Noname manuscript No.
(will be inserted by the editor)

Design and Evaluation of an Ambient Assisted Living System Based on
an Argumentative Multi-Agent System

Andrés Muiioz - Juan Carlos Augusto - Ana Villa -

the date of receipt and acceptance should be inserted later

Abstract This paper focuses on Ambient Assisted Living
systems employed to monitor the ongoing situations of el-
derly people living independently. Such situations are repre-
sented here as contexts inferred by multiple software agents
out of the data gathered from sensors within a home. Sensors
can give an incomplete, sometimes ambiguous, picture of
the world, hence they often lead to inconsistent contexts and
unreliability on the system as a whole. We report on a so-
lution to this problem based on a multi-agent system where
each agent is able to support its understanding of the context
through arguments. These arguments can then be compared
against each other to determine which agent provides the
most reliable interpretation of the reality under observation.

Keywords Ambient Intelligence - Assisted Living -
Multi-Agent System - Argumentation

1 Introduction

Ambient Assisted Living (AAL) is an emerging area within
Ambient Intelligence [7] mainly aimed at enabling elderly
people to live more independently and for longer at their
homes. The monitoring of their activities through AAL sys-
tems allows the detection of undesired situations they might

A. Muioz - J. A. Botia

Dpto. de Ingenieria de la Informacion y las Comunicaciones
University of Murcia, C.P. 30100, Murcia, Spain

E-mail: amunoz@um.es|juanbot@um.es

J. C. Augusto

School of Computing and Mathematics

Computer Science Research Institute

University of Ulster, BT37 0QB Newtownabbey, United Kingdom
E-mail: jc.augusto@ulster.ac.uk

A. Villa

Ambiental Intelligence & Interaction, SLL (Ami2)

Ed. CEEIM Modulo 11, Campus Espinardo, 30100 Murcia, Spain
E-mail: ana.villa@ami2.net

Juan Antonio Botia

suffer. The notifications of these situations can be used to
trigger an emergency mechanism which eventually may help
in saving lives.

The design of AAL systems is normally based on the
use of infrastructures provided by Intelligent Environments,
see [2] for an example. Such infrastructures are composed
of physical devices for sensing and actuation coordinated
by a software layer which offers both an intelligent anal-
ysis of the information gathered through the devices and
an intelligent-decision making to drive the actuation of the
AAL system.

A recurrent problem these systems have to deal with is
the detection of complex, sometimes inconsistent, situations
from simple sensors events. For example, if the person does
not react to a door bell ring, it may indicate s/he has a se-
rious problem but it could also be simply because she is
having a bath. This paper proposes an AAL system based
on a multi-agent architecture responsible for analyzing the
data produced by different types of sensors and inferring
what contexts can be associated to the monitored person.
To this end, Semantic Web ontologies [3] are adopted to
model sensors events and the person’s context. The agents
use rules defined on such ontologies to infer information
about the current context. In case that agents discover incon-
sistent contexts, we use of argumentation techniques [4] to
disambiguate the situation by comparing the arguments each
agent creates to support their points of view. As a result, the
AAL system provides an effective monitoring platform even
in ambiguous situations.

The reminder of this paper firstly reviews related work
in the AAL area. The following section shows how sensor
events and contexts are represented by means of ontologies.
Next, the argumentative multi-agent architecture for the pro-
posed AAL system is explained. Finally, we show the results
of the system at work.

Andrés Muiioz et al.

2 Related Work

Intelligent Environments depend on artificial sensing. Cur-
rent state of the art in artificial sensing is still incomplete,
giving only a partial picture of an environment; unreliable,
due to technical faults or misplacing of sensors may mean
they do not deliver data continuously; and corrupted, inter-
ference of other devices may cause the deliverance of wrong
data. The frequency and harmful impact of these problems
on the system as a whole are relevant enough to be a matter
of concern within any intelligent environment.

Computer Scientists have encountered similar problems
in other real-time application domains, leading to the devel-
opment of methods to deal with uncertainty, ambiguity and
contradiction. Researchers in the area of Intelligent Environ-
ments have applied those methods to the problem of reason-
ing with “noisy” data based on fuzzy techniques, probabilis-
tic systems or Markov-based models [1]. These approaches
are eminently numerical and hence require the explicit esti-
mation and input of probabilities and specific numbers asso-
ciated to the diversity of possible situations expected in the
modeled system [11].

Our method based on argumentation [4] provides a com-
plementary approach to deal with uncertainty, ambiguity and
contradiction in Intelligent Environments. This approach is
more qualitative in nature than the aforementioned ones, and
therefore easier to be assessed by people who are less spe-
cialized on the intrinsic algorithms utilized in them. Argu-
mentation is modeled on the dialectical process followed
by humans when solving conflicting situations. Selection
amongst alternative viewpoints about a situation is based on
well-known logical abstract reasoning patterns as well as on
domain specific criteria (e.g., trust on the source of informa-
tion, objective statistics linked to a specific context, etc.).

3 Representing Events and Contexts in the AAL system

AAL systems rely on smart homes equipped with differ-
ent types of sensors to obtain information about the per-
son being monitored (occupant henceforth). Depending on
the events to be collected, and also on privacy and unob-
trusiveness issues, the sensors employed vary from simple
movement detectors, pressure pads in sofas and beds, on/off
switch sensors attached to electric appliances, taps, etc., to
video cameras (VC) that record symbolic information in-
stead of real images or accelerometers worn by the occu-
pant to indicate her position (i.e., standing up, sitting down
or lying down). The collected events are then utilized by the
AAL system to determine the occupant’s context.

