing, then the problem would resemble
that of slicing a non–deterministic set of concurrently executed procedures with
arbitrary control flow. Such a task would denote a highly non–trivial challenge
for current program slicing techniques; this combination of characteristics is
not addressed by the current literature on slicing [BG96, Bin07, BH04, HH01,
Tip95].

Finally, slicing graph based models confronts us with the explicit connect-
edness of these models, connectedness being an entirely implicit property for
programs. This demands a strategy for explicit “re-gluing” after slicing or at
least restricting slicing to an outcome which does not actually delete parts of
the graph.

As this paper will demonstrate, there is a considerable body of existing
knowledge on state based slicing, spread over many different and sometimes
disjoint research communities. It is the goal of this paper to bring this knowledge
together into a single survey to provide an integrated account of this knowledge
and to highlight as yet uncovered directions for future research on slicing state
based models.

1.2 Structure of the Paper

Section 2 gives a brief introduction to program slicing. Section 3 gives an
overview of the finite state machines languages used for slicing and discusses
their key semantic features. Section 4 presents the running example, an ATM.
Section 5 categorises and discusses the slicing algorithms. Section 6, 7, 8 and
9 survey the dependence relations used when slicing. Section 10 discusses the
factors that influence the choice of slicing criterion and presents the applications
of FSM slicing. In Section 11 the open issues are identified and in Section 12
our conclusions are given.

2 Background: Program Slicing

Most research into slicing has considered slicing at the program level; we there-
fore present a brief overview of this ‘parent’ subject area, as most state based

3

1 read(n)

2 i := 1

3 s := 0

4 p := 1

5 while (i <= n)

6 s := s + i

7 p := p * i

8 i := i + 1

9 write(s)

10 write(p)

(a) Original program

1 read(n)

2 i := 1

3

4 p := 1

5 while (i <= n)

6

7 p := p * i

8 i := i + 1

9

10 write(p)

(b) Static Slice for
(10, p)

1

2

3

4 p := 1

5

6

7

8

9

10 write(p)

(c) Dynamic Slice for
(10, p, n = 0)

Figure 1: A program and two slices

slicing work directly or indirectly builds upon it.
In program slicing, the process of slicing can either produce an ‘executable

slice’, an executable subprogram that maintains the behaviour of the original
at the slicing criterion point, or it may produce a ‘closure slice’, which is the
set of parts of the program that are relevant to the slicing criterion, but the
set does not need to be executable (or even compilable). Because it is able
to identify and isolate parts of a program concerned with some chosen aspect,
feature or computation of interest, slicing has many applications including pro-
gram comprehension [HBD03], software maintenance [GL91], testing and debug-
ging [Bin98, HHH+04], virus detection [LS03], integration [BHR95], refactoring
[KH00], restructuring, reverse engineering and reuse [CCD98]. Also, slicing has
been used as an optimisation technique for reducing program models or other
program representations extracted from programs for the purpose of verification
via model checking [CDH+00, JM05, DHH+06].

Slicing was introduced by [Wei79] as a static dependence analysis that pro-
duced executable slices capturing the computation necessary to maintain the
effect of the original program on the slicing criterion. Since Weiser’s seminal
work, program slicing has been developed in many ways to include forward and
backward formulations [HRB90, BH05, FHHD01], static, dynamic and hybrids
[KL88, AH90, GHS92] and conditioned formulations [CCD98, FRT95, HHD+01,
FDHH04] and amorphous formulations [HBD03, War03, WZ07]. Much work
has also been conducted on applications of slicing, and algorithmic techniques
for handling awkward programming language features [ADS91, BH93, HD98]
and for balancing the trade offs of speed and precision in slicing algorithms
[GS95, MACE02, BHK07].

Previous work on program slicing has led to several hundred papers on pro-
gram slicing, techniques and applications, which are referenced in several survey
papers [BG96, BH04, De 01, HH01, Tip95, Ven91, XQZ+05].

Weiser defined a slice as any subset of a program, that preserves a specific
behavior with respect to a slicing criterion. The slicing criterion is a pair c =

4

(s, V) consisting of a statement s and a subset V of the program’s variables.
Weiser observed that programmers mentally build abstractions of a program
during debugging. He formalised that process and defined slicing. He also
presented an approach to compute slices based on iterative data flow analysis
[Wei79, Wei84].

Consider the example program in Figure 1 (a), taken from [Tip95], that
computes the product p and the sum s of integer numbers up to a limit n. If
the slicing criterion is variable p in line 10, i.e. we are only interested in the
computation of the product and its output in line 10, then the slice, illustrated
in Figure 1 (b), still computes the product correctly. This is a static slice
because it is independent of the program’s inputs and computes p correctly
for all possible executions. If we are interested in the statements that have an
impact on the criterion for a specific execution, we can compute a dynamic slice,
which eliminates all statements of a program that have no impact on the slicing
criterion for specific inputs as determined by a specific execution. In Figure 1 (c)
a dynamic slice is shown for the execution where the input to variable n is 0. The
complete loop has been deleted because the body is never executed, together
with the input statement itself.

A popular approach to slicing uses reachability analysis in program depen-
dence graphs [FOW87]. Program dependence graphs (PDGs) mainly consist of
nodes representing the statements of a program, and control and data depen-
dence edges. In PDGs, static slicing of programs can be computed by identifying
the nodes that are reachable from the node corresponding to the criterion. The
underlying assumption is that all paths are realizable. This means that, for ev-
ery path a possible execution of the program exists that executes the statements
in the same order. In the presence of procedures, paths are considered realizable
only if they obey the calling context (i.e. called procedures always return to the
correct call site). [OO84] were the first to suggest the use of PDGs to compute
Weiser’s slices.

• Control dependence between two statement nodes exists if one statement
determines whether the other should be executed or not.

• Data dependence between two statement nodes exists if a definition of a
variable at one statement might reach another statement where the same
variable is used.

An example PDG is shown in Figure 2, taken from [Tip95], where control
dependence is drawn in dashed lines and data dependence in solid ones. In the
Figure, a slice is computed for the statement “write(p)”. The statements “s
:= 0” and “s := s+i” have no direct or transitive influence on the criterion
and are not part of the slice.

3 Finite State Machines (FSMs)

Finite state machines (FSMs) are used to model the behaviour of a wide variety
of systems, such as embedded and non-terminating systems. They consist of

5

Entry

read(n) i := 1 s := 0 write(s)while (i<=n) write(p)

i := i + 1p := p * is := s + i

read(n)

p := 1

i := 1

while (i<=n)

p := p * i
i := i + 1

write(p)

s := s + i

s := 0

write(s)

p := 1

control dependence
data dependence

Figure 2: A program dependence graph. The slice for the criterion “write(p)”
is highlighted in the graph and in the source text.

a finite set of states (a non-strict subset of which are start states), a set of
events (or ‘inputs’) and a transition function that, based on the current state
and event, determines the next state (i.e. performs transitions between states).
The start state indicates the state in which computation starts; transitions
are then performed based on the transition function. This basic definition has
many variants; for example, Moore machines [Moo56] extend state machines
with labels on states, while Mealy machines [Mea55] have labels on transitions.

Figure 3 illustrates a simple state machine that has two states, S1 and S2,
and a labelled transition T1. S1 is a start state indicated by the edge with
no source state. Transitions have a source and target state. The source state
of T1 is S1 (we write source(T1) = S1) and the target state of T1 is S2 (we
write target(T1) = S2). Transition labels are of the form e[g]/a, where e is the
triggering event, g is the guard (i.e. a boolean expression) that controls whether
the transition can be taken when an event e occurs, and a is a sequence of
actions. Actions involve variable (store) updates or generation of events. All
parts of a label are optional. A transition is executed when its source state is
the current state, its trigger event occurs and its guard is true. If executed, the
transition’s action is performed and its target state become the current state.

FSMs have been extended in order to improve their expressive power or to
add structure to handle the exponential blow up of states of complex FSMs. For
example, if we flattened (i.e. remove hierarchy and concurrency) the statema-
chine in Figure 4 would have 6 states (2X2 concurrent + 2 nested) and 10
transitions. We focus on the features that lead to challenges when slicing.

• Store. A store is represented by a set of variables and can be updated by
actions. For example, in Figure 5 the store is {sb, cb, p, attempts, l}.

6

T1:e[g]/a

S1 S2

Figure 3: A simple state machine.

A B

A1

A2 B2

B1

M

T1:e1/e2 T2:e3/e4

T3:e4/e5

S

T4: e1/e2
T5:e2

C1

C2

C

Figure 4: A hierarchical and concurrent
state machine.

• State Hierarchy. Hierarchical states are an abstraction mechanism for
hiding lower-level details. Composite states (known in statecharts [Har87]
as OR-states) are those which contain other states; while those that do not
are termed basic states. For example, in Figure 4 C is a composite state,
while C1 and C2 are basic states. A hierarchical state machine can be
considered as an internal structure of some higher-level composite state,
often referred to as the root or top level state. For example, in Figure 4 the
root state is M . Nested states refer to the sub-states of composite states.
A superstate (or ‘parent state’) of a nested state refers to the composite
state one level up. In Figure 4, the superstate of nested states C1 and C2
is C, and the superstate of C is M .

• Concurrency and Communication. Concurrency means that two or
more machines or superstates (known as parallel, or AND, states in stat-
echarts [Har87]) can be executed in parallel. For example, in Figure 4, A
and B are parallel states (divided by a dashed line). Concurrent machine
communication can be synchronous or asynchronous. After sending an
event, state machines with synchronous communication must wait until
the receiver finishes processing it. After sending an event, state machines
with asynchronous communication, can continue without waiting for the
receiver to finish processing it.

• Event generation. Events can be generated by the state-machine itself
by actions. In Figure 4, transition T4 generates event e2 which then
triggers transition T5. Generated events are also known as internal events
or outputs, while events that are generated by the environment are known
as external events or inputs.

• Parameterised events. Special types of events can be defined with
parameters whose values are determined from the environment. For ex-
ample, in Figure 5 event PIN has the parameter p that represents the
pin entered by the user. Parameterised events can be simulated by a set
of events without parameters. Each event in this set corresponds to a
combination of parameter values.

• Time. Some FSM variants add features for modelling time. For example,

7

timed automata [AD90] model clocks using real-valued variables.

FSMs can also have the following properties:

• Non-determinism. FSMs can be deterministic or non-deterministic.
In deterministic FSMs, for each pair of state and event there may be
only one possible next state i.e. only one transition is executed. In non-
deterministic FSMs, for each pair of state and event there may be several
possible next states, i.e. an event may trigger several transitions and
if their guarding conditions are all true, then there are several possible
transitions to execute.

• Non-termination. FSMs can be terminating or non-terminating. Termi-
nating FSMs have at least one explicit exit or final state. Non-terminating
FSMs do not have an exit state and their execution is infinite.

Table 1 gives an overview of all the FSM variants used by the various slicing
approaches that we survey and compares them according to whether they are
concurrent, hierarchical, and how they communicate. The highlighted rows
group FSMs with common features.

All FSM variants allow for a machine to be potentially non-terminating
and/or non-deterministic. However, some slicing approaches are restricted to
terminating and/or deterministic FSMs. For example, [KSTV03] restrict their
approach to apply only to EFSMs with unique exit state and that are deter-
ministic.

4 A Running Example

We model the Automatic Teller Machine (ATM) system using state machines in
three different ways and use these as running examples. This is because we want
to illustrate how the differences between FSM variants affect slicing. The first
example models the ATM using a FSM variant that has no concurrency or state
hierarchy and is deterministic with a unique exit state. The second example
extends the first model by making it non-deterministic and non-terminating
(i.e. no exit state). Finally, the third example introduces concurrency, state
hierarchy and event generation. In order to be consistent, we have used a
standard graphical notation, as illustrated in Figure 3 and 4.

The first example, illustrated in Figure 5, models the ATM as described by
[KSTV03] for EFSMs. The ATM system allows a user to enter a card and a
correct PIN. The user is allowed a maximum of three attempts to enter a correct
PIN. The PIN is verified by matching it against a PIN that is stored on the
card. Once the PIN has been verified, the user can withdraw, deposit, or check
balance, on either their current or savings account. Figure 5 has parameterised
events Card(pin, sb, cb) and PIN(p) (see Table 2). The event Card has three
parameters denoting information stored on the card, i.e. pin that represents the
value of the PIN, sb that represents the balance of the savings account, and

8

Table 1: Comparison of a subset of FSM variants (i.e. those used for slicing)
according to some features.

FSM Variant Slicing Approach C a H b SC c

Extended Finite State [KSTV03] × × ×
Machines (EFSMs) [ACH+09]
Software Cost Reduction [HKL+98]

√ × S d

(SCR) [HBGL95] [RLHL06]
Synchronous Adaptive System Schaefer and

√ × S
(SAS) [ASS+07] Poetzsch-Heffter [SPH08]
Unified Modelling Language [CCIP06]

√ × S
(UML) Statecharts
UML Activity Diagrams [Esh02]

√ × S
Timed Automata Janowska and

√ × S
[AD90] Janowski [JJ06]
Input/Output Symbolic [LG08]

√ × S
Transition Systems (IOSTs)
[GGRT06]
Extended Automata [BFG00]

√ × A e

UML Statecharts v1.4 [Oja07]
√ × A

Statecharts [Har87] [FL05]
√ √

S
Guo and
Roychoudhury [GR08]

Argos [Mar91] Ganapathy and
√ √

S
Ramesh [GR02]

Requirements State Machine Heimdahl and
√ √

S
Language (RSML) Whalen [HW97]
[LHHR94] [CABN98]
Extended Hierarchical [WDQ02]

√ √
S

Automata (EHA) [Lan06]
a C = Concurrency
b H = Hierarchy
c SC = Synchornisation or Communication
d S = Synchronous
e A = Asynchronous

9

cb that represents the balance of the current account. The event PIN has a
parameter p that represents the value for the PIN entered at the ATM by the
user.

T1 T4

s3s2

Exit

start

T23
T3 T8

T10

s4

s6

s1

T2

T5

T7

T9

s7

s5

T6

T11

T17

T18

T19

T20

T21

T22

T12

T13

T14

T15

T16

Figure 5: The ATM system as modelled by [KSTV03] for EFSMs with a unique
exit state.

Figure 6 is a non-terminating and non-deterministic variant of Figure 5. It is
non-terminating because there is no exit state and the target state of transitions
T3 and T23 is start, i.e. after T3 or T23 are executed the ATM system is ready
to accept a new customer. It is non-deterministic because transitions T5 and T6
in Figure 5, which allow the user to choose between English and Spanish, have
been removed and replaced in Figure 6 by a single transition that assumes that
a language has been chosen, but does not specify which one. This introduces
non-determinism e.g. if the machine is in state S6 and the Balance event occurs,
then two transitions (either T25 or T26) can be executed .

Figure 7 shows the final ATM variant, that is hierarchical, concurrent and
has generated events. It consists of the hierarchical state DispensingMoney
that has two sub-states, s2 and s3 and the concurrent states atm and bank.
The atm concurrent state models the behaviour of the ATM at a higher level
of abstraction than that shown in Figure 5, i.e. a user can withdraw or deposit
money for a single account. Also, a variable representing the current balance
of an account is not given in Figure 7 because it requires to be updated based
on a parameterised event, such as T13 in Figure 5 and some FSM variants do
not support parameterised events (see Figure ??). The bank concurrent state
models the bank’s behaviour as described in [KM02] (see Figure 1 on page 60).
It shows how a card and a PIN that is entered into the ATM is verified by the
bank. It has two key stages of verification (modelled by the concurrent states
c and b): the bank needs to verify that the card is valid (i.e. it is not some
arbitrary card); and the PIN entered is correct, and if not the user is given
three attempts to enter a correct PIN. In Figure 6 only the second verification

10

Table 2: The transitions of the ATM system as illustrated in Figure 5 and 6.

