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Abstract

In this paper, we consider the problem of how to derive mass functions sys-
tematically from data samples. We also consider the ensuing problem of how
to combine different mass functions derived in this way. We show that a mass
function can be efficiently and systematically derived from multivariate data.
We also demonstrate that combining mass functions obtained in this manner
can be done easily. The way of deriving and combining mass functions is
illustrated with a simple example.
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1. Introduction

The mathematical theory of evidence, also known as the Dempster-Shafer
Theory of Evidence (DSTE) [27], is a generalization of the Bayesian theory
of probability. In recent years, there has been increased interest in advancing
this theory, developing efficient algorithms, and applying the theory itself to
a wide range of engineering and business problems, see [21, 1, 25, 12, 37, 14,
17, 35, 13, 26, 34, 15, 30, 19].

Using DSTE to solve a specific problem usually involves three steps. First,
we obtain a mass function that represents uncertainties existing in the prob-
lem using independent items of evidence. Second, we compute various belief
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functions on the basis of the mass function. Third, if necessary, we combine
multiple mass functions into a single one. The key problem is how to obtain
a mass function in a systematic way.

The mass function is usually assumed to be given, e.g., by experts, but
in practice we need to derive it from data in one way or another. For a
particular task, we can derive a single mass function from data (see e.g., [9]).
Alternatively, we can also derive multiple mass functions from several sources
of data, then combine them into a single mass function (see e.g. [11]).

If we want to derive mass functions from data, it is important that the
information in data is utilized as much as possible and is encoded in the mass
function. One way of achieving this objective is to derive mass functions in
a systematic way.

In this paper, we review recent developments in the systematic deriva-
tion of mass functions from multivariate data sets (see [33]) and discuss the
ensuing problem of how to combine the already derived mass functions.

2. A Brief Review of the Dempster-Shafer Theory of Evidence

Let V be a finite set. The power set of V , 2V , is called a frame of
discernment.

Definition 1. A mass function is a mapping m : 2V → [0, 1] such that∑
x∈2V m(x) = 1 and m(∅) = 0.

The mass m(x) expresses the amount of belief that is allocated to x.
With every mass function, there are associated belief (bel) and plausi-

bility (pls) functions, which are mappings 2V → [0, 1] such that for any
e ∈ 2V , bel(e) =

∑
x∈2V ,x⊆em(x) and pls(e) =

∑
x∈2V ,x∩e6=∅m(x). The inter-

val [bel(e), pls(e)] contains the precise probability of e ⊆ V in the classical
sense. That is, bel(e) ≤ P (e) ≤ pls(e). It is known that pls(e) = 1− bel(ē),
where ē is the complement of e with respect to V .

Given two independent mass functions, we sometimes need to combine
them into a single mass function. This can be done using a number of
rules (e.g., Dempster rule [10], Yager’s modified Dempster rule [36], Inagaki’s
unified combination rule [20], Zhang’s center combination rule [38], Dubois
and Prade’s disjunctive consensus rule [16]). The best known is the Dempster
rule of combination, which is a generalization of the Bayes rule. This rule
strongly emphasises the agreement between multiple sources of evidence and
ignores the disagreement by the use of a normalization factor.
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Let m1 and m2 be two mass functions. The combined mass function,
obtained through the Dempster rule of combination, is m12 : 2V → [0, 1],
such that for any A ∈ 2V ,

m12(A) = 0, if A = ∅

m12(A) =

∑
B∩C=Am1(B)m2(C)

1−K
, A 6= ∅

where K =
∑

B∩C=∅m1(B)m2(C). The normalization factor, 1 − K, has
the effect of completely ignoring conflict and attributing any mass associ-
ated with conflict to the null set [39]. Consequently, this operation yields
counterintuitive results in the face of significant conflict present in certain
contexts.

3. A Systematic Derivation of Mass Functions

Many applications are data driven, such as those encountered in data
mining, where data samples (i.e., observations) are exploited to solve the
problem. If we can systematically derive a mass function from data we can
then apply the Dempster-Shafer theory to solve the problem. In what follows
we propose a general method for this purpose that is aimed to maximally
capture the available information in data.