In our AAL system, smart home structures, events and
contexts are represented by means of ontologies. They are
formal descriptions of domains through a set of concepts
and relationships between them. Specific situations in these

domains are modeled by means of assertions or statements
about instances of such concepts. OWL (Web Ontology Lan-
guage) [8] is the standard language adopted to describe on-
tologies in computational systems. In particular, the ontolo-
gies developed here for representing smart homes, events
and contexts are written in OWL DL, an expressive and de-
cidable version of this language (DL stands for Description
Logics). The rest of this section highlights the main charac-
teristics of the ontologies developed for our AAL system.

BathRoom
-room : Room location
-item : Item

Home

LivingRoom

/\

HomeElement attachedTo Sensor

-attachedTo : HomeElement
0.1 0.*
l Device l l Furniture l lMovemen(Sensorl lPressurePadl Other types of
|] [|

sensors, e.g., VCs,
‘ ‘ """ accelerometers,
MS_BthR

alarm and switch
sensors, efc.

L Pid
TV_LR Sofa_LR MS_LR

Fig. 1 A smart home ontology, SmartHome_Ont, partially represented
through an UML model.

Figure 1 depicts a simplified view of our ontology
SmartHome_Ont as a UML model. It is composed of con-
cepts that represent rooms, home elements and sensors along
with relationships among them. Gray boxes represent in-
stances of these concepts. This ontology allows the descrip-
tion of any smart home structure containing different ele-
ments and sensors. New types of sensors can be easily mod-
eled by extending the concept Sensor.

Events and contexts are represented by means of their re-
spective ontologies Event_Ont and Context_Ont depicted in
Fig. 2. Note that the definitions of both Event and Context
concepts are based on SmartHome_Ont concepts (relation-
ships with such concepts are not shown here for simplicity).
Let us explain these two concepts.

Firstly, the concept Event (see Fig. 2(a)) represents each
event with the type of sensor producing it, the room and/or
element where it is detected, its value and a time stamp. Note
that there is a specific kind of event for each type of sensor
given in SmartHome _Ont. The current version of Event_Ont
contains concepts to represent events from movement sen-
sors, pressure pads, switch sensors, accelerometers, VCs,
light sensors and alarm sensors, the latter generating unat-
tended events to indicate an action which has not been per-
formed by the occupant within the expected time, e.g., an-
swering a phone call or a door bell ring.

Each specific instance of Event is represented with a
unique ID, e.g. evy, and it is associated to the corresponding
type of event through a conceptual assertion, e.g. Mov_Ev(ev)

Design and Evaluation of an Ambient Assisted Living System Based on an Argumentative Multi-Agent System 3

Event

-sensor[1] : Sensor 0.*
-location[0..1] : Room

hasEvent

Context

-hasEvent[0.."] : Event
-hasLocation[0..1] : Room

-element[0..1] : HomeElement
-value[1] : Any
-timestamp[1] : Date

Pressure_Ev

Mov_Ev

-hasPosition[0..1] : {"SitDown", "LieDown",
"StandUp™, "Unknown"}

l Patte‘rnctx l l NOM(‘)VC(X l lAsses‘sedCtxl

l ‘ l-noMovTime :{normal, exceeded}‘ l ‘

-sensor : MovementSensor | [-sensor : PressurePad : [

-value : {0,1} -value : {0,1}

a) Event_Ont

-sleepingTime : {normal, | [-relaxTime : {normal, -bathTime : {normal, _ _
lexceeded} exceeded} exceeded} T T
S ---72
Disjoint AN
b) Context_Ont Concepts

Fig. 2 Partial UML representations of Event_Ont(a) and Context_Ont(b) ontologies.

given that ev; has been obtained from a movement sensor. Its
attributes are stated through binary relational assertions, e.g.
value(ev,0) and location(ev|,Bedroom) indicate that no
movement has been detected in the bedroom.

Secondly, the concept Context represents the current
occupant’s situation (see Fig. 2(b)). The multi-valued at-
tribute hasEvent associates each context with the set of
events happening in it. Moreover, this concept also indicates
the occupant’s location and position. A context can be spe-
cialized in PatternCtx, NoMovCtx and AssessedCtx sub-
types. Thus, a pattern context refers to those deduced from
a combination of events —possibly in a specific order— and
occupant’s location and position that match with an activ-
ity pattern, e.g. sleeping, watching TV, etc. Note that these
contexts have an attribute to indicate if the normal amount
of time expected for that activity has been surpassed. On
the other hand, NoMovCtx represents a situation where no
movement is detected in the occupant’s location, also with
an attribute to indicate the amount of time in this situation.
Besides, a context can be assessed as safe or unsafe to in-
dicate whether the occupant could be in a problematic sit-
uation or not. Section 4 shows how context information is
implied by the multi-agent architecture of the AAL system.

Each instance of Context has a unique ID, e.g. Ctxy,
and its types are stated through conceptual assertions, e.g.
Sleeping(Ctx;). The set of events and the occupant’s lo-
cation and position associated to a context are stated through
relational assertions, e.g. hasEvent (Ctxy,evy).

In our system, a context can have at most one assessment
type and one occupant’s location and position. If the same
context is classified as safe and unsafe, or more than one lo-
cation or position has been detected in it, an inconsistency
arises in the system. This inconsistency is automatically de-
tected due to the formal features of the OWL DL language,
which allows to define the concepts Safe and Unsafe as
disjoints. Similarly, the attributes hasLocation and has-
Position are declared to be functional, i.e., they can have
at most one value for the same context.