Transition Label
T1: Card(pin,sb,cb)/print(“Enter PIN”); attempts = 0
T2: PIN(p)[(p ! = pin) and (attempts < 3)]/print(“Wrong PIN, Re-enter”);

attempts = attempts+1
T3: PIN(p)[(p ! = pin) and (attempts == 3)]/ print(“Wrong PIN, Ejecting card”)
T4: PIN(p)[p==pin]/print(“Select a Language English/Spanish”)
T5: English/l=‘e’; print(“Savings/Checking”)
T6: Spanish/l=‘s’; print(“Ahorros/Corriente”)
T7: Checking
T8: Savings
T9: Done

T10: Done
T11: Balance[l=‘s’]/print(“Balanza=”,cb)
T12: Balance[l=‘e’]/print(“Balance=”,cb)
T13: Deposit(d)/cb=cb+d
T14: Withdrawal(w)/cb=cb-w
T15: Receipt[l=‘e’]/print(“Balance=”,cb); print(“Savings/Checking”)
T16: Receipt[l=‘s’]/print(“Balanza=”,cb); print(“Ahorros/Corriente”)
T17: Withdrawal(w)/sb=sb-w
T18: Deposit(d)/sb=sb+d
T19: Balance[l=‘e’]/print(“Balance=”,sb)
T20: Balance[l=‘s’]/print(“Balanza=”,sb)
T21: Receipt[l=‘e’]/print(“Balance=”,sb); print(“Savings/Checking”)
T22: Receipt[l=‘s’]/print(“Balanza=”,sb); print(“Ahorros/Corriente”)
T23: Exit/print(“Ejecting card”)
T24: ChooseLanguage
T25: Balance/print(“Balance=”,sb)
T26: Balance/print(“Balanza=”,sb)
T27: Receipt/print(“Balance=”,sb); print(“Savings/Checking”)
T28: Receipt/print(“Balanza=”,sb); print(“Ahorros/Corriente”)

11

Figure 6: The ATM system modelled for EFSMs that is non-terminating and
non-deterministic because of transitions T25 , T26 as well as T27 and T28 (see
Table 2).

stage is modelled by the self-transition T2.

5 Algorithms for Slicing FSMs

We classify the algorithms of the FSM slicing approaches into the following
types: (1) algorithms that translate FSMs to programs to apply program slic-
ing, (2) dependence graph based algorithms, (3) FSM traversal algorithms, (4)
algorithms that iteratively apply rules to a normal form, (5) dataflow analysis
based algorithms, (6) hybrid algorithms, and (7) multi-tiered FSM slicing ap-
proaches. For each of these, we describe what we mean and then we describe
the specific algorithm of that type for each slicing approach. Most of the slic-
ing algorithms involve some dependence analysis. We only briefly mention the
dependence relations in this section but discuss them in detail in Sections 6,
7, 8 and 9. Figure 8 illustrates the number of slicing approaches that adopt a
particular type of algorithm.

Slicing algorithms can have one or more of the following properties: preci-
sion, correctness, executability and optimality (or minimality). A slicing algo-
rithm is precise [LG08] if it considers all of the transitive dependencies, for all
dependence relations, in the FSM model, and only those. A slicing algorithm is
correct [LG08] if it consists only of transitions that have influence on the slicing
criterion and none of these are sliced away. This means that the original model
will be a correct slice of itself, as well as other models that contain transitions
that do not influence the criterion. This definition of correctness should be
generalised to include states as well as parts of transitions as some FSM slic-
ing approaches can slice these away. A slicing algorithm is optimal or minimal
[LG08] if it contains only the transitions that actually have influence on the

12

s2

c2

b2

b3

b1

/PINverifiedT28

verificationc

b

T32

c1

PINverified

T4

DispensingMoney

s1start

Exit

T2

VerifyPIN

EnterCard /T1

ReenterPIN

atm

bank

GetBalance / DisplayBalanceT5

s3

T30 [attempts=maxAttempts] / cardValid=False; Abort

[attempts<maxAttempts] / ReenterPINT29

PINcorrect / attempts=0T26

T27 PINincorrect / attempts++

T33

[cardValid = True]T31

/PINverified

Abort

[cardValid = False]/

VerifyPIN

T25

idle

Deposit / TakeMoneyT6

Withdraw / DispenseT7

T8 Dispense

TakeMoneyT9

DisplayBalanceT10

T3 Abort

T11

Figure 7: The ATM system modelled by finite state machines with generated
events.

13

association information. Then, subject to an error being detected, dynamic
slicing, using the JSlice [WRG08] tool, is applied to the Java code. The slicing
criterion is the last state entry point in the code where the error occurred. The
resulting slice is then mapped back to the statechart model using the association
between model entities and the generated code. Also, it is further processed to
maintain the hierarchical and concurrent structure of statecharts. No proof of
correctness have been given for the mappings between the statecharts and the
code. [GR08] point out that since statecharts often contain more information
than at the code level, i.e. code is a refinement of a statechart in the model-
driven development process, the debugging activity is more focused as it ignores
bugs in the model that do not occur at the code level.

5.2 Dependence Graph Based Algorithms

Dependence graph based algorithms for slicing FSMs are similar to those for
slicing programs (see Figure 2 for an example of a PDG used by some program
slicing algorithms), in that they are defined as a reachability problem in a de-
pendence graph representation. Both static backward and forward slices can
be generated using these types of algorithms. Dependence graphs for state ma-
chines vary from those representing programs and amongst different FSM slicing
approaches. However, for all slicing approaches the slicing criterion includes a
node or set of nodes in a dependence graph. Also, the dependence relations
used to compute the dependence graph can vary from one slicing approach to
another.

The algorithms described in [ACH+09, KSTV03] for slicing EFSMs both
slice with respect to a transition T and a set of variables at T . They first
construct a dependence graph by using dependence relations. A dependence
graph is a directed graph where nodes represent transitions and edges represent
data and control dependencies between transitions. Note that the dependence
graphs generated by [ACH+09] and [KSTV03] differ because they use different
definitions of control dependence (see Section 7). Then the algorithm starts
from the node in the dependence graph representing the slicing criterion and
nodes (i.e. transitions) that are backward reachable from the slicing criterion
in the dependence graph are marked in the slice. Once the transitions in the
slice have been marked, [ACH+09] and [KSTV03] have implemented different
algorithms for automatically reducing the size of an EFSM slice, and we discuss
each respectively.

[KSTV03] describe two slicing algorithms for automatically reducing the
size of the EFSM slice. The first slicing algorithm produces slices that are
syntax preserving, i.e. they are executable sub-models of the original EFSMs
and thus are not much smaller than the original. Consider the ATM example
shown in Figure 5. The slice obtained using the first algorithm, as described
in [KSTV03], with the slicing criterion (sb, T18) is illustrated in Figure 9. This
slice could be produced by just applying a reachability algorithm. The second
slicing algorithm is a hybrid approach and is discussed in Section 5.6.

The algorithm described by [ACH+09] anonymises all unmarked transitions

15

T14

T10

T8

s3

T5

T6

T1

T16

T15

T13

T12

T11

T17

T18

T19

T20

T21

T22

T9

T7

T4

s6

s4 s5

s7

s2s1start

Figure 9: The slice generated for the ATM system, shown in Figure 5, with
respect to (sb, T18) (highlighted) using [KSTV03] first algorithm. The transition
labels given in Table 4.

T14

T10

T8

s3

T5

T6

T3

T2

T1

T16

T15

T13

T12

T11

T17

T18

T19

T20

T21

T22

ε

ε

ε

ε

ε

ε
ε

ε

ε

ε

ε

ε

ε

ε

T9

T7

ε

ε

T23ε

ε

T4

s6

s4 s5

s7

s2s1

Exit

start

Figure 10: The slice generated for the ATM system, shown in Figure 5, with
respect to (sb, T18) using the algorithm by [ACH+09]. The labels of marked
transitions are given in Table 4, while unmarked transition have the label ε
indicating an empty label.

i.e. they have empty labels. A slice with unmarked transitions may introduce
non-determinism where none previously existed. Consider the ATM example
shown in Figure 5. If the slicing criterion is (sb, T18), the slice produced using is
shown in Figure 10, where ε represents unmarked transitions. Non-determinism
is introduced at any state where there are more than one outgoing transitions
with empty labels because if an event occurs that does not trigger an event of
a transition with a label, then any one of the transitions with the empty label
can be taken.

[LG08] have presented an approach for slicing Input/Output Symbolic Tran-
sition Systems (IOSTSs). The slicing criterion is a set of transitions. The algo-
rithm is similar to the algorithms in [ACH+09, KSTV03] whereby a dependence
graph is constructed and transitions that are backward reachable from the slic-
ing criterion are marked. The slice consists of the transitions that correspond

16

to the nodes that have been marked i.e. similarly to [ACH+09] the size of the
model is not reduced.

[FL05] have defined And-Or dependence graphs that are used to slice state-
charts [Har87]. The And-Or dependence graphs are based on dependence graph
as in [KKP+81] but augmented to record And-Or dependencies. They consist
of nodes that represent any statechart element that can be depended on or can
depend on (i.e. states, actions, events and guards), and edges that represent
potential dependence. The slicing criterion is a collection of states, transitions,
actions and variable names. Slicing is static and backward and it is defined as
a graph reachability problem over the And-Or dependency graph with respect
to the slicing criterion. Elements not in the slice are deleted.

5.3 FSM Traversal Algorithms

FSM traversal algorithms use dependence relations to determine what is in the
slice by searching through the states and transitions of the state machine or
a graph representing the state machine and marking the elements in the slice.
These approaches tend to lack precision as they tend to include more elements
than just the transitive dependencies. We discuss this problem using the ATM
example and the algorithm described in [GR02].

[GR02] have presented an algorithm for slicing Argos specifications. Argos is
a graphical language based on statecharts with hierarchical states and concur-
rent state machines used to specify synchronous reactive systems. The slicing
criterion < S, x > is given as the name of a state S and an output signal x. The
slicing algorithm is a traversal algorithm that works on a graph representing a
state machine M whose nodes correspond to the states of M . The graph consists
of three types of edges. A transition edge exists for every transition M , from a
node representing the source state to a node representing the target state. A
hierarchy edge exists between a node A and a node B if the state corresponding
to A contains the state corresponding to B as a sub-state. A trigger edge occurs
between a transition t1 and t2, if t1 generates an output signal that triggers t2.

The algorithm starts from S and traverses down the hierarchy edges includ-
ing the states that preserve the behaviour of M according to x. Then, for the
same hierarchy level as S, it traverses backwards up the transition edges and
includes all the states encountered. Once all the required states at that level
have been traversed, then a similar traversal (i.e. along hierarchy edges first
and then transition edges) occurs at the next, higher level, and so on, until it
reaches the top-most level. From the top-most level, the algorithm traverses
backwards along the trigger edges and includes any state that is concurrent to
the states already in the slice.

Suppose that the ATM example shown in Figure 7 is an Argos specifica-
tion. Figure 11 shows the resulting slice after applying the slicing algorithm
described in [GR02] with respect to the slicing criterion < bank, Abort >. The
nested states and transitions of DispensingMoney are the only elements removed.
This algorithm lacks precision as it includes more elements in the slice than is
necessary. Moreover, it focuses on removing states rather than transitions or

17

b2

b1

c1

idle

b

c Verification

b3

/PINverifiedT28

T32 /PINverified

[cardValid = True]T31

T27

c2

VerifyPIN

T25

PINincorrect / attempts++

T26 PINcorrect / attempts=0

[cardValid = False]/

Abort

T33

[attempts=maxAttempts] / cardValid=False; Abort

[attempts<maxAttempts] / ReenterPINT29

T30

bank

atm
DispensingMoney

start

PINverified

T4VerifyPIN

EnterCard /T1

ReenterPINT2

s1

T3 Abort

T11 Exit

Figure 11: The slice produced by applying the algorithm in [GR02] to the ATM
example in Figure 7.

parts of labels of transitions, such as actions or guards. For example, the action
of transition T26 (i.e. attempts = 0) could be removed as it is redefined before
it is used again with respect to event Abort.

[WDQ02] have presented a slicing algorithm for Extended Hierarchical Au-
tomata (EHAs) [DWQQ01]. An EHA is composed of a set of sequential au-
tomata, which is a 4-tuple, consisting of a finite set of states, an initial state,
a finite set of labels and a transition relation. The slicing criterion consists of
the states and transitions in a given property to be verified. Four dependence
relations are defined, which are able to handle hierarchy, concurrency and com-
munication. A slice consists of sequential automata. If a state or transition in
a sequential automaton is determined to be in the slice, then all of the states
and transitions in this automaton are also in the slice. After the algorithm
terminates, if a state is not dependent on any elements,then the sub-EHA and
actions of this state will be deleted from the slice. If a transition is not depen-
dent on any elements, its action will be deleted. This is an improvement on
the algorithm described by [GR02] that only deletes states and the transitions
associated with that state, but not parts of transitions.

[LH07] have defined two new slicing algorithms, as part of the SVtL (System
Verification through Logic) framework. The first algorithm is an extension of
the algorithm defined in [WDQ02] for slicing a single statechart. It removes

18

Thread 1 Thread 2

1..*

1 1

1

BranchATM

BankVerifier ATMAdministrator

Figure 12: An example of a multi-threaded behavioural modal of the bank and
ATM system.

false parallel data dependencies by taking into account the execution chronol-
ogy and defining a Lamport-like [Lam78] happens-before relation on statecharts
that follows from the internal broadcasting (synchronisation) mechanism for
communication between concurrent states/transitions.

The second algorithm is a parallel algorithm for slicing a collection of state-
chart models. A collection of statecharts is often used when describing a system
in UML, i.e. a class diagram is defined, where each class has a corresponding
statechart. Figure 12 shows an example of a bank and ATM system modelled in
UML as two threads of control with their classes and collection of statecharts. A
collection of statecharts can be reduced to a single statechart, where each stat-
echart will correspond to a separate concurrent region (AND-state). However,
they choose not to do this and to slice across all statecharts in order to keep
the object-oriented structure of the model. [LH07] define global dependence
relations in terms of global variables and events that statechart diagrams use to
communicate. The algorithm uses these relations to connect the statecharts to
each other by drawing a global directed edge for each global dependence. The
result is a graph-like structure, which is similar to the one in [GR02], but draws
edges between statecharts rather than statechart elements. Then SVtL starts
running an instance of the slicing algorithm for a statechart, e.g. BankVerifier
in Figure 12. If a global dependence edge is encountered, then a second instance
of the slicing algorithm is started that runs in parallel, e.g. if there is a global
dependence between BankVerifier and ATM in Figure 12, then another instance
of slicing algorithm is executed. For n statecharts in the worst case SVtL will
execute n slicing algorithms in parallel. [LH07] state that the happens-before
relation on a single statechart can be easily adapted to apply to a collection of
statecharts. This will produce smaller slices because there will be fewer global
dependence edges.

19

5.4 Iteratively Applying Rules to a Normal Form

FSM slicing algorithms that iteratively apply a set of rules to a normal form
typically define rules for determining whether to keep (or remove) elements in
a state machine. Dependence relations are not explicitly defined but are coded
in the rules. Ideally the rules should be independent in order to be applied in
any order.

[CABN98] have defined an algorithm for slicing RSML (Requirements State
Machine Language) specifications. RSML [LHHR94] is a requirements specifi-
cation language that combines a graphical notation that is based on statecharts
[Har87] and a tabular notation, i.e. AND/OR tables. The slicing criterion
consists of the states, events, transitions or event parameters that appear in a
property to be model checked. Initially the slicing criterion will be in the slice.
The algorithm applies recursively the following rules until a fixpoint is reached.
If an event is in the slice, then so are all the transitions that generate it. If a
transition is in the slice, then so are its trigger event, its source state as well as
all the elements in the guarding condition. If a state is in the slice, then so are
all of its transitions, as well as its parent state. In fact, the algorithm describes
a search of the dependence graph and its time complexity is linear to the size
of the graph.

We manually apply this slicing algorithm to the ATM example in Figure 7 as
RSML can deal with both concurrency and hierarchy. If the slicing criterion is
T33 and the event is the generated event Abort (we assume that this transition
and event is in some property to be checked), then the slice produced is as in
Figure 11.

S2S1

A

x[!a2]/u

B

S4S3

x[!a1]/uT4 T3
T2 x[a2]/u

x[a1]/uT1

u[b1]T5

u[b2]T6

Figure 13: A state machine, as in
[CAB+01], that illustrates the false
dependency: event u appears to de-
pend on both conditions a1 and a2,
but regardless of the truth values of
a1 and a2, u is generated because of
event x.

S4S3

T5

T6

x[d]/y

x[c]/y

S2S1

A

B

T4 T3
T2

T1 w[b]/y

w[a]/y
x[!a]/xw[!b]/x

T7 x[!d]/y T8 x[!c]/y

Figure 14: A state machine, as in
[CAB+01], that illustrates the false
dependency: event y does not de-
pend on any guarding condition.