3.1. Multivariate Data Space

The starting point of our investigations is a probability space< V,F , P >,
where V is a set or data space, F is a σ-field [3] on V called event space, and
P is a probability function P : F → [0, 1]. If V is finite, the power set 2V is
an event space over V . For different types of data, the notions of data space
and event space must be precisely defined.

Multivariate data are one of the commonly encountered forms of data. We
assume that the data space is defined by a set of attributesR = {a1, a2, · · · , an}.
The domain of attribute ai is denoted by dom(ai), but for simplicity we will
also use ai to represent the domain of attribute ai in equations assuming that
there is no risk of confusion. The multivariate data space is regarded as the

Cartesian product of the domains, i.e., V
def
=

∏n
i=1 dom(ai). A data set D is

a sample of V , that is, D ⊆ V .
We consider two types of attributes, numerical and categorical [29]. A

numerical attribute has an inherent order defined over its domain, and the
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operations allowed there are equality, inequality, ‘greater than’, ‘less than’,
addition, subtraction, multiplication and division. A categorical attribute
has no order defined over its domain, and the only operations allowed are
equality and inequality. For simplicity, we assume the domain of any at-
tribute is finite unless otherwise stated. In the case of numerical attributes,
we assume their domains are discretized and then represented as natural
numbers.

An element t ∈ V is a simple tuple t
def
= 〈t1, t2, · · · , tn〉, where ti ∈

dom(ai). We consider a generalized tuple h =< h1, h2, · · · , hn > where
hi ⊆ dom(ai) if ai is categorical, and hi is an interval over dom(ai) if it is
numerical. Such a generalized tuple is called a hypertuple over R [32]. We
consider the event space as the set of all hypertuples. It can be shown that
this set is a σ-field on V . More formally, F =

∏n
i=1Fi, where Fi is the power

set over dom(ai) if ai is categorical, and Fi is the set of all intervals over
dom(ai) if ai is numerical.

Consider two hypertuples h1 and h2, where h1 = 〈h11, h12, · · · , h1n〉 and
h2 = 〈h21, h22, · · · , h2n〉. The hypertuple h1 is covered by h2 (or h2 covers
h1), written h1 ≤ h2, if for i ∈ {1, 2, · · · , n},{

min(h2i) ≤ x ≤ max(h2i) for all x ∈ h1i if ai is numerical

h1i ⊆ h2i if ai is categorical

3.2. Deriving mass functions

We consider a general multivariate data space V as specified in Section
3.1. The frame of discernment is taken to be the event space F , the set
of all hypertuples in the given multivariate data space V . This frame of
discernment F is clearly more general than the classical power set.

Let D be a data set – being regarded as a set of simple tuples. For any

e ∈ F , we let eD def
= {x ∈ D : x ≤ e}, i.e., the set of all elements of D that

are covered by e.

Definition 2. We define a function m̄ : F → [0, 1] such that for any e ∈ F ,

m̄(e)
def
=
|eD|
M

, (1)

where M =
∑

x∈F |xD| is a normalization factor.
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Clearly, function m̄ is a mass function over F . In addition to the two
properties required in the standard definition of mass function (Def.1), the
mass function defined in Def.2 comes with the following additional properties:

Lemma 1. Consider x, y ∈ F .

• m̄(x) ≤ m̄(y) if x ⊆ y. Therefore m̄(V ) is maximal. Note that V ∈ F .

• m̄(x ∪ y) = m̄(x) + m̄(y)− m̄(x ∩ y)

Computing eD is straightforward. To compute M by definition, we need
to go through all elements in F – this is clearly expensive in computational
terms. In fact, the computational complexity is exponential in the size of V .
Fortunately, as is shown in [33], computing M can be done by computing
c(e) for all e ∈ F , which is the number of all elements in F that cover e, i.e.,
c(e) = |{x ∈ F : e ≤ x}|. More importantly, as is shown in [33], c(e) can be
computed efficiently as follows:

Lemma 2 ([33]). For e ∈ F , the number of hypertuples covering e is c(e) =∏|R|
i=1 c(ei). Note that R is the set of all attributes that define the data space.