It is important to clarify that the context information is
assumed to be obtained when the occupant is the only person
detected at home. Therefore, if the occupant leaves the house

or more than one person is known to be at home, the AAL
system notifies it to the caregivers and switches to a standby
phase until the occupant is detected to be the only person at
home again. These cases are handled by sensors in the main
door not explained here.

Using OWL DL ontologies to represent smart homes,
events and contexts has multiple advantages: (a) it allows
an expressive modeling of this information, (b) the ontolo-
gies are used as a mechanism to share knowledge within the
multi-agent architecture of the AAL system in a standard
manner, and (c) their formal features enable the validation
of the knowledge held in the system in order to detect con-
flicting contexts.

4 Argumentative Multi-Agent Architecture

This section explains the AAL system architecture to eval-
uate the occupant’s context out of the collected sensor data.
To this end, a distributed inference process is performed by
agents taking into account the occurrence of conflicting con-
texts, solved by argumentation. Next we provide a brief in-
troduction on the underlying argumentation theory and the
design of the argumentative multi-agent architecture.

4.1 Background on Argumentation Systems

Argumentation systems differ from other knowledge sys-
tems on the capability of generating justifications —i.e.,
arguments— to support inferences which can, potentially, be
inconsistent. The use of heuristics allows to take decisions
on any inconsistency detected by establishing which argu-
ment is more believable. For technical and formal details
about the definitions and the argumentation process described
here, the reader is referred to [9].

In the context of our argumentation system, an argument
is defined as the justification for an assertion through a de-
ductive inference process. Thus, we define an argument as
(¢,S), where ¢ is the conclusion, i.e. the assertion being jus-
tified, and S={ P, r} is the support set of ¢, i.e., a set of asser-
tions @ and a rule r such as @ is the minimal set that fulfills

Andrés Muiioz et al.

the antecedent of » so as its consequent is instantiated to ¢
(we assume rules with only one consequent). Assertions and
rules are expressed using the vocabulary on events and con-
texts modeled through the ontologies described in Section 3
(some examples of arguments will be given in Section 4.2).
Henceforth we will use Ay, Ay, ..., to denote arguments.

Due to the formal features in the OWL DL ontologies
used to express arguments, the agents of the AAL system are
able to automatically process such arguments in order to de-
tect conflicts between them. Thus, an argument A;=(¢,Sy4,)
is in conflict with an argument A»=(¢,S4,) by rebutting or
undercutting it. In the first case, the union of their conclu-
sions ¢ and ¢ produces an inconsistency in the ontology.
In the second case, the union of ¢ and one assertion of Sy,
produces the inconsistency.

Apart from the notion of conflict between a pair of argu-
ments, it is also necessary to define the defeat relationship
among them, i.e., which argument is more plausible. Thus,
A1 can defeat (is more plausible than) A; in two ways: (1)
when A1 undercuts A, since this attack invalidates a premise
needed by A to support its conclusion; and (2) A rebuts A,
and besides A is preferred to A, according to some criteria
and A, does not undercut A;. There exist several types of cri-
teria to decide which argument is more plausible when they
are rebutting each other, such as specificity of information
contained in the premises, rule precedence or agent priori-
ties [4]. Sections 4.2.2 and 4.2.3 show the criteria we use in
the AAL system for rebutting arguments.

Finally, notice that the defeat relationship is defined for
two arguments solely. Since a defeating argument can be de-
feated by another argument and so on, it is also needed a
procedure to establish the eventual status of each argument
on the basis of all interactions among them. To this end we
build a tree that represents all the relationships among argu-
ments. Its root contains the argument A; whose status needs
to be determined. Such a tree is evaluated by means of an
algorithm which marks each argument in the tree as in or
out according to its defeat relationships (see [9] for details).
Ay is accepted if the root is labeled as in, and rejected if the
root is labeled as out. It is also possible to find Ay as un-
decided when the status of the root cannot be determined,
i.e., its evaluation depends on arguments which either are
incomparable or have an equal strength.

4.2 Architecture Design

The AAL system architecture is organized into three lay-
ers: Event Management System (EMS), Context, and As-
sessment. Fig. 3 shows the overall architecture. The rest of
this section describes each layer in detail.

Assessment Layer Situation Report

Contexts
Registry

7. Assessed Ctx_i

§ <
D) ! . 5.ctx_i active times s
Assessment Timers

Module

Assessment Conflicts?
Compare arguments

6. Ctx_i: Safe/Unsafe?

Assesment
Rules

Agent (AssesA)
A
Context Layer 4. Ctx_i + loc/pos +
— NoMovCtx +
" PatternCtx
Simple Context Complex Context
Agents Agents
< < 2. 3l "
Location Position | Ctx_i Cxiv | Nomov L - L
Context Context lealpes Ctx = Pattern Pattern
Agent Agent Pattern cix2 CtxN
(LCA) (PCA) Ctx1
(B) C)
~
2r g) 3
Location/Position Conflicts? b
Compare arguments |
Context
Aggregator (Handle contexts Ctx_i
Agent (CAA) in Context_Ont format)
Event Management
System (EMS) Layer l.evi

(in Event_Ont
Sformat)

()]

Events
Registry

Smart Home
Sensors

)

(e i:)) (A)

Fig. 3 Argumentative multi-agent architecture for the AAL system.