[CAB+01] point out that it is possible for the algorithm to include false
dependencies, i.e. to show that elements are dependent on each other when they
should not be. False dependencies may increase the size of the slice and can
mislead as to which elements actually affect the slicing criterion. For example,

20

in the state machine shown in Figure 13, event u appears to depend on the
guarding conditions a1 and a2. However, it does not because regardless of the
truth values of a1 and a2, event u is always generated because of event x. This
type of false dependency can be automatically detected by checking whether
the disjunction of the guarding conditions is a tautology in the case when the
triggering event and action is the same. Another false dependency, that is
harder to find automatically, is illustrated with the state machine in Figure 14.
Event y does not depend on any of the guarding conditions because it is always
generated either one or two execution steps after w.

[EW04] have presented a slicing algorithm that iteratively applies four rules
for reducing the state space of an UML activity hypergraph. UML activity
hypergraphs can be considered as an alternative type of state machine. The
slicing criterion consists of the variables and events in a property φ to be model
checked. The first two rules apply on the semantics and the last two on the
syntax of the activity hypergraphs. The novelty in their approach is that the
first two rules restrict the environment based on what is in the slice, i.e. only
events that trigger relevant hyperedges can be produced by the environment.

The rules are defined in [EW04] as follows. An external event e is only
allowed to occur if it triggers a relevant hyperedge. A hyperedge is a transition
relation between nodes and a relevant hyperedge is a hyperedge identified as
being in the slice. This rule is applied only if φ does not refer to any external
events and it removes the possibility of any hidden loops. The second rule states
that no two named external events can occur at the same time, i.e. they can
only be interleaved. This rule is applied only when φ does not refer to any
external events. Also, the activity hypergraph must satisfy some constraints
given in [Esh02], such as it does not have duplicate conflicts, to ensure that the
slice behaves similarly to the original. The third rule states that a variable v
can be removed, as well as every guard that refers to v, if: φ does not refer to
v, v is not updated by concurrent activities, the only hyperedges that refer to
v are those that leave the activity where v is updated, and the disjunction of
guard expressions referring to v in decisions is true. The fourth rule describes
various cases when nodes can be removed from the activity diagram in a way
that ensure that φ can still be evaluated on the sliced activity hypergraph.

5.5 Dataflow Analysis Based Algorithms

In program slicing, [Wei79] introduced an iterative dataflow analysis for com-
puting program slices. This consists of using the control flow graph (CFG) of
a program and repeatedly solving a set of dataflow equations for each node in
the CFG until a fixpoint is reached. A CFG is a directed graph with a set
of nodes representing statements and edges representing control flow. In FSM
slicing, dataflow analysis based algorithms adopt a similar approach to those of
program slicing, i.e. dataflow equations are evaluated and some approaches use
a CFG representation of the state machine.

In [HKL+98, BH99], the slicing technique presented removes variables that
are irrelevant with respect to the slicing criterion as well as tables that define

21

them, and state machines in the case of monitored variables (variables that rep-
resent sensor states). The slicing criterion is the set of variable names that occur
in the property to be model checked. Let RF be the set of all variable names in
a specification. The variables on which a given variable directly depends on in
the new state are defined using three dependence relations: Dnew, Dold and D
on RF × RF . For variables ri and rj :

• (ri, rj) ∈ Dnew if r′j (primed variables are evaluated in the new or next
state, while unprimed in the old or current state) is a parameter of the
function that defines r′i, i.e. the function maps r′i to the set of possible
values.

• (ri, rj) ∈ Dold if rj is a parameter of the function defining r′i.

• D = Dnew ∪ Dold.

The variables in RF are partially ordered. No circular dependencies of state
variables are allowed in the definitions of state variables. Let O ⊂ RF be a set
of variables occurring in a property q. [BH99] define the set O∗ as the reflexive,
transitive closure of O under the dependence relation D of an SCR specification
for state machine Σ. The slice ΣA of Σ is produced by deleting all of the tables
corresponding to variables in set RF − RFA, where RFA = O∗.

[Oja07] has presented a slicing approach for UML state machines (specifically
UML 1.4 [OMG01]). The guards and actions of transitions are expressed in
Jumbala [Dub06], which is an action language for UML state machines. Actions
have at most one primitive operation, i.e. an assignment, an assertion or a
Jumbala “send” statement. The slicing criterion is a set of transitions in a
collection of UML state machines. The slicing algorithm constructs a CFG
from the UML state machines, keeping a record of the mapping between UML
transitions and CFG nodes. Three types of CFG nodes are defined: BRANCH
which are used to represent triggers and guards, SIMPLE and SEND, both are
used to represent actions. BRANCH nodes can have more than one successor
and SIMPLE and SEND have only one successor. Then, using the CFG, four
types of dependencies are computed. The CFG slice is the smallest set of nodes
and event parameters, including the nodes of the slicing criterion, that are closed
under the four dependencies. From the CFG slice, the slice for the UML model
is computed by removing all parts of the transitions in the UML model whose
counterparts in the CFG are not in the slice. Also, unused parameters are
replaced with a dummy value.

[JJ06] have described a static backward algorithm for slicing timed automata
with discrete data. They consider only automata with reducible control flow as
defined in [ASU86], i.e. those that have two disjoint sets of transitions, one set
forms an acyclic graph, while the other consists of transitions whose source dom-
inate their targets. A state a dominates a state b if every path from the start
state to b must go through a. The algorithm, first extracts the slicing criterion,
which is made of two sets, from a formula φ representing a given property to
be verified. The first set consists of all enabling conditions and actions defining

22

variables in φ. The second set consists of the states in φ and their immediate
predecessors. Then, the algorithm computes four kinds of dependencies: data,
control, clock and time. The transitive closure of the data dependence relation
is computed and then the transitive closure of the union of all the other rela-
tions on states. Finally, starting from the slicing criterion, the algorithm marks
all relevant elements based on the dependencies. The slice consists of marked
elements. Any unmarked states, transitions or actions are deleted.

5.6 Hybrid Algorithms

Hybrid algorithms adopt two or more of the other type of algorithms. For ex-
ample, an algorithm could be both dependence based and iteratively apply a set
of rules, such as the second algorithm given by [KSTV03]. Slicing algorithms
may apply three types of rules iteratively. First, rules can be defined for de-
termining what elements are in the slice. Second, rules for merging states and
deleting transitions, i.e. re-connecting the graph after removing elements not
in the slice. Third, rules for applying several slicing techniques until there are
no more changes. Algorithms that iteratively apply the last two types of rules,
usually also adopt one or more of the other kinds of algorithms discussed. The
third type of rules apply to multi-tiered slicing algorithms which we discuss in
the next section.

The second slicing algorithm described by [KSTV03] constructs a depen-
dence graph by using data and control dependence relations. Then, starting
from the node in the dependence graph representing the slicing criterion, which
is a transition and its variables, the algorithm marks all backwardly reach-
able transitions in the dependence graph. The algorithm applies two reduction
rules for merging states and deleting transitions. This approach addresses the
challenge of re-connecting the state machine after states and transitions are re-
moved. However, since the solution given is in terms of two rules, these are
not general enough to cover all possible cases, i.e. for different structured state
machines these rules might not be very effective and might contain some ir-
relevant elements. Also, by merging states, the slice does not behave in the
same way as the original on event sequences that stutter. A stuttering event
sequence is a sequence of events whereby not all events trigger transitions. If
an event does not trigger a transition, the state machine remains in the same
state. [KSTV03] address this problem by defining a new notion of correctness
taking into consideration stuttering event sequences.

Consider the ATM shown in Figure 5. The slice obtained using Korel et
al.’s second algorithm with the slicing criterion (sb, T18) is shown in Figure
15. The transitions that have been marked from the dependence analysis are:
T1, T4, T8, T17, T18. However, the slice includes T10 as this is required to
ensure that T17 and T18 can be re-executed. Also, for the stuttering event
sequence: T1, T4, T8, T17, T17, T18, the slice and the original will not behave
in the same way.

[CCIP06] have described an approach for slicing Software Architecture (SA)
models. The Charmy tool is used for specifying SA models as state machines,

23

T17

T18

s6,s7s2,s3
s4,s5

start T1 s1

T10

T8

T4

Figure 15: The slice generated for the ATM system, shown in Figure 5, with re-
spect to (sb, T18) using [KSTV03] second algorithm. The transitions are labeled
as described in Table 4.

using an extended subset of UML state machines. Properties are specified us-
ing the Property Sequence Charts (PSC) language, an extension of UML 2.0
sequence diagrams for specifying Linear-Time Temporal Logic (LTL) proper-
ties. The slicing criterion is a property expressed in PSC. The slicing algorithm,
which is based on TeSTOR (a TEst Sequence generaTOR algorithm) [PMBF05],
marks the states of the state machine that are required and deletes any un-
marked states and any transitions that have unmarked source or target states.
TeSTOR is based on the idea that scenarios are not completely specified, but
important for modelling expected system interactions. State machines are used
to complete scenarios by recovering missing information. Thus, the input of the
Testor algorithm is state machines and scenarios. The output of the algorithm
is a set of sequence diagrams that contain the sequence of messages given by
the input sequence diagram and completed by the information contained in the
state machines. Two rules are used for marking.

Rule 1: Every source and target state of a message in the slicing criterion
(i.e. PSC) in at least one test sequence generated by TeSTOR is marked.

Rule 2: For all variables of transitions that have a marked target state, find
all of their occurrences in the same state machine and if these are contained in
transitions that do not have a marked target state s, then each path leading
from the initial state to s is marked. This rule identifies paths from the initial
state to all occurrences of variables that are marked.

5.7 Multi-tiered FSM Slicing Approaches

Multi-tiered FSM slicing approaches define two or more slicing algorithms that
can be implemented in any of the previously mentioned kinds of algorithms.
They differ from hybrid algorithms as they consist of several independent slicing
algorithms, while hybrid algorithms refer to a single algorithm whose parts
correspond to two or more different kinds of algorithms. The algorithms can
be applied independently or combined. However, in some approaches, such
as in [SPH08], the order in which the algorithms are applied can affect the
performance and complexity of the analysis.

In [HW97, HTW98], a two tiered approach is presented for slicing RSML
specifications. First, the RSML specification is automatically reduced based on
a specific scenario of interest (a domain restriction), by removing all behaviours

24

that are not possible when the operating conditions defining the reduction sce-
nario are satisfied. This is a form of conditioned slicing [CCD98], which for
programs adds a condition to the traditional static slicing criterion that cap-
tures the set of initial program states. A reduction scenario is an AND/OR
table and it is used to mark the infeasible columns in each AND/OR table in
the specification. An infeasible column is one that contains a truth value that
contradicts the scenario. A collection of decision procedures have been imple-
mented for determining whether the predicates over enumerated variables and
over states in a column contradict a scenario. After all of the infeasible columns
have been marked, they are removed as well as any rows that remain with
only “don’t care” values. Finally, tables that are left without any columns are
removed, as these constitute transitions with unsatisfiable guarding conditions.

Static and backward slicing based on data flow or control flow is applied
to the remaining specification in order to extract the parts effecting selected
variables and transitions. For computing data flow slices, the slicing criterion
is a transition or variable. The algorithm traverses the data dependence graph,
produced using data flow relation, and marks all elements that directly or indi-
rectly affect the truth value of the guarding transition. Unmarked elements are
removed. For computing control flow slices, the slicing criterion is a transition.
Given a transition t with event e, the slice should include all transitions with
event e as an action. The algorithm repeatedly applies the control flow relation
for all the transitions that have been added to the slice, until transitions are
reached that are triggered by environmental inputs.

By using a different tag for each slice, slices can be combined by applying
the standard set operators: union, complement and intersection. The slicing
algorithms are based on a marking of the abstract syntax tree, similar to Sloane’s
and Holdworth’s approach [SH96]. The RSML parser in [HL95] is modified in
order to mark the abstract syntax tree based on different slicing criteria.

[BFG00] have presented three independent types of static slicing techniques
for slicing asynchronous extended automata for improving test case generation:
relevant control analysis, relevant variable analysis and constraint propagation.
These can be applied in any order, and iteratively until no more reductions are
possible. The slicing criterion is a test purpose and a set of feeds. A test purpose
describes a pattern of interaction between the user and the implementation
under test (IUT). It is expressed as an acyclic finite state automaton, with
inputs and outputs corresponding to inputs and outputs in the implementation.
Feeds are a set of constrained signal inputs that the tester aims to provide to the
IUT during a test. Only the first two slicing techniques have been implemented
within the IF [BFG+99] framework, an intermediate program representation
based on asynchronous communicating timed automata that was developed to
support the application of static analysis techniques.

Relevant control analysis reduces the processes in the extended automata to
the sets of states and transitions that can be reached, given the set of feeds,
i.e. external events. Thus, the algorithm for computing this slice performs
reachability analysis. It starts with the set of states containing the initial state
and an empty set of transitions. A set of rules are defined with respect to feeds

25

and are applied one at a time, until the least fixed point is reached.
Relevant variable analysis computes the set of relevant variables with respect

to test purpose outputs in each state. A variable is relevant at a state if at
that state its value could be used to compute the parameter value of some
signal output occurring in the test purpose. Variables are used only in external
outputs that are referred to in the test purpose or in assignments to relevant
variables. The algorithm computes the relevant variables for all processes in a
backward manner on the control graphs. Initially, it has empty sets of variables
for each state. Then, for each transition at each step, the set of used variables is
recomputed and the relevant variables set for the source state is updated. This
process continues until there are no more changes in the relevance sets for any
transitions. The variables that are irrelevant are replaced by the symbol ⊤.

Constraint propagation uses constraints on the feeds and the inputs of the
test purpose in order to simplify the specification. These constraints are first
added to possible matching inputs and then propagated in the specification via
some intra/interprocesses data flow analysis algorithms. Then, a conservative
approximation of the set of possible values is computed for each control state
and used to evaluate the guarding conditions of transitions. Any transition
guard that can never be triggered is deleted.

[SPH08] have presented a static and backward slicing approach for Syn-
chronous Adaptive System (SAS) models. SAS [ASS+07] is based on transition
systems (transition systems specific formalisations of systems that represent a
system as a set of variables and a state consists of an assignment of values to
these variables) and was developed as a semantics-based backend for the MARS
(Methodologies and Architectures for Runtime Adaptive Systems [TAFJ07])
modelling concepts. Systems are modelled in SAS as a set of synchronous mod-
ules, where each module has a set of predetermined behaviour configurations
that it can choose to adapt to depending on the state of the environment. Slicing
can be applied at three different levels of detail: system slicing, module slicing
and adaptive slicing. These can be combined in order to have finer control over
the reductions. The choice of level in which slicing is to be applied as well as
the order in which the slicing techniques are combined determines what parts of
the model are possibly going to be removed and the amount of effort required
for the analysis i.e. it is better to remove the largest irrelevant parts first before
applying further slicing techniques.

System slicing is performed on the system level. The slicing criterion is
the set of variables in a given property φ to be verified. The algorithm starts
from the modules that directly affect the slicing criterion and then iteratively
the transitive closure of the modules connected to the inputs of modules is
computed until a fixpoint is reached. All modules that do not affect the slicing
criterion can be removed.

Module slicing is performed on the intra-module level by analysing which
assignments in the transition functions of the module influence the variables in
φ and removing any irrelevant variables. Initially, the slice set consists of the
variables in a module M that occur in φ. Then, iteratively the dependencies of
the variables in the set are computed, i.e. data, control and adaptive dependence,

26

and added to the slice set, until a fixpoint is reached. This algorithm can also
be applied at the system level, but instead of only considering variables within
a module in φ it considers variables across modules in φ.

Adaptive slicing is applied when the property to be verified refers only to
the adaptation behaviour, and since the adaptation behaviour is syntactically
independent from the functional behaviour, the functional behaviour of all of
the modules can be removed. The adaptation behaviour and the configuration
guards are kept.

[RLHL06] use slicing for generating efficient code from Software Cost Reduc-
tion (SCR) [Hei02, HBGL95] specifications. SCR is a formal method used to
specify the requirements of critical systems as a state machine using a tabular
notation. The tables spell out the steps of execution, i.e. the transition rela-
tion. The slicing approach consists of applying input slicing, simplification and
output slicing to an execution-flow graph and then generating code from it. An
execution-flow graph is a specialised control-flow graph defined for representing
SCR specifications. It has three types of nodes: header nodes that represent
states in which the system is waiting for input, switch nodes that represent the
computation of new values of mode classes when transitions occur, and table
nodes that represent the computation of new values of dependent variables.
Edges in the graph represent the control flow between these nodes.