Lemma 3 ([33]). For e ∈ F and ai ∈ R,

c(ei) =


(max(ai)−max(ei) + 1)× (min(ei)−min(ai) + 1),

if ai is numerical

2|ai|−|ei|, if ai is categorical

where max(ai) is the maximal value in the domain of attribute ai, and max(ei)
is the maximal value in ei, which is a subset of the attribute’s domain.

We can then compute M as follows:

Lemma 4 ([33]). Let V , F and D be given as above. Then M =
∑

x∈D c(x).

This lemma states that, although F may be very large (i.e., the power set
of V ), M can be computed by looking at all elements in D and aggregating
their c values, which can be computed in a constant time regardless of the
size of D or V . Consequently, the mass function, as defined in Def.2, can
be derived systematically. It is shown in [33] that under such mass function,
the belief functions can be computed in polynomial times. It is however
open how to combine the different mass functions derived in this way. This
question is answered in the next section.
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4. Combining mass functions

Consider two mass functions m̄1 and m̄2 that are derived from two data
sets D1 and D2, respectively. We can state this fact by using notation
m̄i = r(Di) or alternatively, Di = r−1(m̄i), where r represents the proce-
dure implied by Eq.(1) to construct a mass function from a data set.

The data sets D1 and D2 are assumed to be homogeneous in the sense
that they are samples from the same data space (i.e., they are characterised
by the same attributes). The data sets can be understood as observations
from different perspectives (i.e., different sensors of the same type).

Since the two mass functions are derived from data samples, we can com-
bine them by first merging the data samples and then deriving a new mass
function from the merged sample. Therefore, conceptually, the mass func-
tions can be combined as follows:

m̄
def
= m̄1 ⊕ m̄2 = r(D1 ∪D2) = r(r−1(m̄1) ∪ r−1(m̄2))

Technically, the mass functions can be combined as follows. Let D = D1∪D2.
For e ∈ F ,

m̄(e) =
|eD|
M

=
|eD1|+ |eD2 |
M1 +M2

=
m̄1(e)M1 + m̄2(e)M2

M1 +M2

(2)

It is clear that this combining procedure is efficient since Mi can be com-
puted efficiently according to Lemma 4, and m̄i(e) is available for every
e ∈ F .

5. An illustrative example

To illustrate the combination method, we consider a data space defined
by two attributes a1 and a2 that have the same domain {1, 2, 3, 4, 5}. Two
data samples, D1 and D2, are shown in Table 5.1, each of which corresponds
to a mass function as defined according to Eq.(1). The attributes can be
categorical or numerical, and we will look at both cases separately.

5.1. Numerical case

We assume that both attributes are numerical. Then the two data sam-
ples, along with the union of them, can be displayed in 2D grids as in Figure
5.1. Each unit square represents a simple tuple, which is the coordinate of
the square.
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a1 a2

t11 3 2
t12 2 3
t13 4 4
t14 5 4
t15 4 5

D1

a1 a2

t21 3 2
t22 3 3
t23 3 4
t24 4 2
t25 4 3

D2

Table 5.1: A toy example.

D1 D2 D1 +D2

Figure 5.1: Data samples displayed in the same data space

• All hypertuples: It is not difficulty to note that there are 15 intervals
in Fi for every attribute, which are [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [1, 2],
[2, 3], [3, 4], [4, 5], [1, 3], [2, 4], [3, 5], [1, 4], [2, 5] and [1, 5]. As a result,
there are 15×15 = 225 hypertuples in F . An example is 〈{2, 3}, {4, 5}〉,
which is generated by two intervals, {2, 3} and {4, 5}, from the two
attributes.