4.2.1 EMS Layer

This layer is in charge of receiving raw data from sensors
and converting them into events represented according to
the ontology Event_Ont. To this end, each type of sensor
is associated to a software adapter that transforms its val-
ues into semantic annotations. The adapters are registered
in the Event Management System (see (A) in Fig. 3), which
generates the corresponding ontology assertions to represent
events from the semantic annotations. In order to obtain the
location and house object associated to an event, the EMS
queries the SmartHome_Ont ontology to retrieve such infor-
mation according to the sensor which generated the event.

Once a new event has been generated, the EMS stores
it in the Event Registry to keep a log of events. Finally, the
EMS notifies the Context Aggregator agent about the new
event (see step 1 in Fig. 3), which determines the occupant’s
context as explained in the next section.

4.2.2 Context Layer

This layer obtains information about the occupant’s context.
As shown in Section 3, such information includes the occu-
pant’s location and position along with more complex situ-
ations such as to be sleeping, to be resting on the sofa, etc.
Note that this layer only generates a picture of the current

Design and Evaluation of an Ambient Assisted Living System Based on an Argumentative Multi-Agent System 5

context, while its evaluation as safe or unsafe is performed
in the Assessment Layer to be explained in the next section.

Our approach to obtain the information related to a con-
text is to use a different agent for managing each type of in-
formation. In particular, we will have an agent to infer loca-
tion information, another one for position information, one
agent for each pattern context specified in Context_Ont (see
Fig. 2(b)), and a final one to discover the absence of move-
ment in the occupant’s location. These agents own the spe-
cific knowledge to infer the required information and build
arguments supporting it. As a result, the task of obtaining
context information is executed in a distributed and efficient
manner, and it can be easily extended with more agents to in-
fer new information. Let us now see the process performed
in this layer to infer the occupant’s context.

Firstly, the Context Aggregator Agent (CAA) uses Con-
text_Ont to represent the current context as follows. It starts
creating an instance Ctx; of the concept Context when a
new event ev; is received from the EMS, where i is the se-
quence index of these elements. In this manner, CAA creates
a new context to represent the situation given by the arrival
of a new event. Then, Ctx; is associated to its set of events
Ev; using the relationship hasEvent, where Ev; contains ev;
and all the events of the previous context Ctx;_;, contained
in Ev;_1, that are not updated by ev;. Update of events ap-
pears when ev; and one event evy in Ev;_| are produced by
the same sensor and they indicate different values. For ex-
ample, if ev; and ev; are generated by the movement sensor
in the bedroom with values 1 (movement detected) and O (no
movement detected) respectively, then ev; updates ev;.

Once the current context Ctx; has been generated, the
CAA sends it together with its associated set of events to
the Simple Context Agents group (see (B) and step 2.1 in
Fig. 3). This group is composed of the Location Context
Agent (LCA) and Position Context Agent (PCA), which are
responsible for inferring the respective occupant’s location
and position according to their rules. Hence, LCA has the
next two rules to determine the occupant’s location based
on movement sensors and pressure pads (it has other rules
based on other types of sensors):

Ric1 : Context(?c) AhasEvent(?c,?e) AMov_Ev(?e) A
value(?e,1) Alocation(?e,?]) = hasLocation(?c,?)

Ric2 : Context(?c) AhasEvent(?c,?e) APressurePad_Ev(?e) A
value(?e,1) Alocation(?e,?]) = hasLocation(?c,?)
Agents’ rules are defined with assertions expressed by
means of concepts and relationships given in Context_Ont
and Event_Ont. They are composed of an antecedent ex-
pressed as a conjunction (A) of such assertions with vari-
ables, denoted with ’?’, and a consequent with one asser-
tion. If all assertions in the antecedent are matched with the
context information maintained by the corresponding agent,
the assertion in the consequent is inferred instantiating its
variables with the matching values used in the antecedent.

These rules are evaluated by a rule engine included in each
agent. Details about the specific implementation of this kind
of rules and rule engine are given in Section 5.

Now, supposing LCA receives the context Ctx; contain-
ing the event Mov_Ev(ev;) from the movement sensor in the
hall with value 1, it builds the following argument:

Apci : (hasLocation(Crx;,Hall),
{Context(Ctx;),hasEvent(Ctx;,ev;),Mov_Ev(ev;),
value(evj,1),location(ev;,Hall),Ric1})

After receiving the LCA’s arguments with the inferred
location for Ctx; (see step 2.1I in Fig. 3), the Context Ag-
gregator Agent has to handle one of these three situations:
(a) no location information has been inferred, then Ctx; is
associated to the location in Ctx;_1; (b) a unique location
has been inferred, then Ctx; is associated to it; (c) more than
one location has been inferred, then CAA uses the received
arguments for each location to decide which one should be
associated to Crx;. Note that the case (a) happens when Ctx;
does not have enough events to discover a location, while
the case (c) happens when it has two or more events gen-
erated by sensors that enable different locations being in-
ferred, e.g., movement sensors, pressure pads or VCs. As an
example of this latter case, suppose that Ctx; also contains
the event PressurePad Ev(ev;) from the sofa in the liv-
ing room with value 1. Then, LCA generates the following
argument Ay for that location through the rule Ry ¢;:

Apcy @ (hasLocation(Ctx;, LivingRoom),
{Context(Ctx;),hasEvent(Ctx;,ev;), PressurePad Ev(ev;),
value(evy,1),location(evy, LivingRoom),Rica})