Input slicing, which is a form of static forward slicing, removes any nodes
in the execution-flow graph that update variables whose values cannot change
for given inputs. An input usually does not cause an update to every variable,
and by removing the nodes where the variables do not change, the amount of
processing is reduced. The slicing criterion is an input and a header node. The
algorithm computes the set of variables that are update-dependent, directly, or
transitively, (defined in Section 9) on a given input and then the table and switch
nodes that are reachable from the given header node are recursively copied. A
table or switch node is only copied if the variable they depend on is in the
update-dependent set, otherwise they are removed and replaced by a copy of
the tree reachable from the outgoing edge of the table or switch. This process
continues until the header node is reached, whereby new incoming edges are
created to the header node.

The simplification technique uses information about modes and inputs en-
coded in the execution-flow graph, as well as other information given as as-
sertions and assumptions, to reduce the complexity of expressions. It is not a
slicing technique, so we focus our discussion only on the input and output slicing
techniques.

Output slicing is a form of static backward slicing and is applied only after
simplification. It removes any computations that cannot influence a program’s
output (i.e. controlled variable). The algorithm requires the identification of
all prestate and poststate variables that are live at nodes of the execution-
flow graph. The current state in which a variable is evaluated is called the
prestate, while the next state in which the same variable is evaluated is called
the poststate. If the value of a variable can eventually influence the value of
a controlled variable, then it is live in a state. Variables that are not live can

27

be removed without affecting the externally visible behaviour of the system. A
backwards data-flow analysis is required for computing the set of live variables.
First the poststate variables for each node is determined, and then rules for
propagating liveness through the execution-flow graph are repeatedly applied
until a fixed-point is reached. Input slicing may reduce the effectiveness of
output slicing and in order to overcome this, input slicing is suppresed on paths
through the execution-flow graph where a mode transition takes place.

Table 3 summarises the multi-tiered slicing approaches and categorises each
algorithm according to its type. The type of some algorithms is N/A, which
means that it does not belong to any of the kinds of algorithms identified for
slicing FSMs because either it is not a slicing algorithm or it is trivial. For
example, [RLHL06] have described a simplification algorithm, which is not a
slicing algorithm. Similarly, the first algorithm presented by [HW97] is not a
slicing algorithm. However, the adaptive slicing algorithm presented by [SPH08]
is a slicing algorithm but it not categorised according to the kinds of algorithms
because it is very simple as it just removes the function behaviour as this is
independent from the adaptive behaviour.

6 Data Dependence for Slicing FSMs

There have been two general approaches to defining data dependence. The first
is based on the idea that an element x is required to evaluate y. For example, a
variable y is defined in terms of x. This is not limited to variables, but can be
applied to other elements. For example, to execute a transition, a trigger event,
source state and all ancestor states are required. We call this approach the uses
approach from the uses relation defined by [HTW98] (see Definition 1).

The second is based on definition-clear paths of variables, i.e. a variable v is
defined in an element x and used in an element y and there exists a path from
x to y where v is not modified. We call this approach definition-clear paths.
These types of definitions are given at different levels of granularity which could
lead to more precise slices. For example, [Oja07] define data dependence be-
tween parts of transitions, rather than transitions, and slicing can remove these
parts i.e. trigger events, guards or actions. We further divide these defini-
tions according to whether they apply within an automaton or state machine
(i.e. intra-automaton) or between parallel automaton or state machines (i.e.
inter-automaton).

Table 4 groups the key papers on FSM slicing that define data dependence
according to the classification that we have described. In the rest of this section
we describe each data dependence definition in turn.

6.1 Uses Approach

[HTW98] have defined data dependence for RSML specifications as the set of
elements required to determine the value of a particular variable, transition,
function and macros (expressions in guards are defined as mathematical func-

28

Table 3: Key papers on multi-tiered slicing.

Slicing Approach Algorithm Slicing Criterion Type of Algorithm
Heimdahl and Interpretation Reduction Scenario N/A (Checks for
Whalen [HW97] for Under a Scenario (AND/OR table) Infeasible Columns)
Slicing RSML a) Data Flow Transition or Dependence Graph
Specifications Variable Based

b) Control Flow Transition FSM Traversal
[BFG00] Relevant Control External Events Iteratively Applies
for Slicing Extended Analysis (Set of Feeds) Rules
Automata Relevant Variable Test Purpose Dataflow Analysis

Analysis Output (Outputs Based
of Implementation)

Constraint Constraints on Dataflow Analysis
Propagation the Feeds and Based

Inputs
Schaefer and System Slicing Variables Found Dataflow Analysis
Poetzsch-Heffter [SPH08] in Property Based
for Slicing SAS Module Slicing Variables Found Dataflow Analysis
Models in Property Based

Adaptive Slicing Property Refers N/A (Just Removes
to Adaptation Functional
Bahaviour Behaviour)

[RLHL06] Input Slicing Input and Header Dependence Analysis
for Slicing SCR Node (Event) Based
Specifications Simplification N/A N/A (Reduces the

Complexity of
Expressions)

Output Slicing None Dataflow Analysis
Based

Table 4: A classification of key papers that define data dependence for FSM
slicing.
Uses Definition-Clear Paths
[HTW98] Intra-Automaton Inter-Automaton
[CABN98] [KSTV03] [WDQ02]
[HKL+98] [Oja07] [Lan06]
[FL05] [LG08] Janowska and
[SPH08] [ACH+09] Janowski [JJ06]

29

tions and macros are defined for frequently used conditions). Data dependence
for variables, macros, and functions is simple as it uses the elements that are
visible in the definition. While data dependence for transitions requires that
transitions are dependent on their guarding conditions, their source state and
all ancestors of the source state (because of state hierarchy).

Definition 1 (Data Dependence for RSML) Let A be the union of sets of
states, transitions, variables, constants, functions and macros in an RSML spec-
ification. [HTW98] define data dependence by the relation uses, which is a
mapping A 7→ A where uses(x, y) means that y is required to evaluate x.

[FL05] and [CABN98] have defined a general notion of dependence that is
similar to Definition 1. In addition, [FL05] state that a target state and an
action of a transition t depend on its source state, triggering event and guard.

[HKL+98] have defined a dependence relation D that is also similar to Def-
inition 1. It is defined between variables ri, rj where (ri, rj) ∈ D if rj or r′j is
a parameter of the function defining r′i. Primed variables are evaluated in the
new state, while unprimed in the old state. In SCR, no circular dependencies
in the definitions of state variables are allowed.

According to [SPH08], a variable in an assignment is data dependent on
variables in the assigned expression.

6.2 Definition-Clear Paths Approach: Intra-Automaton

[KSTV03] have defined data dependence for EFSMs between variables on tran-
sitions. In particular, it is defined as a definition-clear path between a variable’s
definition at a transition t1 and its use at transition t2. This definition is also
adopted by [ACH+09].

Definition 2 (Data Dependence for EFSMs) Transition t2 data dependends
[KSTV03] on transition t2 with respect to variable v if:

1. v ∈ D(t1), where D(t1) is a set of variables defined by transition t1, i.e.
variables defined by actions and variables defined by the event of t1 that
are not redefined in any action of t1;

2. v ∈ U(t2), where U(t1) is a set of variables used in a condition and actions
of transition t1;

3. there exists a path from target(t1) to source(t2) whereby v is not modified.

[LG08] have introduced a (intra-automata) data dependence definition for
communicating automata (IOSTs). Similarly to Definition 2, they extend the
definitions of define and use because variables can be used in transition guards
and can be defined or used in actions (variable substitutions). Their extensions
must also be able to handle communicating actions, which is not required for
Definition 2. Definition 3 shows how D(t) and U(t) in Definition 2 is extended
for communicating actions, i.e. what is required in addition.

30

Definition 3 (Definition/Use for Communicating Automata) [LG08] Let
t be a transition and v a variable. Then v ∈ D(t) if an action (c?v) is performed
that causes the system to wait on some channel c for the reception of a value to
be assigned to v. v ∈ U(t) if an action (c!v) is performed that causes the system
to emit a message having the argument v on channel c.

The data dependence definition defined by [LG08] is similar to Definition 2,
with an additional condition (condition three in Definition 4) that is required
because of the semantics of IOSTSs as it may be possible that v is redefined at
t2 by a input action.

Definition 4 (Data Dependence for Communicating Automata) A tran-
sition t2 is data dependent [LG08] on a transition t1 if there exists a variable v
such that:

1. v ∈ D(t1);

2. there exists a path π from the target(t1) to the source(t2) where v is not
defined;

3. and one of the following is true: a) v is used in the guard(t1); or b) v is
not defined at action(t1) and v ∈ U(t) where t ∈ π.

[Oja07] have defined data dependence for UML state machines between
nodes in a CFG. The nodes of the CFG represent different parts of UML state
machine transitions. Each transition can correspond to several nodes. Table 5
lists the different types of CFG nodes defined and what part of the transitions
they represent. Also, the last column shows whether the nodes have a D and U
set. D is the set of variables that are defined by the part of the transition. U is
the set of variables that are used by the part of the transition. Ojala differenti-
ates between variables that are defined when entering the state and those that
are defined when exiting the state. D and U sets are used to define definition-
clear paths between CFG nodes. This notion of data dependence is similar to
Definition 10 as it applies to parts of transitions and also to concurrent state
machines.

Definition 5 (Data Depedence for UML state machines) Paths are
defined as a sequence a1, .., ai where each aj ∈ {a1, .., ai} is either a SIMPLE,
SEND or end node, or b.e where b is a BRANCH node and e its element. Data
dependence [Oja07] is defined in terms of definition-clear paths. Definition-clear
paths with respect to variable v are paths p1, p2, ..., p(n−1), pn where v is defined
at p1 (i.e. v ∈ D(p1)), v is used at pn (v ∈ U(pn)) and v is not defined in
p2, .., p(n−1). The following definition-clear paths with respect to a variable v
are defined:

• between a SIMPLE node s1 and a SIMPLE, SEND or end node s2;

• between a SIMPLE node s1 and an element e in a BRANCH node b;

31

CFG Part of D/U sets
nodes Transition
BRANCH Triggers D = union of

and D sets of its
guards elements.

U = union of
U sets of its
elementss.

SIMPLE Actions D, U
SEND Actions D, U

Components of Part of D/U
BRANCH node Transition sets
Element Trigger D, U

and guard
Parameter Event D

parameter

Table 5: CFG nodes and what parts of a transition they represent. The sub-
structure of the BRANCH node is given in a separate table. Note that the end
node is of type BRANCH and has no sub-structure. D is the set of variables
that are defined by the part of the transition. U is the set of variables that are
used by the part of the transition.

• between a parameter p (which is in an element and BRANCH) and a
SIMPLE, SEND or end node s2;

• between a parameter p in an element e1 in a BRANCH b1 and an ELE-
MENT e2 in a BRANCH node b2;

Also, a parameter p is data dependent on a node q if q evaluates an expression
whose value gets assigned to p when an event is received. Node q is one of the
CFG nodes that are created when a generated event occurs (either in the same
UML state machine or in another).

6.3 Definition-Clear Paths Approach: Inter-Automaton

[WDQ02] have defined three data dependence definitions for extended hierarchi-
cal automata (EHA): one for sequential automaton (not concurrent) and two for
concurrent automaton. Note that variables are updated on states, rather than
transitions. Since EHA are concurrent and hierarchical, the definition of D and
U differs from Definition 2 and it applies to states rather than transitions. A
variable v is used at state x (i.e. v ∈ U(x)) if v is referenced in the actions of
state x or it is referenced in the actions of any sub-state or transitions in the
sub-EHA of x and can be defined and referenced outside the sub-EHA of x.
The set of defined variables D(x) at a state x includes all variables that have
been defined (have values assigned to them) in the actions in sub-EHA of x and
can be defined and referenced outside the sub-EHA of x. Internal variables of
a state x are local variables that can only be defined and used in sub-EHA of
x. U and D can also apply to transitions.

Definition 6 (Sequential Data Dependence for EHA) A state or transi-
tion y in a sequential automaton A that uses a variable v (i.e. v ∈ U(y)) is

32

sequential data dependent [WDQ02] on a state or transition x in A that defines
v (i.e. v ∈ D(x)) if there is path in A from x to y where v is not modified.

Sequential data dependence is defined as a definition-clear path between
states or transitions in the same sequential automaton. Parallel data dependence
is defined as a definition-clear path between states and transitions in concurrent
automata.

Definition 7 (Parallel Data Dependence (PDD) for EHA) Let A and B
be two different sequential automata, and sA is a state in A, tA is a transition
in A, sB is a state in B and tB is a transition in B. If A and B are sub-

states of C then sB is parallel data depended [WDQ02] on sA (sA
PDD−−−→ sB) iff

U(sA) ∩ D(sB) 6= ∅. Similarly sA
PDD−−−→ tB, or tA

PDD−−−→ sB, or tA
PDD−−−→ tB iff

U(sA) ∩ D(tB) 6= ∅, or U(tA) ∩ D(sB) 6= ∅, or U(tA) ∩ D(tB) 6= ∅ respectively.

Refinement data dependence [WDQ02] is defined between states and tran-
sitions of concurrent automata. Some state x2 is refinement dependent on x1,
where x2 is in a sub-sequential automaton of an element x1, if the value of some
variable computed at x1 is the value that x2 will return, or some event gener-
ated in x1 is used to synchronise with some concurrent state of x2. It differs
from parallel data dependence as it computes dependencies in sub-states rather
than across concurrent states.

Definition 8 (Refinement Data Dependence (RDD) for EHA) If GE(s)
is the set of all events that are generated in the actions in sub-states of state
s and can be used as the trigger events of transitions outside of s. Similarly
GE(t), for a transition t, is the set of events generated in the action of t. If A
is a sequential automaton, sA is a state of A, b is a superstate of sA, sb is a
state of b, and tb is a transition of b, then:

• sA
RDD−−−→ sb iff D(sb) ∩ D(sA) 6= ∅, or GE(sA) ∩ GE(sb) 6= ∅.

• sA
RDD−−−→ tb iff D(tb) ∩ D(sA) 6= ∅, or GE(sA) ∩ GE(tb) 6= ∅.

[Lan06] adopts the dependence relations defined by [WDQ02] but points
out in [LH07] that parallel data dependence can produce a false dependency
if the execution chronology is not taken into account. To get rid of these
false dependencies, their tool applies the following rule after calculating parallel

data dependencies: x 6PDD→ y iff x
SO−−→ y, where

SO−−→ is a Lamport-like [Lam78]
happens-before relation on state machines. This happens-before relation is de-
fined as using two other relations: the statechart concurrent relation and the
statechart sequential order.

[Lan06] have also introduced a new data dependence relation called global
data dependence in order for slicing a collection of statechart diagrams. By a
collection of statechart models, they mean a statechart that may have many con-
current state machines at the top level. These are not dealt with by [WDQ02],

33

who only deals with concurrency in sub-states. Global data dependence is de-
fined between states and transitions with respect to global variables. Global
variables are variables used by statecharts to communicate and they don’t be-
long to any statechart but can be accessed by all.

Definition 9 (Global Data Dependence for EHA) Let A, B be two dif-
ferent statecharts. A state sB ∈ B or a transition tB ∈ B is global data

dependent [Lan06] on a state sA ∈ A or transition tA ∈ A (sA
GDD−−−→ sB,

sA
GDD−−−→ tB, tA

GDD−−−→ sB, tA
GDD−−−→ tB) iff:

• some global output variables (defined in actions) of a state or transition
of A are used in the input of the state or transition of B;

• or some trigger events of a transition or state of B are generated by a
state or transition of A.

[JJ06] have defined data dependence between variables found in boolean
expressions of guards and atomic assignments of transitions of timed automata.
Compared to Definition 2 and Definition 4, it is of finer granularity, i.e. it applies
to parts of transitions rather than transitions leading to slices that can remove
parts of transitions. Also, it applies to transitions of a set of timed automata
that run in parallel.

Definition 10 (Data Dependence for Timed Automata) Let the atomic
assignments of actions x and the boolean expressions of guards y of a transition t
be called operations (opers(t)), thus x ∈ opers(t) and y ∈ opers(t). Let t1 ∈ Ti,
t2 ∈ Tj, where i, j = 1, .., n and n refers to the number of timed automata that
run in parallel. An operation a2 in t2 is data dependent [JJ06] on operation a1

in t2 if there is a variable v, which occurs in a1 and a2, if v ∈ D(a1)∩U(a2) as
in Definition 2 and one of the following holds:

1. t1 = t2, a2 follows a1 (actions are sequences so follows is well defined
[JJ06]) and v /∈ D(a3) for any a3 ∈ opers(t1) between a1 and a2;

2. there exists a path from target(t1) to the source(t2) such that v is not
re-defined in any operations in transitions contained in the path;

3. i 6= j i.e. the automata are different.