• All hypertuples that cover e: Consider e = 〈{3, 4}, {2, 3}〉. According
to Lemma 2, there are (5−4+1)× (3−1+1) = 6 intervals in attribute
a1 that can be used to construct a hypertuple that covers e, namely
{[3, 4], [3, 5], [2, 4], [2, 5], [1, 4], [1, 5]}. Similarly, there are 6 intervals in
attribute a2, which are {[2, 3], [2, 4], [2, 5], [1, 3], [1, 4], [1, 5]}.
As a result, there are 6×6 = 36 hypertuples that cover e. One example
is 〈[3, 5], [2, 5]〉, which is generated by intervals [3, 5] and [2, 5] in a1 and
a2.
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• Normalization factors M1 and M2: According to Lemma 4 we have

M1 =
∑
x∈D1

c(x) = c(t11) + c(t12) + c(t13) + c(t14) + c(t15)

= 9 ∗ 8 + 8 ∗ 9 + 8 ∗ 8 + 5 ∗ 8 + 8 ∗ 5 = 288

M2 =
∑
x∈D2

c(x) = c(t21) + c(t22) + c(t23) + c(t24) + c(t25)

= 9 ∗ 8 + 9 ∗ 9 + 9 ∗ 8 + 8 ∗ 8 + 8 ∗ 9 = 361

• Mass functions m̄1 and m̄2: Since there are 225 hypertuples in the
data space and both functions are defined over the same data space,
the mass functions are defined for all 225 hypertuples. Consider e =
〈{3, 4}, {2, 3}〉 again.

m̄1(e) =
eD1

M1

=
1

288

m̄2(e) =
eD2

M2

=
4

361

• Combined mass function m̄: Let m̄ be the combined mass function
from m̄1 and m̄2. According to Eq.(2) we have

m̄(e) =
m̄1(e)M1 + m̄2(e)M2

M1 +M2

=
5

649

• We can easily verify that if we merge D1 and D2 and follow the same
procedure, we will get the same mass function value for e.

5.2. Categorical case

Now we assume both attributes are categorical and go through the pro-
cedure on the basis of this assumption.

• All hypertuples: There are 25 = 32 subsets in each attribute that can
be used to generate hypertuples. As a result, there are 32× 32 = 1024
hypertuples.
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• All hypertuples that cover e: Consider e = 〈{3, 4}, {2, 3}〉. There are
23 = 8 subsets in attribute a1 that can be used to generate hypertuples
that cover e. There are the same number of subsets in attribute a2.
Therefore, there are altogether 8× 8 = 64 hypertuples that cover e.

• Normalization factors M1 and M2: According to Lemma 4, we have

M1 =
∑
x∈D1

c(x) = c(t11) + c(t12) + c(t13) + c(t14) + c(t15)

= 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 = 1280

M2 =
∑
x∈D2

c(x) = c(t21) + c(t22) + c(t23) + c(t24) + c(t25)

= 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 + 16 ∗ 16 = 1280

• Mass functions m̄1 and m̄2: The mass functions are defined for all 1024
hypertuples. Consider e = 〈{3, 4}, {2, 3}〉 again.

m̄1(e) =
eD1

M1

=
1

1280

m̄2(e) =
eD2

M2

=
4

1280

• Combined mass function m̄: Let m̄ be the combined mass function
from m̄1 and m̄2. According to Eq.(2), we have

m̄(e) =
m̄1(e)M1 + m̄2(e)M2

M1 +M2

=
5

2560

• We can easily verify that if we merge D1 and D2 and follow the same
procedure, we will get the same mass function value for e.

6. Generalisation of the new combination rule

If the mass functions in the sense of Def.2 are given by users, m̄ may
be undefined for some elements of F , thus leading to the problem of in-
completeness. Consequently, the combination function (2) may be limited.
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Therefore, we need to generalise this function by estimating m̄(e) for every
e ∈ F . Then we will be able to use function (2) to combine different mass
functions in cases of incompleteness (i.e., when the mass function is undefined
for some elements).

Definition 3. Let m̄ be a mass function, possibly given by a user. A gener-
alised mass function is m̄′ : F → [0, 1] such that, for e ∈ F

m̄′(e) =
∑
x∈F

m̄(x)
f(e ∩ x)

K

where K =
∑

e∈F
∑

x∈F m̄(x)f(e ∩ x), and f(e) is a measure function.
One possible form of this function is f(e) = |e|.

Lemma 5. The generalised mass function m̄′ defined above has the following
properties:

• m̄′(∅) = 0.

•
∑

e∈F m̄
′(e) = 1.

• m̄′(x) ≤ m̄′(y) if x ⊆ y.