Note that A;¢; and A; > rebut each other since their con-
clusions violate the functional restriction of hasLocation
for the context Ctx; according to the Context_Ont ontology.
CAA detects this kind of conflicts using an OWL DL rea-
soner to validate the location assertions received from LCA.
Location inconsistencies may be caused for many reasons
like temporary malfunctions or bad positioning of sensors.
For example, a movement sensor in a room A may be trig-
gered by the occupant whilst still at another room B but near
the door connecting both rooms. To solve these inconsis-
tencies, CAA compares the arguments received for each in-
ferred location using the argumentation process explained in
Section 4.1 and considering the type of event in the premises
of each argument as the criterion to decide which argument
is the most reliable. For example, a criterion can state that
locations inferred by events produced by a VC are more reli-
able than the ones based on pressure pads events, and in turn,
these are more reliable than those inferred by movement sen-
sor events. As a result, argument A, is more reliable than
argument Ay ¢, and the location for Ctx; is believed to be
the living room. If all the arguments supporting conflicting
locations are equally reliable, then Ctx; is associated to the
location in Ctx;_1. The use of additional information such
as the time stamp of events and the frequency of conflicts

Andrés Muiioz et al.

related to the same type of event —denoting a malfunction of
a sensor— are being currently taken into account in argument
evaluation. The entire process described for inferring loca-
tion information is similarly performed by PCA to generate
position information using VCs and accelerometers, consid-
ering VC triggered events more reliable than accelerometer
triggered events in case of conflict.

The next step is to determine some more complex in-
formation about the current context, the occupant’s activ-
ity. To this end, CAA sends Ctx; along with its inferred lo-
cation/position information to the Context Complex Agents
group (see (C) and step 3.1 in Fig. 3). Each of the agents in
this group is responsible for inferring a PatternContext
type of Ctx; as the ones shown in Fig. 2(b). Depending on
whether the pattern can be recognized as a combination of
events happening at the same time or as an ordered and
temporal sequence of events, the agent’s knowledge for it
is expressed as a rule or as a finite state machine (FSM),
respectively. As an example of the first case, the pattern
RelaxingSofa, which represents the occupant reading, hav-
ing a nap, etc. in the sofa placed in the living room, is in-
ferred by an agent owning the following rule (similar rules
including position information, TV on/off events, etc. may
be also defined to obtain a more accurate context):

Rrxsofa : Context(?c) Ahaslocation(?c, LivingRoom) A
hasEvent(?c, %) APressurePad Ev (%) Avalue(?e,1) A
element(?e,SofaLivingR) = RelaxingSofa(?c)

PatternCtx agents based on rules generate arguments for
the entailed activity in the same manner LCA and PCA do.
Thus, the previous agent will create an argument in the form
ARxsofai(RelaxingSofa(Crx;),{...}) when such a context
Ctx; satisfies the rule above. At the moment we have de-
fined pattern contexts which are mutually exclusive, includ-
ing those entailed through FSMs as explained next. There-
fore, it is assumed that only one activity is associated to the
current context and no conflicting activities can be detected.

Regarding the FSMs used in PatternCtx agents, they rep-
resent the sequence of situations —states in an FSM- to rec-
ognize an activity. In this paper we introduce them in an
informal manner. Each FSM is composed of an initial state
that indicates the starting situation of the activity, followed
by zero or more intermediate states to represent the situa-
tions that lead to its recognition, next a triggering state that
indicates when such an activity has been recognized, and
finally an end state to indicate when it exits from being ac-
tive. The transition from a state S to the next state S, is per-
formed when S is fulfilled. It occurs when the current Ctx;
contains occupant’s location/position information and a set
of events that match the situation described in such a state.
While an FSM is in the triggering state, its agent notifies the
recognized activity pattern to the Context Aggregator Agent.
When the end state is reached, the agent stops notifying this

activity and the FSM is reset. Two descriptions of FSMs de-
veloped in the system are given next.

The first FSM recognizes the context HavingBath (here
we use sensors which indicate the states of the bath tap and
bath drain as open or closed). It is composed of an initial
state representing the occupant located in the bathroom, fol-
lowed by an intermediate state where the bath tap is opened
and the bath drain is closed, after a few minutes the trigger-
ing state is reached when the bath tap is closed, and finally
the end state is detected when the bath drain is opened. Ob-
serve that the triggering state —i.e., to close the bath tap—
may have a time-limit condition for fulfilling it. If it is sur-
passed, the agent in charge of this FSM indicates this situ-
ation generating an unattended event for the bath tap (e.g.,
the bath is open for more than a limit of six minutes, due
to the occupant has forgotten she was going to have a bath).
The detection of the context Sleeping is also based on an
FSM, which sequence of states starts with the occupant lo-
cated in the bedroom, followed by the activation of the bed
pressure pad, and reaching the triggering state when the bed-
room lights are switched off. It changes to the end state when
the lights are switched on or the bed pressure pad is released.

Apart from PatternCtx agents, there is also an agent in
the Complex Context Agents group for inferring the context
NoMovCtx, which represents the absence of movement in
the room where the occupant is located in (see Section 3).
To this end, this agent has the following rule:

Rnum : Context(?c) AhasLocation(?c,?l) AhasEvent(?2c,?e) A
Mov_Ev(?e) Avalue(?e,0) Alocation(?e,?!) = NoMovCtx(?c)
Assuming that the location of the context Ctx; is stated in
the living room and it has a movement sensor event evy; with
value 0, this agent generates the next argument for Czx;:
Anm @ (NoMovCtx(Ctx;),{Context(Crx;),
hasLocation(Ctx;, LivingRoom), hasEvent (Ctx;, evy),
Mov_Ev(evy),value(evg,0),location(evy, LivingRoom),Ryy })

Once CAA has received all the information inferred by
the Complex Context Agents group, it sends the current con-
text Ctx; with location/position information and the detected
pattern activity and/or lack of movement to the Assessment
Agent (see step 4 in Fig. 3), which establishes the safety of
such a context as explained in the next section.