7 Control Dependence for Slicing FSMs

One of the challenges facing any attempt to slice a FSM is the problem of how
to correctly account for control dependence. It is common for state machines
modelling such things as non-terminating systems not to have a final compu-
tation point or ‘exit state’. Moreover, FSM are interactive, i.e. there is an
interplay between the environment and the model, where events are generated
by the environment and trigger transitions in the model. Thus it is not only

34

Table 6: Papers that are categorised according to the type of control dependence
definitions.

Event-Flow Transition/Guard Program-like
Heimdahl and [WDQ02] [KSTV03]
Whalen [HW97] [Lan06] [JJ03]
[CABN98] [SPH08] [Oja07]

[LG08]
[ACH+09]

conditions that decide whether a transition occurs, but also whether a specific
event occurs in the environment.

There have been three general approaches to defining control dependence.
The first defines control dependence between events. We classify these defini-
tion as Event-flow. The second defines control dependence between transitions
and guarding conditions and we classify these as Transition/Guard. The third
defines control dependence similarly to how control dependence is defined by
program slicing techniques. We call these definitions Program-like. The major-
ity of the literature has focused on traditional definitions. In Table 6 the papers
on FSM slicing are categorised according to the type of control dependence
definition that they define.

7.1 Event-Flow Definitions

[HW97] were the first to define a control dependence-like definition for FSMs,
in particular for RSML specifications. It differs from the traditional notion as
it defines control flow in terms of dependency between events and generated
events rather than as a structural property of the graph. Their definition can
be applied to non-terminating systems or systems that have multiple exit nodes.
However, it cannot be applied to any finite state machine, such as EFSMs, that
do not generate events.

Definition 11 (Control flow for RSML) Let E be the set of all events and
T the set of all transitions. The relation trigger(T → E) represents the trigger
event of a transition. The relation action(T → E2) represents the set of events
that make up the action caused by executing a transition. follows(T → T) is
defined as: (t1, t2) ∈ follows iff trigger(t1) ∈ action(t2).

[CABN98] use the same control dependence relation as in Definition 11.

7.2 Transition/Gaurd Definitions

[WDQ02] have defined two control dependence definitions for EHA that are
adopted by [LH07]: transition control dependence and refinement control de-
pendence. Transition control dependence is defined between a state and transi-

35

tions and can be applied to any FSM that may be non-terminating. They states
that if a variable is defined in a state or transition x and used in the guarding
condition of a transition t and not redefined on the path from x to t, then t is
transition control dependent on x.

Definition 12 (Transition Control Dependence (TCD)) Let A be an EHA
automaton, t a transition of A and CV (t) be set of variables reference in the
guard of a transition t.

1. If a variable is defined in a state v or a transition r and used in the guard

of t and not redefined on the path from v or r to t, then v
TCD−−→ t or

r
TCD−−→ t.

2. If B,C be two EHA automaton, s is a state in C and A,B is a sub-

state of s, q is a state in B, p is a transition in B, then t
TCD−−→ p iff

CV (t) ∩ D(q) 6= ∅ (or CV (t) ∩ D(p) 6= ∅).

Refinement control dependence is defined between states of an automaton
and its sub-sequential automaton. It can be applied to possibly non-terminating
hierarchical FSMs.

Definition 13 (Refinement Control Dependence) If state v is the initial
state of a direct sub-sequential automaton of state u, then v is refinement control
dependent on state u.

These definitions of control dependence resemble data dependence, i.e. if
the structure is flattened these correspond to data dependence as described
in Definition 2. From the combined dependence relations defined by [WDQ02]
(i.e. Definition 6, 7, 8, 12, 13 and 24), the hierarchical layer of an EHA for the
sequential automaton of a state or transition can be determined. For example,
if the sequential automaton of a state or transition x is found on the nth layer,
then x depends on elements that belong to the sequential automata that are
local in (n − 1)th to (n + 1)th layer of the EHA, which makes slicing efficient.

According to [SPH08], a variable assigned in a conditional assignment control
depends on variables used in the conditions because these variables determine
which branch of the condition is taken. This definition of control dependence
also resembles data dependence.

7.3 Program-like Definitions

In program slicing, two general types of control dependence definitions are de-
scribed: non-termination insensitive and non-termination sensitive. Traditional
control dependence, as used in [HRB90] is non-termination insensitive, with the
consequence that the semantics of a program slice dominates the semantics of
the program from which it is; slicing may remove non-termination, but it will
never introduce it. A non-termination sensitive formulation was proposed as
early as 1993 by [Kam93], but has not been taken up in subsequent slicing

36

Table 7: Classifying which FSM slicing approaches adopt or are based on
NTICD and NTSCD.

Non-Termination Sensitive (NTSCD) Non-Termination Insensitive (NTICD)
[JJ03] [KSTV03]
[Oja07] (NTSCD & DOD) [ACH+09]
[LG08]

research. Non-termination sensitive slicing tends to produce very large slices,
because all iterative constructs that cannot be statically determined to termi-
nate must be retained in the slice, no matter whether they have any effect other
than termination on the values computed at the slicing criterion. These ‘loop
shells’ must be retained in order to respect the definition of non-termination
sensitivity.

In moving slicing from the program level to the state based model level, the
choice of whether FSM slicing should be non-termination sensitive or insensitive
needs to be made. Both types of control dependence have been defined in the
literature for FSM slicing and we consider each of these. The choice of which
to use depends on the application of slicing. For example, non-termination
sensitive control dependence (NTSCD) is desired when slicing FSMs for the
purpose of model checking, as loops are kept and liveness properties can still be
checked. Non-termination insensitive control dependence (NTICD) is preferred
when slicing FSM for model comprehension as this will produce smaller slices.
Table 7 classifies the papers on FSM slicing according to whether their control
dependence definitions are non-termination sensitive or insensitive.

The following definitions of control dependence are given in terms of execu-
tion paths. Since a path is commonly presented as a (possibly infinite) sequence
of nodes, a node is in a path if it is in the sequence. A transition is in a path if
its source state is in the path and its target state is both in the path and im-
mediately follows its source state. A maximal path is any path that terminates
in an end node or final transition, or is infinite.

[KSTV03] present a definition of control dependence for EFSMs in terms of
post dominance that requires execution paths to lead to an exit state. This defi-
nition captures the traditional notion of control dependence for static backward
slicing. However it can only determine control dependence for state machines
with exactly one exit state, failing if there are multiple exit states or if the state
machine is possibly non-terminating. For example, it can be applied to the
ATM illustrated in Figure 5 but not to the ATM illustrated in Figure 6.

Definition 14 (Post Dominance [KSTV03]) Let Y and Z be two states
and T be an outgoing transition from Y .

• State Z post-dominates state Y iff Z is in every path from Y to an exit
state.

37

• State Z post-dominates transition T iff Z is on every path from Y to the
exit state though T . This can be rephrased as Z post-dominates target(T).

Definition 15 (Insensitive Control Dependence (ICD)) Transition Tk is
control dependent [KSTV03] on transition Ti if:

1. source(Tk) post-dominates transition Ti (or target(Ti)), and

2. source(Tk) does not post-dominate source(Ti).

In program slicing, [RAB+05] define control dependence for arbitrary CFGs
(with a start node) of non-terminating programs, i.e. that may not have an
exit node. They give definition for both non-termination sensitive (NTSCD)
and non-termination insensitive control dependence (NTICD). The difference
between these definitions lies in the choice of paths. NTSCD is given in terms
of maximal paths, while NTICD is given in terms of control sinks (see Defi-
nition 21). This seminal work has inspired control dependence definitions for
FSM models hereafter, except for the definition by [JJ03]. We first discuss all
the NTSCD definitions and then NTICD definitions.

In [JJ03, JJ06] a NTSCD definition of control dependence is given for po-
tentially non-terminating timed automata. Although they were the first to give
such a definition for FSMs which is similar to the definition in [RAB+05] (both
in terms of maximal paths), they have not been widely cited by other FSM
slicing approaches.

In [JJ06], control dependence is defined in terms of post-dominance between
states, where post-dominance is defined in terms of maximal paths and does not
require a unique exit state like in Definition 14.

Definition 16 (Post Dominance [JJ06]) Let X1 and X2 be two states. State
X1 post-dominates state X2 iff every maximal path from X1 goes though X2.

Definition 17 (NTSCD-JJ [JJ06]) A state S2 is control dependent on a

state S1 (S1
NTSCD−−−−−→ S2) in the same automaton, if S1 does not post domi-

nate (using Definition 16) S2 and there is a path π from S1 to S2 such that
every state, except for S1, in π post dominates S2.

The earlier definition of control dependence given in [JJ03], differs from that
given in [JJ06] as it includes an additional clause that states that all outgoing
transitions from S1 must have non-trivial guarding conditions. Thus the defini-
tion in [JJ03] is similar to Definition 20 but for states, rather than transitions.

[Oja07] adopts the NTSCD and decisive order dependence definitions, as in
[RAB+05], which is given between nodes in a CFG. NTSCD cannot capture
certain dependencies within loops, and hence Ranganath et al. defined decisive
order dependence (DOD).

Definition 18 (NTSCD [RAB+05]) In a CFG, a node nj is non-termination

sensitive control dependent on a node ni (ni
NTSCD−−−−→ nj) iff ni has at least two

successors nk and nl such that: for all maximal paths π from nk, where nj ∈ π;
and there exists a maximal path π0 from nl where nj 6∈ π0.

38

Definition 19 (Decisive Order Dependence (DOD)) Two nodes p1 and

p2 are decisively order dependent [RAB+05] on n (n
DOD−−→ p1, p2) if:

1. all maximal paths from n contain both p1 and p2,

2. n has a successor from which all maximal paths contain p1 before p2,

3. n has a successor from which all maximal paths contain p2 before p1.

[LG08]1 adapt Ranganath et al.’s NTSCD definition for Input/Output Sym-
bolic Transition Systems (IOSTS). It is given in terms of transitions in an
IOSTS model, rather than in terms of nodes in a CFG. The first clause of
Definition 20 concerning the non-triviality of guards is introduced in order to
avoid a transition being control dependent on transitions that are executed non-
deterministically even though they are NTSCD control dependent. This clause
prevents this property from being a purely structural property on graphs.

Definition 20 (NTSCD-LG [LG08]) A transition Tj is control dependent
on a transition Ti if Ti has a sibling transition Tk such that:

1. Ti has a non-trivial guard, i.e. a guard whose value is not constant under
all variable valuations;

2. for all maximal paths π from Ti, the source of Tj belongs to π;

3. there exists a maximal path π0 from Tk such that the source of Tj does not
belong to π0.

FSM models differ from CFGs is several ways. They can have multiple start
and exit nodes, more than two edges between two states and more than two
successors from a state. Moreover, in CFGs, decisions (Boolean conditions)
are made at the predicate nodes while in state machines they are made on
transitions. Labbé et al. take such differences into account when adapting
NTSCD.

[ACH+09] have defined a new control dependence definition by extending
Ranganath et al.’s NTICD definition and subsuming Korel et al.’s definition in
order to capture a notion of control dependence for EFSMs that has the follow-
ing properties. First, the definition is general in that it should be applicable to
any reasonable FSM variant. Second, it is applicable to non-terminating FSMs
and / or those that have multiple exit states. Third, by choosing FSM slicing
to be non-termination insensitive (in order to coincide with traditional program
slicing) it produces smaller slices than traditional non-termination sensitive slic-
ing.

Following [RAB+05], the paths considered are sink-bounded paths, i.e. those
that terminate in a control sink as in Definition 21. A control sink is a region
of the graph which, once entered, is never left. These regions are always SCCs,
even if only the trivial SCC, i.e. a single node with no successors.

1Labbé et al.’s definition of control dependence in [LGP07] differs slightly from Labbé et
al. [LG08], so we evaluate the most recent.

39

Table 8: Comparison of transitive closure of control dependence definitions.

Definition Comparison of Transitive Closures
ICD [KSTV03] ICD∗ ⊆ NTSCD-JJ∗

NTSCD-JJ [JJ06] UNTICD∗ ⊆ NTSCD-JJ∗

NTSCD-LG [LG08] NTSCD-LG∗ ⊆ NTSCD-JJ∗

UNTICD [ACH+09] UNTICD∗ ⊆ NTICD-JJ∗

Definition 21 (Control Sink) A control sink, K, is a set of nodes that form
a strongly connected component such that, for each node n in K each successor
of n is in K.

Unlike NTICD, sink-bounded paths are unfair, i.e. we drop the fairness
condition in the Ranganath et al.’s definition of sink paths. For non-terminating
systems this means that control dependence can be computed within control
sinks.

Definition 22 (Unfair Sink-bounded Paths) A maximal path π is sink-bounded
iff there exists a control sink K such that π contains a transition from K.

Definition 23 (Unfair Non-termination Insensitive Control Dependence)
(UNTICD) A transition Tj is control dependent on a transition Ti iff:

1. for all paths π ∈ UnfairSinkPaths(target(Ti)), the source(Tj) belongs to
π;

2. there exists a path π ∈ UnfairSinkPaths(source(Ti)) such that the source(Tj)
does not belong to π.

UNTICD is in essence a version of NTICD modified to EFSMs (rather than
CFGs) and given in terms of unfair sink-bounded paths.

Table 8 compares the transitive closure of control dependence definitions
given in terms of transitions. Note that ICD∗ denotes the transitive closure of
ICD. Similarly for NTSCD−JJ∗, NTSCD−LG∗, and UNTICD∗. NTSCD
and DOD as given by [Oja07] are not in the table as they are defined between
states, rather than transitions.

8 Interference Dependence for Slicing FSMs

Most FSM slicing approaches handle communication and synchronisation by
introducing new dependencies, such as interference dependence. As with slicing
concurrent programs, the computation of interference dependencies can be com-
plex, if the possible orders of execution must be considered to compute precise
dependencies [Kri03]. Even if the computed dependencies are precise, the slicing
algorithm can be imprecise if it just assumes transitivity of the dependencies

40

and traverses the reachable dependencies. As we discuss below, only a few FSM
slicing approaches try to compute precise dependencies.

[WDQ02] have defined synchronisation dependence between transitions and
states. It states that if the trigger event of some transition in an element (state
or transition) x is generated by the action of an element y and the automaton
which x and y belong to are concurrent, then x is synchronisation dependent
on y. However, their slicing algorithm traverses the dependencies (including
the various data and control dependencies) and assumes transitivity and thus
is imprecise.

Definition 24 (Synchronisation Dependence (SD)) A state sA or transi-
tion tA is synchronisation dependent on a concurrent state sB or transition tB

(sA
SD−−→ sB, or sA

SD−−→ tB, or tA
SD−−→ sB, or tA

SD−−→ tB) iff some events
generated by the latter are used as trigger events of the other.

[LH07] have adopted Definition 24 but also introduce a new dependence
relation for a collection of statecharts. Global synchronisation dependence is
simililar to Definition 24 except that it is between statecharts and involves
global generated events.

Definition 25 (Global Synchronisation Dependence (GSD)) Let A and
B be two different statecharts. A state sA or transition tA is global synchro-

nisation dependent on a state sB ∈ B or transition tB ∈ B (sA
GSD−−−→ sB, or

sA
GSD−−−→ tB, or tA

GSD−−−→ sB, or tA
GSD−−−→ tB) iff some global events generated

by the latter are used as the trigger of the other.

They use a Lamport-like [Lam78] happens-before relation to ensure that the
dependencies exist only between states and transitions where the source state
or transition can happen before the target state or transition. Although this
increases the precision of the dependence relations, the slicing algorithm is based
on the (transitive) traversal of the dependencies and thus is imprecise.

[GR02] have also introduced dependencies to model and slice Argos specifi-
cations: transition, hierarchy and trigger edges model the dependencies between
states and sub-states. Their slicing algorithm traverses the dependencies with
no special handling of intransitivity.

[Oja07] have defined interference dependence for UML state machines be-
tween parts of transitions. This definition is similar to the one in [HCD+99] for
multi-threaded Java programs. Their slicing algorithm is based on traversal of
the dependencies and thus is imprecise.

Definition 26 (Interference Dependence [Oja07]) A node nj is interfer-
ence dependent on a node or parameter ni if v ∈ U(nj), w ∈ D(ni), v = w and
the access to v and w are not local to nj or ni (ni and nj are in different state
machines or different instances of the same state machine).