• m̄′(x ∪ y) = m̄′(x) + m̄′(y)− m̄′(x ∩ y).

The proofs of these properties are straightforward. Based on the concept
of generalised mass function we can combine any mass functions, possibly
incomplete, according to the following combining rule:

Rule 1. Let m̄1 and m̄2 be two mass functions. The two mass functions
are combined to generate a new mass function m̄ : F → [0, 1] such that, for
e ∈ F ,

m̄(e) =
m̄′1(e)M1 + m̄′2(e)M2

M1 +M2

=

∑
x∈F m̄1(x)f(e∩x)

K1
M1 +

∑
x∈F m̄2(x)f(e∩x)

K2
M2

M1 +M2

=
∑
x∈F

m̄1(x)× f(e ∩ x)× α1 +
∑
x∈F

m̄2(x)× f(e ∩ x)× α2

where αi = Mi

(M1+M2)×Ki
for i = 1, 2. To some extent, αi (i = 1, 2) can be

understood as the weighting coefficients for the two mass functions.
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7. Some reflection from a data fusion perspective

Data fusion is the process of combining different sources of information to
improve the performance of a system. An obvious illustration of fusion is the
use of various sensors to detect a target. The different inputs may originate
from multiple sensors distributed over space, from a single sensor at different
moments, or even from experts who give their opinions on data. Fusion is
useful for many data analysis tasks such as detection, recognition, identifi-
cation, tracking, and decision making. These tasks may be encountered in
many application domains such as defense, robotics, and medicine.

The benefits of fusion include the following:

• Improved confidence in decisions due to the use of complementary in-
formation

• Improved performance of countermeasures (it is very hard to camou-
flage an object in all possible wave-bands)

• Improved performance in adverse environmental conditions.

Fusion processes are often categorized as low-, intermediate- or high-level
fusion depending on the processing stage at which fusion takes place [18].
Low-level fusion, also called data fusion, combines several sources of raw
data to produce new raw data that is expected to be more informative and
synthetic than the inputs. In intermediate-level fusion or feature-level fusion,
various features such as edges, corners, lines, and texture parameters are
combined into a feature map that may then be used for further processing.
High-level, also called decision fusion, combines the decisions of experts. In
practice, the applied fusion procedure is often a combination of the previously
mentioned three levels.

The Dempster-Shafer theory, in particular the rule of combination, is
often used for decision fusion [28, 4, 23, 22, 6, 7, 8, 24, 5, 2]. Other methods
for decision fusion include voting methods, statistical methods, and fuzzy
logic-based methods. Questions are still being asked why the decisions (from
experts) are combined as such.

The combination method presented in this paper is to some extent an
attempt to answer such questions. We assume that the mass functions are
systematically derived from data. Such a mass function can be regarded as
a generalised probability distribution, which can then be used for detection,
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recognition, identification, tracking, and decision making. Such a mass func-
tion can also be regarded as the decisions of ‘rational’ experts who base their
decisions on facts or data.

If we adopt the systematic derivation view of mass functions, combination
should naturally be conducted as follows: merge multiple data sets into a
single one, and then derive a new mass function from the merged data set.
Fortunately, as shown earlier, we do not need to keep all data sets from
different sources. We only need to know the mass functions, as is the case
in the Dempster-Shafer theory of evidence. Therefore, we believe that our
method of combination is sound in principle.

8. Conclusion

In this paper, we revisit the Dempster-Shafer theory of evidence. We first
review a recent development in the systematic derivation of mass functions
from multivariate data. We then proceed to consider the problem of how to
combine the mass functions thus derived.

For a multivariate data space, the frame of discernment can be taken to
be the set of all hypertuples. For a given sample of the data space, a mass
function can be derived such that for each hypertuple its mass is proportional
to the number of data items that are covered by the hypertuple. For two
mass functions derived in this way from different data samples of the same
data space, we combine the functions conceptually by first merging the data
samples and then deriving a new mass function from the merged data sample.
We presented a formula by which the combined mass function can be obtained
efficiently without having to merge the data samples in the first place.

In future work, we will apply the method to sensor data fusion in the
context of smart homes.
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