4.2.3 Assessment Layer

This layer evaluates the contexts received from CAA to de-
cide whether the occurrence of unattended events —e.g., a
door bell ring not answered— or an unusually prolonged lack
of activity indicate the occupant may be experiencing a prob-
lem —e.g., fainted or feeling unwell- (unsafe contexts) or are
due to other reasons —e.g., having a bath or sleeping— (safe
contexts). Assessment of contexts is performed by the As-
sessment Agent (AssesA, see (D) in Fig. 3), which uses a
timer module and a set of assessment rules to this end, apart

Design and Evaluation of an Ambient Assisted Living System Based on an Argumentative Multi-Agent System 7

from the context information provided by the Context Ag-
gregator Agent.

Firstly, AssesA calls the timer module to monitor the
amount of active time of the PatternCtx and NoMovCtx
situations associated to the received context (see step 5 in
Fig. 3). The aim of this module is to control an excess of the
expected times for such situations to be active, which may
indicate an unsafe context (e.g., a fall could cause an exces-
sive time for NoMovCtx). There are several approaches to
calculate these times, depending on the daytime, occupant’s
location, etc. The interested reader is referred to [5] for de-
tails on these approaches.

While the monitored situations hold and their timings
are normal, AssesA adds the assertions sleepingTime(Ctx;,
normal), noMovTime(Ctx;,normal), etc. for each received
Ctx; (see Section 3 for details about these relationships). If
a new context arrives in which a monitored situation does
not hold any more, its timer is discarded. On the other hand,
when a timer reaches zero, the timer module notifies As-
sesA and the agent updates the corresponding time attribute
with the value exceeded. For example, assuming that the
timer for sleeping reaches zero in the context Ctx;, then As-
sesA states sleepingTime(Ctx;, exceeded).

When a new context arrives or it is changed by a timer
notification, AssesA evaluates it by means of assessment
rules (see step 6 in Fig. 3). These rules are divided into two
groups according to the descriptions given at the beginning
of this section: Unsafe-situation (US) rules to entail a con-
text as unsafe, and Safe-situation (SS) rules to entail it as
safe. Thus, the following rules belong to the US rule set:

Rysi : NoMovCtx(?c) AnoMovTime(?c, “exceeded”) = Unsafe(?c)

Rys : Context(?c) AhasEvent(?c, %) AUnatt_Ev(?e) = Unsafe(?c),

indicating that a context with an excessive lack of movement
(Rys1) or unattended events (Rys2) is unsafe.

Whilst US rules express general situations deemed as
unsafe, SS rules are defined as exceptions to them by adding
new information that turns the context evaluation as safe.
The following rules belong to the SS rules set:

Rgs1 : NoMovCtx(?c) AnoMovTime(?c,“exceeded”) N
Sleeping(?c) AsleepingTime(?c, “normal”) = Safe(?c)

Rss : Context(?c) AhasEvent(?c,?e) AUnatt_Ev(?e) A
element(?e,doorBell) ANHavingBath(?c) = Safe(?c)

They can be considered as exceptions to the previous US
rules. Rule Rgg; indicates that an excessive lack of move-
ment is safe if the occupant is in a normal-time sleeping
context, where Rgs»> entails an unattended door bell ring as
safe if the occupant is having a bath.

AssesA builds different arguments through assessment
rules to establish the safety of each context. Since arguments
based on SS and US rules rebut each other, conflicting sit-
uations arise when both types of arguments are generated.

For instance, an unattended door bell ring in a context Ctx;
generates the argument Aysy=(Unsafe(Ctx;),{...,Rys2}).
However, if it is also known that the occupant is having a
bath, the argument Agsp=(Safe(Ctx;),{...,Rss2}) is created
to indicate that it is a normal behavior not to open the door
in that situation.

AssesA detects these conflicts of assessments —using an
OWL DL reasoner— since the concepts Safe and Unsafe
are mutually exclusive in the Context_Ont ontology. Such
conflicts are solved by using precedences among the rules
employed in the arguments. Thus, an SS rule is more preva-
lent than a US rule if it is declared as an exception to the
latter, since the SS rule contains more information. This cri-
terion is related to a well-known comparison mechanism in
argumentation called specificity [4]. Following the example
above, Agsy is more prevalent than Aysy since Rgsy is an
exception to Rysy. As a result, Crx; is eventually evaluated
as safe. Contrarily, if an argument Ayg claiming an unsafe
context is rebutted by an argument Ags whose rule is not an
exception to the rule in Ay, then Ay is more prevalent than
Ags and the context is stated as unsafe. In case that there is
not enough information to classify a context as safe nor un-
safe, it is considered that no problems have been detected.

Finally, AssesA registers each evaluated context in the
Context Registry and generates a report indicating its safety
type (see step 7 in Fig. 3). The arguments for each context
are also included in the report in a suitable form to give a
human-readable explanation of why the context has been de-
duced as safe or unsafe. In case of an unsafe context, Ass-
esA notifies the caregivers through the corresponding mech-
anisms, e.g., via SMS or a phone call.

5 Evaluation

The AAL system proposed here has been deployed and eval-
uated within the Alerting Intelligent Devices project (DIA
for its Spanish acronym) developed at the Ami2 company.
The main goal of DIA is to use smart environments to detect
alterations in the occupant’s behavior and thus alerting to
possible problems. A pilot study was performed in the first
stage of this project aimed to detect periods of inactivity at
home which may indicate some problems, e.g., the occupant
has suffered a fall or stroke. However, these periods could
occur because she is relaxing in the sofa or sleeping, which
are situations to be detected as safe in this first stage.