[LG08] have defined a communication dependence relation for communicat-
ing automata (IOSTSs) that identifies dependencies owing to communicating

41

actions. These dependencies are inter-automata, unlike their data and con-
trol dependencies (Definition 4 and Definition 20) that are intra-automata. A
communication dependence is defined between two transitions t1 and t2 in two
different IOSTSs if there exists a channel that potentially allows a data or con-
trol flow to occur between t1 and t2.

Definition 27 (Communication Dependence [LG08]) Transitions ti and
tj are communication dependent iff there exists a channel c such that:

1. The action aj = c?x occurs and the system waits on channel c for the
reception of a value to be assigned to the attribute variable x; and b) the
action ai = c!t occurs for the system to emit a message, with t as argu-
ment, on the channel c.

2. The action aj = c? occurs and the system waits for a signal to occur on
the channel c; and b) The action ai = c! occurs and the system emits a
message on channel c with no arguments.

[LG08] have presented a slicing algorithm based on traversing the depen-
dencies, however, as communication dependence is not transitive, they accept
the reduced precision. [GR08] have compiled statecharts into Java programs
which are then sliced dynamically. These types of approaches are different to
those discussed in this section as they analyse concrete executions and reduce
the machine according to a specific test case similar to dynamic program slicing.
Because the synchronization and communication can directly be observed and
don’t have to be approximated by static analysis, concurrency and communica-
tion don’t cause problems there.

9 Other Dependence Relations for Slicing FSMs

[RLHL06] have defined update dependence for SCR specifications to determine
the set of variables that can change during a transition in which a particular
monitored variable changes. A monitored variable is used to model sensors in
the environment and used to detect changes.

Definition 28 (Update dependence) The set of update dependencies for a
variable x is the smallest set of variables such that at least one of those variables’
value changes every time x changes. The update dependencies of x are always
a subset of the new-state dependencies. Variable a is new-state dependent on
a variable b in the new-state if b′ is used in the computation of a′. Note that
a and b are evaluated in the current state, while a′ and b′ are evaluated in the
next state.

[JJ06] have defined two new dependencies: clock and time dependence. Their
slicing algorithm is based on traversal of the dependencies and thus is imprecise.
Clock dependence is defined between two states in the same timed automaton.

42

Definition 29 (Clock Dependence) A state s2 is clock dependent on a state
s1 in the same timed automaton if one of the following holds:

1. there exists a clock x in the set of clocks of the automaton and a transition
t, where s1 = source(t), such that x is defined in the clock assignment of
t and is in set of clock of s2, and target(t) = s2, or

2. there exists a path π from the target(t) to s2 such that the clock assignment
for all transitions t′ contained in π with respect to x is equal to x.

Time dependence is defined between two states, s1 and s2, of the same
process if s2 is reachable from s1 and time has elapsed in s2.

Definition 30 (Time Dependence) For two states s1, s2 in the same au-
tomaton, s2 is time dependent on s1 if s2 is reachable from s1 and:

1. all transitions going out of s2 (i.e. source(t) = s2) are urgent and always
one transition is enabled. Heuristics are used to check the last condition;

2. the state invariant has a constraint of the form x = 0, where x is a clock
and the clock assignments of all incoming transitions set x to x0.

If the given conditions are violated then time in state s2 cannot lapse.

[SPH08] have defined adaptive dependence, whereby a functional variable is
influenced by the adaptive variables occurring in the configuration guards. The
adaptive variables in the configuration guards determine whether the functional
assignments are executed.

10 The Slicing Criterion and Applications of Slic-
ing FSMs

In program slicing, the slicing criterion is a pair c = (s, V) consisting of a
statement s and a subset V of the program’s variables. In state based model
slicing, there is not just one type of slicing criterion. A slicing criterion can be a
single or set of transitions, variables, states, events, actions or some combination
of these.

One of the factors that affect the choice of slicing criterion is the type of FSM
variant. For example, when slicing EFSMs [KSTV03] and [ACH+09] choose a
transition and its variables as a slicing criterion because all of the information is
contained on transitions in EFSMs (i.e. trigger events, guards and actions) and
none on states. If a specific state was chosen, there could be many transitions
that lead to that state, and thus all of these will have to be considered as part
of the slicing criterion. On the contrary, in EHA actions (variable updates and
event generation) occur at the states. Therefore, when slicing EHA, [WDQ02]
choose a set of states and transitions as a slicing criterion.

Another key factor that affects the choice of slicing criterion is the application
of slicing. There are various applications of FSM slicing and we have broadly

43

categorised these into: (1) model comprehension, (2) model checking, (3) testing
and (4) generating efficient code. For example, when slicing for the purpose of
model checking, typically the slicing criterion consists of elements mentioned
in the properties to be verified. While, when slicing for the purpose of model
comprehension, the slicing criterion is typically a transition or set of transitions
and their variables. Table 9 lists the slicing criteria and applications for all
FSM slicing approaches. In the following sections we discuss each group of
applications in more detail.

10.1 Model Comprehension

Some FSM slicing approaches were developed for helping with model compre-
hension, analysis or review. Typically, the slicing criterion of such approaches
is a transition (or set of transitions) and its variables, and sometimes states,
if variables are updated on states rather than transitions. The slice aims to
reduce the size of the model to include only transitions (or states) that affect
the slicing criterion.

The first application of FSM slicing was for helping manual review of system
requirements of large RSML specifications [HW97, HTW98]. [HTW98] evalu-
ated the effectiveness of slicing on TCAS II [HLR96], a collection of airborne
devises that provide collision avoidance protection for commercial aircrafts. It
consists of more than 300 states and 650 transitions. [HTW98] found that slic-
ing reduced the specification, by removing states and transitions, from 68% to
90%.

The slicing algorithms described in [KSTV03] and [ACH+09] are used to re-
duce the size of EFSM specifications in order to enhance model comprehension.
Empirical results, given in [AGH+09], show that the smallest average backward
slice size for all possible transitions over 10 EFSM models, including an indus-
trial model, is 38.42%. This result is comparable to the typical backward slice
size of a program, which may be one third of the original program [BH03]. Note
that a slice according to [ACH+09] consists of marked and unmarked transi-
tions and its size, in terms of number of transitions and number of states, is
not reduced. [KSTV03] did not provide any experimental results. Other slicing
approaches for enhancing model comprehension are described in [FL05, LG08].
The slices produced are sub-model’s of the original. Neither describe the cor-
rectness of slicing or provide data about the size of the slices. [GR02] have
described an algorithm for slicing Argos specifications that can help with anal-
ysis, debugging and verification. They did not provide any experimental results
but proved the correctness of their algorithm. They formally showed that for
any input sequence, the behaviour of the slice up to state S (given as the slicing
criterion) is the same as the behaviour of the original up to state S as far as the
event b is concerned (b is also part of the slicing criterion).

44

Table 9: Approaches for slicing FSMs and their applications
Slicing Approaches for Model Comprehension

Approach FSM Variant Slicing Criterion
[HW97] RSML A Transition or Variable
[KSTV03] EFSMs A Transition and its Variables
Fox and Statecharts Collection of States, Transitions,
Luangsodsai [FL05] Actions, Variable Names
[LG08] IOSTs Set of Transitions
[ACH+09] EFSMs A Transition and its Variables
Ganapathy and Argos, A State and Output Signal
Ramesh [GR02] Lustre (Generated Event)

Slicing Approaches for Model Checking
Approach Language Slicing Criterion
[CABN98] RSML States, Events, Transitions,

or Inputs in Property
[HKL+98] SCR Set of Variable Names in Property
[Esh02] UML Activity Diagrams Variables and Events in Property
[WDQ02] EHAs States and Transitions in Property
[Lan06] EHAs States and Transitions in Property
[CCIP06] UML Statecharts Property Sequence Chart (Events)
Janowska and Timed Automata A Set of Variables and States
Janowski [JJ06] in Property
[Oja07] UML Statecharts Set of Transitions
Schaefer and SAS Variables in Property
Poetzsch-Heffter [SPH08]

Slicing Approaches for Testing
Approach FSM Variant Slicing Criterion
[BFG00] Extended Automata Test Purpose (Acyclic Finite

Automata) and a Set of Feeds
(Constrained Inputs)

Guo and Java (Map to Last State Visited by an Object
Roychoudhury [GR08] Statecharts) when Error Occured

Slicing Approaches for Generating Efficient Code
Approach Language Slicing Criterion
[RLHL06] SCR Input Slicing: Input

(Event) and Header Node (State).

45

10.2 Model Checking

Model checking consists of representing a system as a finite model in an ap-
propriate logic and automatically checking whether the model satisfies some
desired properties. If the model does not satisfy a property, a counter-example
is produced, i.e. a trace that outlines the system behaviour that led to that con-
tradiction. The properties to be verified are expressed as either temporal logic
formulas or as automata. The system model is expressed as a FSM. Three types
of FSMs are typically used [MOSS99]: Kripke structures, whose nodes are an-
notated with atomic propositions; labelled transition systems (LTS) whose arcs
are annotated by actions; and Kripke transition systems that combine Kripke
structures and LTS.

Model checking suffers from the state space explosion problem [CGP99].
This is because the state space of a system can be very large, making model
checking infeasible because it is impossible to explore the entire state space with
limited resources of time and memory. There are several approaches, including
slicing, to handle this problem. Slicing can be applied both at the level where
the system model is expressed in the input language of a model checker (a
model checker is a tool used for model checking), as well as at the state machine
specification level (in integrated formal methods), before the specification is
translated into the input language of the model checker for verification.

At the level of the input language of the model checker, slicing techniques
apply either on the input language itself or on the underlying FSM. Cone of
influence [CGP99] is a technique for reducing the size of the underlying FSM
by removing variables that do not influence the variables in the specification.
This technique only focuses on variables and is similar to slicing after data
dependence. [CABN98] point out that carrying out dependence analysis on
the underlying FSM of the model checker, rather than at the state machine
specification level, may not be as effective. For example, an event parameter
would appear to depend on every event. This false dependency would not occur
at the state machine level.

[MT98, MT99] have described an approach for slicing PROMELA, the in-
put language for the SPIN [Hol97] model checker. PROMELA allows for non-
determinism and is concurrent, where communication can be both synchronous
or asynchronous. Slicing PROMELA consists of first producing a CFG, which
is a directed graph with a set of nodes representing statements and edges rep-
resenting control flow, and a PDG. [MT98] extend the features of the CFG and
PDG with additional nodes and edges for handling PROMELA’s concurrent
and non-determinism constructs, while keeping the reachability algorithm as
used by CodeSurfer [Gra02] and the Wisconsin tool [HRsGR+00] (both used
for program slicing) the same. Since slicing is applied at the CFG of the input
language and not on the underlying FSM model, this approach is comparable
to program slicing.

We focus on slicing techniques at the state machine specification level. These
techniques address the state space explosion problem by extracting a smaller
state machine from the original that preserves the behaviour of those parts of the

46

model that affect the truth of a given property. The slicing criterion is typically
elements of a property to be model checked, such as states, transitions, events
or variables. Ideally, for each slicing approach, the equivalence of the original
and sliced state machine with respect to a property, needs to be formally shown.

[CABN98] have defined an algorithm for slicing of RSML models in order
to reduce the model for model checking. They have experimentally evaluated
their slicing approach on two models, the TCAS II model [HL95] and Boeing
EDP case study [NB98]. Results show that TCAS II reduced the Boolean state
variables by half for four of the five properties. Only one property required ad-
ditional optimisations in order for model checking to be feasible. The reduction
owing to slicing of the Boeing EDP case study was moderate because the com-
ponents were more interdependent, i.e. the Boolean state variables were reduced
by 30% for three properties and there were no slices for two of its properties
because these depended on the entire model. They have not formally shown the
correctness of their approach.

In [HKL+98, BH99], two abstraction methods were presented for handling
the state space explosion problem when model checking SCR specifications with
SPIN. No experimental results or proof of correctness of slicing with respect to
properties has been given.

[WDQ02] and [Lan06] both have presented approaches for slicing Extended
Hierarchical Automata (EHA) for reducing the complexity of verifying UML
statechart models. A property φ to be model checked is given as a Linear-
Time Temporal Logic (LTL) [CGP99] formula. [WDQ02] show that slicing
with respect to the slicing criterion, which consists of the states and transitions
in a property φ, extracts a smaller EHA which is φ-stuttering equivalent to the
original EHA. This is defined by Theorem 10.1.

Theorem 10.1 ([WDQ02]) Given an EHA H and a LTL X formula φ, where
LTL X is the subset of LTL formulas without the next time operator. Let Cφ

be the slicing criterion corresponding to φ, Hs be the result of slicing H with
respect to Cφ, and M and Ms be the LTSs of H and Hs respectively. Then M
and Ms are φ-stuttering equivalent, i.e. M ∼φ Ms holds.

Stuttering [Lam83] refers to the occurrence of repeated states (with identical
labels) along a path in a Kripke structure. According to Lamport a concurrent
specification should be invariant to stuttering. φ-stuttering equivalence means
that on the property φ, two Kripke structures have equivalent behaviour and
are invariant under stuttering. [Lan06] have shown that a property is satisfied
by the sliced model if and only if it is satisfied by the original model.

[EW04] have presented a slicing approach for reducing the state space of an
UML activity hypergraph to help with model checking. [Esh02, EW04] have
defined two reactive semantics for activity hypergraph: requirement-level se-
mantics, that is based on STATEMATE semantics of statecharts [HN96], and
implementation-level semantics, based on the OMG semantics of UML state-
charts. [Esh02] has shown that for every reduction rule r, a property φ holds
for the FSM of the original activity hypergraph iff it holds for the FSM of the
sliced activity hypergraph.

47

[Oja07] has described a slicing algorithm for UML statecharts for reducing
the state space for model checking. A proof of correctness of slicing with respect
to a formula to be model checked has not been given nor any experimental
results.

[CCIP06] have described an approach for slicing SA models, in order to
handle the state space explosion problem when model checking. SA models
are specified as state machines and the LTL properties to be model checked are
expressed using Property Sequence Charts. They have applied their approach to
a naval communication environment. The benefits of slicing is that properties
that could not be model checked on the original model, because the model
checker ran out of memory, could be model checked on the reduced model. No
proof of correctness for their slicing approach has been given.

[JJ06] have presented a slicing approach for a set of timed automata with
discrete data for handling the state space explosion problem when model check-
ing. They proved, using bisimulation, that a model of a system satisfies a
CTL−X∗ [CE82] formula φ, if and only if a model of its slice with respect to
the set of propositions Pφ satisfies φ.

[SPH08] have implemented a slicing approach for reducing the state space of
SAS models for model checking. It consists of three slicing algorithms: system,
module and adaptive slicing. It has been shown, using bisimulation, that if
a property is true in the original model, then after applying any of the three
types of slicing, the property will be true in the reduced system, and vice versa.
Also, these algorithms have been evaluated experimentally by applying them
to the adaptive vehicle stability control system, which consist of 20 modules.
The results show that module slicing performs the best by reducing the system
variables by 85%. In general, the size of the model (given as the average number
of variables) decreases as a more detailed slicing technique is applied while the
computation time increases. In the case where the number of interconnections
in a system are high, then system slicing can take longer than module slicing,
while in a more loosely coupled system, system slicing can out perform module
slicing.

10.3 Testing

Slicing can be used to simplify specifications in order to help with testing.
[BFG00] have presented a slicing approach for improving automatic test case
generation, in particular of conformance test cases for telecommunication pro-
tocols. Conformance testing is a black-box testing method that aims to validate
that the implementations of systems conform to their specifications. Their test-
ing approach is based on on-the-fly model checking and test cases are generated
by exploring a synchronous product of the specification and some test purpose.
Both specification and test purposes are described as labeled transition systems.
This product can lead to the state space explosion problem arising. [BFG00]
deal with this problem, by representing the specification and test purpose at
a higher level, i.e. as asynchronous extended automata and acyclic finite state
automata respectively, and applying slicing before generating test cases. The

48

slicing criterion is a test purpose and a set of feeds.
[BFG00] have experimentally evaluated two of the three slicing techniques

on a telecommunications protocol that consists of 1075 states, 1291 transitions
and 134 variables. The first slicing techniquecan reduce the specification by
removing states and transitions (and actions on transitions) by up to 80% if a
suitable set of feeds for each test purpose is chosen. The smallest set of feeds
covering the test purpose is not necessarily the most suitable as it is often too
restrictive. They start from the smallest and iteratively add other input to the
feeds until the model becomes large enough to cover the test purpose behaviour.
The second slicing techniquereduces the number of variables by up to 40%. They
also applied their slicing techniques to a medium access control protocol for
wireless ATM as well as the Ariane-5 flight program. For the protocol, they focus
on verification rather than testing and found that without slicing they were not
able to prove any properties because of memory limitations. The Ariane-5 flight
program also benefited from slicing, as processes not involved in the verification
or test generation were removed. They do not provde any experimental results
for the third slicing technique as it was still under development. [BFG00] also
define notions of correctness in terms of bisimulation for each of their slicing
techniques but do not provide any proofs.