The tests executed in the study consisted in monitoring
three occupants living for one month in homes equipped
with movement sensors in all rooms, pressure pads in beds
and sofas, a light sensor in the bedroom, and a sensor in
the main door to indicate if the occupant leaves/enters the
house. A simple automaton and a set of timers were used in
the pilot study to detect excessive inactivity (see [5] for de-
tails). Here we use the sensor data collected in this study to

Andrés Muiioz et al.

reproduce them in our proposed AAL system with the aim
of evaluating it. The next sections discuss the deployment of
the system and the obtained results.

5.1 Deployment of the AAL system

The EMS of this system, implemented through OCP (Open
Context Platform) [10], is an ontology-based context mid-
dleware which is able to handle sensor data and transform
them into ontology assertions by using sensor adapters and
the SmartHome_Ont ontology. OCP is based on the Jena
framework [6] and its TDB store, a high-performance ontol-
ogy repository able to manage large numbers of assertions
in an efficient manner. OCP offers a subscription mechanism
to notify about new arrivals of events, which is used by the
Context Aggregator Agent.

Regarding the multi-agent architecture, it has been de-
veloped using JADE!, a well-known agent framework that
fosters the creation of agents and communication tasks. All
the agents use Jena ontology models kept in main memory
to store the assertions about the current context. Agents’
rules are written in the Jena rule syntax (see [6] for de-
tails) and they are evaluated using the Rete rule engine avail-
able in Jena, whereas FSMs are represented by means of
JADE FSM behaviors. Besides, agents CAA and AssesA are
equipped with the OWL DL reasoner Pellet [12] to detect
conflicting contexts by validating them according to Con-
text_Ont (the use of an OWL DL reasoner is necessary since
the Jena rule engine is not oriented to validate ontologies).

The particular multi-agent architecture deployed for the
DIA project is composed as follows. Apart from CAA, we
have developed an LCA in the Simple Context Agents group
with the two rules Ryc; and Rpco given in Section 4.2.2.
The Complex Context Agents group includes two Pattern-
Ctx agents, one for the context RelaxingSofa containing
the rule Rgyso 74, and the other one for the context Sleeping
represented through an FSM. Moreover, in this group there
is an agent for entailing the context NoMovCtx according to
the rule Ryy,. Finally, AssesA keeps the US rule Ryg; given
in Section 4.2.3 (there are no alarm sensors for the unat-
tended events used in Rys;) together with the safe sleeping
context rule Rgg;, and a rule Rgs3 analogous to the latter for
entailing an excessive lack of movement as safe if the oc-
cupant is in a normal-time relaxing-sofa context. These two
SS rules are treated as exceptions to Rys .

5.2 Results

Our AAL system has been evaluated with events logs pro-
duced through the DIA pilot study. These tests were used to

! JADE is available at http://jade.tilab.com/

measure two results: the reaction time of the system from the
arrival of sensor data to the classification of the generated
context as safe/unsafe, and the reliability of the system with
respect to the number of false positives and false negatives.
We explain these in more detail in the next two sections.

5.2.1 Reaction time

The reaction time to assess a new context generated by the
arrival of sensor data is divided into three blocks: the time
Tocp required to create the corresponding event from the re-
ceived sensor data, the time Ty elapsed in communication
among agents, and the time Torx needed to process the con-
text. As a result, the reaction time T is calculated as:

Tk = Tocp + Tcom + Tcrx (D

Note that our aim is not to obtain an exact approximation
of Tk but an empirical checking about the interactivity level
of the system. Thus, we only try to find the order of response
time for our particular AAL system with a specific hardware
configuration. In particular, we have used a single Ubuntu
Linux 9.04 computer with a 32-bits Intel Core 2 Duo CPU
at 2.10GHz and 3 GB of RAM to run the components of the
AAL system, i.e., OCP and the entire agent network.

The first block is managed by OCP, which receives data
from sensor adapters and transforms them in events accord-
ing to Event_Ont. To this end, OCP queries SmartHome_Ont
to obtain information about the type, location and element
associated to the corresponding sensor. Thanks to the Jena
TDB store used in OCP, the time required for executing
queries is up to nearly 500 queries per second for ontologies
with one million assertions. For our SmartHome_Ont con-
taining several thousand assertions, the average time Tocp
required for querying it and creating an event is 3ms.

The agent communication time amounts to the sum of
the communication times among CAA and Simple Context
agents, CAA and Complex Context agents, and CAA and
AssesA. Notice that CAA communicates with Simple and
Complex Context agents in parallel. The transmitted data
between pairs of agents are 180 assertions approximately
(~4KB), divided into ~100 assertions to represent the ex-
changed context and its associated events, and the rest of
them to represent the arguments created to support the lo-
cation information, activity patterns, etc. inferred about that
context. Assuming that there is no delay in the communi-
cation channels, the average time required for each agent
communication is 18ms. Therefore, Tcop = 18 X 3 = 54ms.

Finally, the time needed to process a context is divided
into the time involved in its creation, its evaluation against
agents’ rules, and validation of the information entailed by
such rules. On one hand, the time required for rule evalua-
tion depends basically on the number of rules and assertions
against which the rules are evaluated. On the other hand,

Design and Evaluation of an Ambient Assisted Living System Based on an Argumentative Multi-Agent System 9

the time required for the validation process depends on the
complexity of the expressions used to define concepts and
relationships in Context_Ont and the number of assertions to
be validated. The DL expressiveness level of Context_Ont is
ALCHF (D), which mainly indicates the use of concept and
relationship hierarchies along with the use of the disjoint op-
erator among concepts and functional relationships. Accord-
ing to this expressiveness, the complexity of Context_Ont is
decidable and placed in the PSpace-complete level.