[GR08] have described a slicing approach used for debugging statecharts
[Har87]. They have provided experimental results that show that the size of the
slices at the model level is 27% to 47%. Their approach translates statecharts
into Java programs and applies dynamic slicing at the program level and then
translates the slices back into statecharts. Therefore, they also provide the size
of the slices at the program level, which is 17% to 30%. They argue that the
difference between the program level slices and model level slices is because a
single model element may be implemented by several lines of code.

10.4 Generating Efficient Code

FSM slicing has also been used for helping with the automatic generation of
efficient code from models. A problem with code generators is that they often
produce inefficient code that can be slow to run. [RLHL06] have described a slic-
ing approach for generating efficient code from SCR specifications. It consists
of applying three techniques, namely, input slicing, simplification and output
slicing before generating code. [RLHL06] have experimentally evaluated their
approach by automatically generating code for seven benchmark specifications
and comparing their running times. The best results were produced when all
three techniques were applied. Input slicing produced the largest speedups in
performance and output slicing and simplification were also effective in improv-
ing performance. None of the techniques lead to increasing the run times of the
generated code.

49

11 Open Issues

FSM slicing is still in the early stages and there are still issues to address.

11.1 Correctly Accounting for Control Dependence

Although there has been considerate effort in trying to correctly account for con-
trol dependence, there is still much work to be done. No slicing approach other
than [Oja07] has considered decisive order dependence for irreducible graphs.
However, their control dependence definition is as given by [RAB+07] for pro-
grams and cannot be applied to all FSMs. Moreover, in program slicing, [Amt07]
has introduced a control dependence definition, called Weak Order Dependence
(WOD), that applies to irreducible CFGs and is non-termination insensitive. It
seems like a good candidate for use for slicing FSMs but has not been considered
or adapted as yet. The issue of whether the guarding condition should be trivial
should also be investigated.

11.2 Improving Precision of Algorithms

11.2.1 State Hierarchy

When slicing hierarchical state machines, the algorithms aim to preserve the
state hierarchy in the slices. The algorithms start with the lowest level of states
in the hierarchy and consider all states at that level before moving up to the
next level. If a state is in the slice, then so is its superstate. However, for many
of them, if a state is included in the slice, then all of the sub-states are also
included. This leads to larger, less precise slices. [GR02] give some suggestions
of how to improve precision after slicing, but these have not been implemented.
Further work is required for improving algorithms to produce more precise slices
of hierarchical state machines.

11.2.2 Concurrency and Communication

Slicing concurrent and communicating state machines has to solve two prob-
lems. First, it has to handle the communication and synchronisation when slic-
ing. Second, the slicing algorithm itself has to handle them. All approaches that
slice concurrent and communicating state machines are based on extracting the
dependencies and then traversing the dependencies. Most approaches handle
communication and synchronisation by introducing new dependencies, similar
to interference dependence that is defined when slicing concurrent programs.
Computing such dependencies is complex and requires that the order of execu-
tion be considered to ensure precise slices. Even if the computed dependencies
are precise, the slicing algorithm can be imprecise if it just assumes transitivity
of the dependencies and traverses the reachable dependencies [Kri98]. Only a
few FSM slicing approaches try to compute precise dependencies, such as in
[Lan06], and none actually compute precise slices. Hence there is scope for

50

Table 10: The FSM elements that slicing approaches re-
move (indicated by cross) and keep (indicated by tick) in
a slice.

Approach Sa Tb Lc TEd Ge Af EEg

[LG08]
√ √ √ √ √ √ √

[ACH+09]
√ √ × √ √ √ √

[HKL+98] × √ √ √ √ √ √

[HW97] × × √ √ √ √ √

[CABN98] × × √ √ √ √ √

[KSTV03] × × √ √ √ √ √

[GR02] × × √ √ √ √ √

[CCIP06] × × √ √ √ √ √

[WDQ02] × × √ √ √ × √

[FL05] × × √ √ √ × √

[Lan06] × × √ √ √ × √

[JJ06] × × √ √ √ × √

[SPH08] × × √ √ √ × √

[BFG00] × × √ √ √ × √

[Esh02] × √ √ √ × × ×
[GR08] × × √ √ × × √

[RLHL06] × √ √ √ √ × √

[Oja07]
√ √ √ × × × √

a S = States
b T = Transitions
c L = Labels
d TE = Triggering Events
e G = Guards
f A = Actions
g EE = External/Environmental Events

further work in improving algorithms to produce precise slices for concurrent
FSMs.

11.3 Graph Connectivity

The FSM elements that are kept and removed in a slice varies from one slicing
approach to another. Table 10 lists the elements that are removed (indicated
by a cross) and kept (indicated by a tick) in a slice that is generated by each
slicing approach. For example, [LG08] do not remove any elements but simply
mark those that are in the slice. [HW97] produces slices by deleting states and
transitions. [Oja07] only deletes parts of transitions trigger events, guards and
actions.

Consider the set of slicing approaches that remove transitions or states.
What is not shown in Table 10 is whether removing transitions or states can
lead to breaking the connectivity of the model i.e. some states become un-

51

reachable. For example, consider the state machine in Figure 16 that models
a simplified version of the ATM as shown in Figure 5. Let us slice the state
machine in Figure 16 using the algorithm given by [KSTV03] and the slicing
criterion < T4, x >. The first step is to compute the data and control dependen-
cies and mark the transitions that are backwardly reachable in the dependence
graph. Since the state machine is non-terminating, Definition 15 cannot be
applied. Assume we use Definition 23 instead. There are no UNTICD depen-
dencies for Figure 16. The following transitions in Figure 16 are data dependent:

T1
DD−−→ T3, T1

DD−−→ T4, T3
DD−−→ T4 and T4

DD−−→ T3. Figure 17 illustrates
the transitions that are marked (in bold) after computing dependencies. If we
choose to simply remove the unmarked transitions, then state s3 will become
unreachable. Most slicing approaches only delete transitions or states that do
not make other states or transitions to become unreachable. This leads to larger,
less precise slices. Only [KSTV03] have described an algorithm (their second
algorithm described in Section 5.6) for removing transitions and reconnecting
the state machine by merging states. For example, Figure 18 shows the slice
generated for the state machine shown in Figure 16.

However, there is still much work to be done. First, [KSTV03]’s algorithm
applies a couple of rules for merging states and they suggest that more rules
can be developed. Thus, this algorithm is not general enough to apply to all
possible cases for merging states. Better algorithms could be developed.

Second, depending on the semantics of the state machines, the slices could
introduce additional behaviour that is not in the original state machine. This
could lead to problems with proving the correctness of the slicing algorithm.
For example, the semantics of a state machine assumes that events produced
by the environment that do not trigger a transition are consumed. This is
also called stuttering. Then if the environment of the state machine in Fig-
ure 16 generated the following event sequence enterCard, ChooseLanguage,
withdraw(10), deposit(20), done, withdraw(30) in Figure 18, then x = 70 be-
cause event deposit(20) occurs while the state machine is in state S4 and no
transition is trigger so it is consumed i.e. it stutters. If we apply the same
sequence to the slice, then x = 80 as deposit(20) triggers a transition. Accord-
ing to Weiser’s notion of correctness [Wei79] this slicing algorithm is incorrect.
[KSTV03] have described a new notion of correctness with event sequences (non-
stuttering ones) that ensure that the original and the slice produce the same
values for the variables of interest. However, this definition of correctness is
still in the early stages of development and problems have not been ironed-out.
Further work is required in developing slicing algorithm that improve on just
reachability and handle to graph connectivity.

11.4 Slicing Across Different Levels of Abstraction

Systems can be modelled at different levels of abstraction. For example, a sys-
tem can be first modelled in a high level of detail and is often non-deterministic
because of under-specification. Then it is modelled at a low level, where one
state in the high level corresponds to many states in the low level. In some

52

S1 S2 S3 S4
T1

ChooseLanguage

T2

enterCard/x:=100

deposit(z)/x:=x+zT3

T4 withdraw(y)/x:=x−y

T5 done

Figure 16: A simplified state machine of the ATM system as illustrated in
Figure 5.

S1 S2 S3 S4
T1

ChooseLanguage

T2
T3 deposit(z)/x:=x+z

withdraw(y)/x:=x−yT4

T5 done

enterCard/x:=100

Figure 17: After computing the dependence graph using Definition 2 (data
dependence) and Definition 23 (control dependence), transitions that are back-
wardly reachable from the slicing criterion in the dependence graph are marked.
Marked transitions are in bold.

notations this state is modelled as a superstate. Only [SPH08] have defined
slicing algorithms that apply at different levels of detail, while most other ap-
proaches, such as [WDQ02], [KSTV03] and [LG08] concern themselves with
low-level model representations. There has been no slicing approach that has
considered slicing across several models that have varying levels of abstraction.

Furthermore, a transition in a high level model can represent many tran-
sitions in a low level model. In this case, the transition may have combined
labels of all those transitions, i.e. it may consist of more than one action. This
could be a problem when computing data dependence using the definitions pre-
sented in Section 6, as dependencies may occur between different actions of a
transition. This research problem has not been addressed in the literature.

S1
T1

enterCard/x:=100

S2/S3/S4

withdraw(y)/x:=x−yT4

deposit(z)/x:=x+zT3

Figure 18: The slice generated using [KSTV03]’s second slicing algorithm.

53

11.5 Slicing Richer FSMs

Only some of the features of some FSMs have been considered by slicing ap-
proaches, such as hierarchy, concurrency, communication and event generation.
However, some features of richer FSMs, such as UML, have not been consid-
ered. These include: the condition and selection circled connectives, delays
and timeouts, the entry/exit activity and histories. Slicing approaches could be
developed further so that they can be applied to any FSM.

12 Conclusions

This paper is the first to survey existing work on slicing finite state machines. It
comprehensively reviewed slicing approaches and describes a taxonomy for the
types of algorithms and the kinds of dependence used. It also gave an overview
of their applications, empirical evaluation, correctness and open problems for
future work.

Work on slicing finite state machines is typically seen as extending work
on program slicing to the model level. For example, some control dependence
definitions for models are adaptations of control dependence definitions for pro-
grams. However, the results of the survey show that work on slicing finite state
machines has identified problems that are also present when slicing programs
but have never been addressed. For example, slicing non-terminating finite state
machines has been addressed as early as in [HW97] while the program slicing
community only addressed the problem of slicing non-terminating programs in
[RAB+07]. Moreover, we believe that the problems addressed when slicing finite
state machines is similar to those required when slicing interactive programs,
which has not been addressed in the program slicing community. This high-
lights the importance of this survey to both the model and program slicing
communities.

This research work is supported by EPSRC Grant EP/F059442/1. The
authors also wish to thank Franco Raimondi and Khalid Alzarouni for their
insightful comments.

References

[ACH+09] Kelly Androutsopoulos†, David Clark, Mark Harman, Zheng Li,
and Laurence Tratt. Control dependence for extended finite state
machines. In Fundamental Approaches to Software Engineering
(FASE), Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS, York, UK, March 2009.
Springer Berlin/Heidelberg.

54

[AD90] Rajeev Alur and D. L. Dill. Automata for modeling real-time sys-
tems. In Proceedings of the seventeenth international colloquium
on Automata, languages and programming, pages 322–335, New
York, NY, USA, 1990. Springer-Verlag New York, Inc.

[ADS91] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford.
Dynamic slicing in the presence of unconstrained pointers. In 4th

ACM Symposium on Testing, Analysis, and Verification (TAV4),
pages 60–73, 1991. Appears as Purdue University Technical Re-
port SERC-TR-93-P.

[AGH+09] Kelly Androutsopoulos∗, Nicolas Gold, Mark Harman, Zheng Li,
and Laurence Tratt. A theoretical and empirical study of EFSM
dependence. In Proceedings of the International Conference on
Software Maintenance (ICSM), September 2009.

[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing.
In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 246–256, White Plains, New York,
June 1990.

[Amt07] Torben Amtoft. Correctness of practical slicing for modern pro-
gram structures. Technical Report 2007-3, Department of Com-
puting and Information Sciences, Kansas State University, 2007.

[ASS+07] R. Adler, I. Schaefer, T. Schuele, , and E. Vecchi. From model-
based design to formal verification of adaptive embedded sys-
tems. In International Conference on Formal Engineering Meth-
ods (ICFEM’07), Florida, USA, 2007. Springer Berlin/Heidelberg.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers,
Principles, Techniques, and Tools. Addison-Wesley, (Pearson Ed-
ucation), 1986.

[BFG+99] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne
Graf, Jean pierre Krimm, Laurent Mounier, and Joseph Sifakis.
If: An intermediate representation for sdl and its applications.
In Proceedings of SDL-FORUM99, pages 423–440, Montreal,
Canada, 1999. Elsevier Science.

[BFG00] Marius Bozga, Jean-Claude Fernandez, and Lucian Ghirvu. Using
static analysis to improve automatic test generation. In TACAS
’00: Proceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 235–
250, London, UK, 2000. Springer-Verlag.

[BG96] David Binkley and Keith Brian Gallagher. Program slicing. In
Marvin Zelkowitz, editor, Advances in Computing, Volume 43,
pages 1–50. Academic Press, 1996.

55

[BH93] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary
control–flow. In Peter Fritzson, editor, 1st Conference on Auto-
mated Algorithmic Debugging, pages 206–222, Linköping, Sweden,
1993. Springer.

[BH99] Ramesh Bharadwaj and Constance L. Heitmeyer. Model check-
ing complete requirements specifications using abstraction. Auto-
mated Software Eng., 6(1):37–68, 1999.

[BH03] David Binkley and Mark Harman. A large-scale empirical study of
forward and backward static slice size and context sensitivity. In
IEEE International Conference on Software Maintenance, pages
44–53, Los Alamitos, California, USA, September 2003. IEEE
Computer Society Press.

[BH04] David Binkley and Mark Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178, 2004.

[BH05] David Binkley and Mark Harman. Forward slices are smaller than
backward slices. In 5th IEEE International Workshop on Source
Code Analysis and Manipulation, pages 15–24. IEEE Computer
Society Press, 2005.

[BHK07] David Binkley, Mark Harman, and Jens Krinke. Empirical study
of optimization techniques for massive slicing. ACM Transactions
on Programming Languages and Systems, 30(1), November 2007.

[BHR95] David Binkley, Susan Horwitz, and Tom Reps. Program integra-
tion for languages with procedure calls. ACM Transactions on
Software Engineering and Methodology, 4(1):3–35, 1995.

[Bin98] David Binkley. The application of program slicing to regression
testing. Information and Software Technology, 40(11):583–594,
1998.

[Bin07] David Wendell Binkley. Source code analysis: A road map. In
Lionel Briand and Alexander Wolf, editors, Future of Software
Engineering 2007, pages 104–119, Los Alamitos, California, USA,
2007. IEEE Computer Society Press.

[CAB+01] William Chan, Richard J. Anderson, Paul Beame, David Notkin,
David H. Jones, and William E. Warner. Optimizing sym-
bolic model checking for statecharts. IEEE Trans. Softw. Eng.,
27(2):170–190, 2001.

[CABN98] William Chan, Richard J. Anderson, Paul Beame, and David
Notkin. Improving efficiency of symbolic model checking for
state-based system requirements. SIGSOFT Software Engineering
Notes, 23(2):102–112, 1998.

56

[CCD98] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Con-
ditioned program slicing. Information and Software Technology,
40(11):595–607, 1998.

[CCIP06] Daniela Colangelo, Daniele Compare, Paola Inverardi, and Pa-
trizio Pelliccione. Reducing software architecture models com-
plexity: A slicing and abstraction approach. In Formal Techniques
for Networked and Distributed Systems - FORTE 2006, Lecture
Notes in Computer Science, pages 243–258, Paris, France, 2006.
Springer Berlin/ Heidelberg.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn
Laubach, Corina S. Pasareanu, Robby, and Hongjun Zheng.
Bandera: Extracting finite-state models from Java source
code. In 22nd International Conference on Software Engineer-
ing (ICSE’2000), pages 439–448, Los Alamitos, California, USA,
June 2000. IEEE Computer Society Press.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Logic of Programs, Workshop, pages 52–71, London, UK, 1982.
Springer-Verlag.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. CMIT Press, 1999.

[De 01] Andrea De Lucia. Program slicing: Methods and applications. In
International Workshop on Source Code Analysis and Manipula-
tion, pages 142–149, Los Alamitos, California, USA, 2001. IEEE
Computer Society Press.

[DHH+06] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, Venkatesh
Ranganath, and Todd Wallentine. Evaluating the effectiveness
of slicing for model reduction of concurrent object-oriented pro-
grams. In In: Proceedings of International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS 2006, pages 73–89. Springer, 2006.

[Dub06] Jori Dubrovin. Jumbala — an action language for UML state
machines. Research Report HUT-TCS-A101, Helsinki University
of Technology, Laboratory for Theoretical Computer Science, Es-
poo, Finland, March 2006.

[DWQQ01] Wei Dong, Ji Wang, Xuan Qi, and Zhi-Chang Qi. Model checking
UML statecharts. In APSEC ’01: Proceedings of the Eighth Asia-
Pacific on Software Engineering Conference, page 363, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

57

[Esh02] Rik Eshuis. Semantics and Verification of UML Activity Diagrams
for Workflow Modeling. PhD thesis, Centre for telematics and
Information Technology, University of Twente, 2002.

[EW04] Rik Eshuis and Roel Wieringa. Tool support for verifying uml
activity diagrams. IEEE Transactions on Software Engineering,
30:2004, 2004.

[FDHH04] Chris Fox, Sebastian Danicic, Mark Harman, and Robert Mark
Hierons. ConSIT: a fully automated conditioned program slicer.
Software Practice and Experience, 34:15–46, 2004.

[FHHD01] Chris Fox, Mark Harman, Rob Mark Hierons, and Sebastian Dani-
cic. Backward conditioning: a new program specialisation tech-
nique and its application to program comprehension. In 9th IEEE
International Workshop on Program Comprenhesion, pages 89–
97, Los Alamitos, California, USA, May 2001. IEEE Computer
Society Press.

[FL05] Chris Fox and Arthorn Luangsodsai. And-or dependence graphs
for slicing statecharts. In Beyond Program Slicing. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization. ACM
Transactions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[FRT95] John Field, G. Ramalingam, and Frank Tip. Parametric program
slicing. In 22nd ACM Symposium on Principles of Programming
Languages, pages 379–392, San Francisco, CA, 1995. ACM.

[GGRT06] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia
Touil. Symbolic execution techniques for test purpose defini-
tion. In Testing of Communicating Systems (TestCom’06), Lec-
ture Notes in Computer Science, volume 3964, pages 1–18, New
York, NY, USA,, May 16-18 2006. Springer.

[GHS92] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An ap-
proach to regression testing using slicing. In Proceedings of the
IEEE Conference on Software Maintenance, pages 299–308, Los
Alamitos, California, USA, 1992. IEEE Computer Society Press.

[GL91] Keith B. Gallagher and James R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software Engineer-
ing, 17(8):751–761, August 1991.

58

[GR02] Vinod Ganapathy and S. Ramesh. Slicing synchronous reactive
programs. In Electronic Notes in Theoretical Computer Science,
65(5). 1st Workshop on Synchronous Languages, Applications,
and Programming, Grenoble, France, April 2002. Elsevier.

[GR08] Liang Guo and Abhik Roychoudhury. Debugging statecharts via
model-code traceability. In Leveraging Applications of Formal
Methods, Verification and Validation, Third International Sym-
posium, ISoLA 2008, pages 292–306, Port Sani, Greece, 2008.
Springer Berlin/Heidelberg.

[Gra02] Grammatech Inc. The CodeSurfer slicing system, 2002.

[GS95] Rajiv Gupta and Mary Lou Soffa. Hybrid Slicing: An Approach
for Refining Static Slices Using Dynamic Information. In Pro-
ceedings of SIGSOFT’95 Third ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 29–40, October
1995.

[Har87] David Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274, June
1987.

[HBD03] Mark Harman, David Binkley, and Sebastian Danicic. Amorphous
program slicing. Journal of Systems and Software, 68(1):45–64,
October 2003.

[HBGL95] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*:
A toolset for specifying and analyzing requirements. In Pro-
ceedings of the Tenth Annual Conference on Computer Assur-
ance, pages 109–122, Gaithersburg, MD, June 1995. Springer
Berlin/Heidelberg.

[HCD+99] John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan
Sokolowski, and Hongjun Zheng. A formal study of slicing for
multi-threaded programs with JVM concurrency primitives. In
Proceedings of the 6th International Symposium on Static Analy-
sis, pages 1–18, London, UK, 1999. Springer-Verlag.

[HD98] Mark Harman and Sebastian Danicic. A new algorithm for slicing
unstructured programs. Journal of Software Maintenance and
Evolution, 10(6):415–441, 1998.

[Hei02] C. Heitmeyer. Software cost reduction. In John J. Marciniak,
editor, Encyclopedia of Software Engineering, Two Volumes, New
York, 2002. John Wiley and Sons, Inc.

[HH01] Mark Harman and Robert Mark Hierons. An overview of program
slicing. Software Focus, 2(3):85–92, 2001.

59

[HHD+01] Mark Harman, Rob Mark Hierons, Sebastian Danicic, John
Howroyd, and Chris Fox. Pre/post conditioned slicing. In IEEE
International Conference on Software Maintenance (ICSM’01),
pages 138–147, Los Alamitos, California, USA, November 2001.
IEEE Computer Society Press.

[HHH+04] Mark Harman, Lin Hu, Robert Mark Hierons, Joachim Wegener,
Harmen Sthamer, Andr Baresel, and Marc Roper. Testability
transformation. IEEE Transactions on Software Engineering,
30(1):3–16, 2004.

[HKL+98] Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla
Archer, and Ramesh Bharadwaj. Using abstraction and model
checking to detect safety violations in requirements specifications.
IEEE Trans. Softw. Eng., 24(11):927–948, 1998.

[HL95] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and
consistency analysis of state-based requirements. In ICSE ’95:
Proceedings of the 17th international conference on Software en-
gineering, pages 3–14, New York, NY, USA, 1995. ACM.

[HLR96] M. P. E. Heimdahl, N.G. Leveson, and J. D. Reese. Experiences
and lessons from the analysis of TCAS II. SIGSOFT Softw. Eng.
Notes, 21(3):79–83, 1996.

[HN96] David Harel and Amnon Naamad. The statemate semantics of
statecharts. ACM Trans. Softw. Eng. Methodol., 5(4):293–333,
1996.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23:279–295, 1997.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interproce-
dural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26–61, 1990.

[HRsGR+00] Susan Horwitz, Thomas Reps, Manuvir Das, Rebecca
Hasti, Jeff Lampert, Dave Melski, Marc Shapiro, Mike
Siff, Todd Turnidge, staff Binkley, Victor Barger, Samuel
Bates, Thomas Bricker, Jiazhen Cai, Robert Paige, Phil
Pfeiffer, Jan Prins, Wuu Yang, G. Ramalingam, and
Mooly Sagiv. Wisonsin program slicing project, 1996-2000.
URL http://www.cs.wisc.edu/wpis/html/.

[HTW98] Mats P. E. Heimdahl, Jeffrey M. Thompson, and Michael W.
Whalen. On the effectiveness of slicing hierarchical state ma-
chines: A case study. In EUROMICRO ’98: Proceedings of the
24th Conference on EUROMICRO, pages 10435–10444, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

60

[HW97] Mats P. E. Heimdahl and Michael W. Whalen. Reduction and
slicing of hierarchical state machines. In Proc. Fifth ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
Zurich, Switzerland, 1997. Springer–Verlag.

[JJ03] Agata Janowska and Pawe lJanowski. Slicing timed systems. Fun-
dam. Inf., 60(1-4):187–210, 2003.

[JJ06] Agata Janowska and Pawe lJanowski. Slicing of timed au-
tomata with discrete data. Fundamenta Informaticae, SPECIAL
ISSUE ON CONCURRENCY SPECIFICATION AND PRO-
GRAMMING, 72(1-3):181–195, 2006.

[JM05] Ranjit Jhala and Rupak Majumdar. Path slicing. SIGPLAN Not.,
40(6):38–47, 2005.

[Kam93] Mariam Kamkar. Interprocedural dynamic slicing with appli-
cations to debugging and testing. PhD thesis, Department of
Computer Science and Information Science, Linköping University,
Sweden, 1993.

[KH00] Raghavan Komondoor and Susan Horwitz. Semantics-preserving
procedure extraction. In Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL-00), pages 155–169, N.Y., January 19–21 2000. ACM
Press.

[KKP+81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In POPL ’81:
Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 207–218, NY, USA,
1981. ACM.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. In-
formation Processing Letters, 29(3):155–163, October 1988.

[KM02] Alexander Knapp and Stephan Merz. Model checking and code
generation for UML state machines and collaborations. In Do-
minik Haneberg, Gerhard Schellhorn, and Wolfgang Reif, editors,
Proceding 5th Workshop on Tools for System Design and Verifi-
cation (FM-Tools), pages 59–64, 2002.

[Kri98] Jens Krinke. Static slicing of threaded programs. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE’98), pages 35–42, Montreal,
Canada, June 1998. ACM New York, NY, USA.

[Kri03] Jens Krinke. Advanced Slicing of Sequential and Concurrent Pro-
grams. PhD thesis, Universität Passau, July 2003.

61

[KSTV03] Bogdan Korel, Inderdeep Singh, Luay Tahat, and Boris Vaysburg.
Slicing of state based models. In IEEE International Conference
on Software Maintenance (ICSM’03), pages 34–43, Los Alamitos,
California, USA, September 2003. IEEE Computer Society Press.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Lam83] L. Lamport. What good is temporal logic? In Information Pro-
cessing 83: Proceedings of the IFIP 9th World Congress, R. E. A.
Mason, Ed., pages 657–668, North-Holland, Amsterdam, 1983.

[Lan06] Sara Van Langenhove. Towards the Correctness of Software Be-
havior in UML A Model Checking Approach based on Slicing. PhD
thesis, Ghent University, May 2006.

[LG08] Sébastien Labbé and Jean-Pierre Gallois. Slicing communicating
automata specifications: polynomial algorithms for model reduc-
tion. Formal Aspects of Computing, 20(6):563–595, 2008.

[LGP07] Sebastien Labbe, Jean-Pierre Gallois, and Marc Pouzet. Slicing
communicating automata specifications for efficient model reduc-
tion. In Proceedings of ASWEC, pages 191–200, USA, 2007. IEEE
Computer Society.

[LH07] Sara Van Langenhove and Albert Hoogewijs. SVtL: System veri-
fication through logic tool support for verifying sliced hierarchical
statecharts. In Lecture Notes in Computer Science, Recent Trends
in Algebraic Development Techniques, pages 142–155, Berlin /
Heidelberg, 2007. Springer.

[LHHR94] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese.
Requirements Specification for Process-Control Systems. IEEE
Transactions on Software Engineering, 20(9):684–706, 1994.

[LS03] Arun Lakhotia and P. Singh. Challenges in getting formal with
viruses. virus bulletin, pages 14–18, September 2003.

[MACE02] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J.
Eggers. Improving program slicing with dynamic points-to data.
In Proceedings of the 10th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-02), pages 71–80, New
York, November 2002. ACM Press.

[Mar91] F. Maraninchi. The Argos language: graphical representation of
automata and description of reactive systems. In IEEE Workshop
on Visual Languages, Kobe, Japan, 1991. IEEE.

[Mea55] George H. Mealy. A method to synthesizing sequential circuits.
Bell Systems Technical Journal, 34(5):1045–1075, 1955.

62

[Moo56] Edward F. Moore. Gedanken experiments on sequential machines.
In Automata Studies, pages 129–153. Princeton U., New Jersey,
1956.

[MOSS99] Markus Muller-Olm, David Schmidt, and Bernhard Steffen.
Model-checking: A tutorial introduction. In Proceedings of the
6th International Static Analysis Symposium, volume 1694, pages
331–354, September 1999.

[MT98] L. Millett and T. Teitelbaum. Slicing promela and its applications
to model checking, 1998.

[MT99] Lynette I. Millett and Tim Teitelbaum. Channel dependence anal-
ysis for slicing promela. In PDSE ’99: Proceedings of the In-
ternational Symposium on Software Engineering for Parallel and
Distributed Systems, page 52, Washington, DC, USA, 1999. IEEE
Computer Society.

[NB98] C.R. Nobe and M.G. Bingle. Model-based development: Five
processes used at boeing. In IEEE International Conference and
Workshop: Engineering of Computer-Based Systems, 1998.

[Oja07] Vesa Ojala. A slicer for UML state machines. Technical Report
HUT-TCS-25, Helsinki University of Technology Laboratory for
Theoretical Computer Science, Espoo, Finland, 2007.

[OMG01] OMG. OMG unified modeling language specification 1.4, Septem-
ber 2001. http://www.omg.org/cgi-bin/doc?formal/01-09-67.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein. The program depen-
dence graph in software development environments. Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environmt, SIGPLAN
Notices, 19(5):177–184, 1984.

[PMBF05] Patrizio Pelliccione, Henry Muccini, Antonio Bucchiarone, and
Fabrizio Facchini. Testor: Deriving test sequences from model-
based specifications. In Eighth International SIGSOFT Sympo-
sium on Component-based Software Engineering, pages 267–282,
St. Louis, Missouri (USA), May 2005. LNCS 3489.

[RAB+05] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Baner-
jee, Matthew B. Dwyer, and John Hatcliff. A new foundation for
control-dependence and slicing for modern program structures. In
Programming Languages and Systems, Proceedings of 14th Euro-
pean Symposium on Programming, ESOP, pages 77–93, Berlin,
2005. Springer-Verlag.

63

[RAB+07] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee,
John Hatcliff, and Matthew B. Dwyer. A new foundation for con-
trol dependence and slicing for modern program structures. ACM
Transactions on Programming Languages and Systems, 29(5):27,
2007.

[RLHL06] Tom Rothamel, Yanhong A. Liu, Constance L. Heitmeyer, and
Elizabeth I. Leonard. Generating optimized code from scr speci-
fications. SIGPLAN Not., 41(7):135–144, 2006.

[SH96] Anthony M. Sloane and Jason Holdsworth. Beyond traditional
program slicing. In Steven J. Zeil, editor, Proceedings of the 1996
International Symposium on Software Testing and analysis, pages
180–186, New York, January 8–10 1996. ACM Press.

[SPH08] Ina Schaefer and Arnd Poetzsch-Heffter. Slicing for model reduc-
tion in adaptive embedded systems development. In SEAMS ’08:
Proceedings of the 2008 international workshop on Software engi-
neering for adaptive and self-managing systems, pages 25–32, NY,
USA, 2008. ACM.

[TAFJ07] Mario Trapp, Rasmus Adler, Marc Förster, and Janosch Junger.
Runtime adaptation in safety-critical automotive systems. In
SE’07: Proceedings of the 25th conference on IASTED Inter-
national Multi-Conference, pages 308–315, Anaheim, CA, USA,
2007. ACTA Press.

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, September 1995.

[Ven91] G. A. Venkatesh. The semantic approach to program slicing. In
PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation, pages 107–
119, New York, NY, USA, 1991. ACM.

[War03] Martin Ward. Slicing the SCAM mug: A case study in semantic
slicing. In IEEE International Workshop on Source Code Analy-
sis and Manipulation (SCAM 2003), pages 88–97, Los Alamitos,
California, USA, September 2003. IEEE Computer Society Press.

[WDQ02] Ji Wang, Wei Dong, and Zhi-Chang Qi. Slicing hierarchical au-
tomata for model checking UML statecharts. In Proceedings of
the 4th International Conference on Formal Engineering Methods
(ICFEM), pages 435–446, UK, 2002. Springer-Verlag.

[Wei79] Mark Weiser. Program slices: Formal, psychological, and practical
investigations of an automatic program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, MI, 1979.

64

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[WRG08] T. Wang, A. Roychoudhury, and L. Guo. JSlice, version 2.0, 2008.

[WZ07] Martin Ward and Hussein Zedan. Slicing as a program trans-
formation. ACM Transactions on Programming Languages and
Systems, 29(2):7, 2007.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin
Chen. A brief survey of program slicing. ACM SIGSOFT Software
Engineering Notes, 30(2):1–36, 2005.

65

	UCL department of computer science
	Research Note
	Survey of Slicing Finite State Machine Models
	Kelly Androutsopoulos, David Clark, Mark Harman,
	Jens Krinke, and Laurence Tratt1
	Abstract