In particular, the processing of a context is executed in
the next order: Firstly, CAA creates the context when a new
event is received as explained in Section 4.2.2. The aver-
age time obtained for this task is 51ms(z1). Secondly, the
Simple Context Agents evaluate the context against their
rules. In this case, the average time obtained for the eval-
uation of the two LCA’s rules against ~100 assertions —the
number of assertions necessary to represent a context and
its associated events— is 1.6ms (#). Then, the LCA’s en-
tailments are validated by the CAA in order to detect con-
flicting locations. This validation process consumes an aver-
age of 2ms (#3). Next, the Complex Context Agents evaluate
the context against their rules. The average times obtained
for the RelaxingSofa-PatternCtx and NoMovCtx agents are
1.75ms and 1.29ms, respectively. Observe that both agents
perform their rule evaluations in parallel and only the worst
evaluation time, 1.75ms (#4), is taken into account. Eventu-
ally, AssesA evaluates their three assessment rules, which
require 5.4ms (¢5) in the average case, and validates the en-
tailments of these rules, again consuming 2ms (#s). It is im-
portant to mention that the argumentation process performed
in CAA and AssesA requires a negligible time, since it only
consists of comparing their premises or rules and selecting
the most relevant one. Following these calculations, Terx =
t + 1t +13+14+ 15416 = 63.75ms in the average case.

As a result of the previous calculations, equation (1)
amounts to Tg = 3 + 54 + 63.75 = 120.75ms, which is the
average reaction time of the AAL system deployed in the
DIA project. With respect to scalability issues for this reac-
tion time, the maximum number of assertions to represent
more types of events and context information is expected to
be not higher than one thousand assertions. This value may
result in a slight increment for the partial Tcopy and Terx
times that should not affect the real-time reaction needed in
the system. Likewise, the addition of more Simple Context
and Complex Context agents (Fig. 3, boxes B and C) to man-
age new context information should not affect the reaction
time in a significant way, since their inference process are
performed in parallel with the rest of the agents.

5.2.2 Reliability

The reliability of our AAL system is determined by the num-
ber of false negatives and false positives generated by it.

False Positives
DIA with argumentative AAL system

False Positives
DIA pilot study
B Home1 T Home2 O Home3

12 12
10 10
8 8
6 6
4 4
2 2
, m s bk =« bk e E©

BedRoom Kitchen BedRoom Kitchen
Corridor LivingRoom LivingRoom

(a) (b)

M Home1 E Home2 O Home3

Num False Positives

BathRoom Corridor BathRoom

Fig. 4 False positives detected in the initial pilot study (a) and using
the AAL argumentative multi-agent architecture (b).

Hence, a false negative arises when the occupant is actu-
ally suffering a problem that can be detected by an exces-
sive lack of movement, but an unsafe context is not inferred
by the system. Contrarily, a false positive occurs when an
unsafe context is detected by the system because of an ex-
cessive lack of movement in the occupant’s location, but in
fact the occupant is not suffering any problem. Below we
explain how our system handles false positives/negatives.

False negatives are avoided by the use of timers, since all
the situations with an excessive lack of movement are even-
tually detected when the corresponding timer reaches zero.
In the pilot study, a different timer was set depending on the
occupant’s location and daytime, and they were automati-
cally and periodically adjusted according to the occupant’s
movement frequency (see [5] for details). This approach has
been adopted in our AAL system by using those adjustable
timers to monitor the NoMovCtx context. Hence, an argu-
ment claiming such a context as unsafe is created when its
normal time is exceeded. If this situation happens when the
occupant is in the Sleeping or RelaxingSofa context, it
is also claimed as unsafe when the timer for that context
reaches zero.

False positives were detected in the DIA pilot study and
Fig. 4(a) shows statistics of the cases detected. As can be
observed, most of false positives in the three houses were
generated in the bedroom and living room. In particular, all
the cases in bedrooms were detected when the occupants
were actually sleeping, whereas practically all of those in
the living room were detected when the occupants were rest-
ing in the sofa. These cases are due to the fact that the ad-
justable timers used in the study for detecting lack of move-
ment do not take into account the usual hours for sleep/rest.
Therefore, when an occupant has periods of high frequency
of movement in such situations, the timers are set to low
values which are surpassed when the occupant is in more
normal periods of less frequency of movement. The Homel
occupant, see Fig. 4(a), is a good example of this case.

When evaluating the same situations in our AAL system,
the sleeping/resting false positives now result in the occur-
rence of conflicts during context assessment. These conflicts

10

Andrés Muiioz et al.

arise when the adjustable timer for the context NoMovCtx
indicates that the normal lack-of-movement time has been
exceeded, and therefore an argument claiming this situation
as unsafe is generated through Rys;. However, if the timers
introduced in the AAL system to control the duration of the
Sleeping and RelaxingSofa contexts indicate a normal
behavior for such contexts, the situation is also supported as
safe by arguments generated through Rgs; and Rgg3. All the
conflicts generated in this manner are resolved by establish-
ing the situation as safe since arguments based on Rgs; and
Rgss3 are evaluated as more prevalent than arguments based
on Rys) (note that Rgs; and Rgg3 are exceptions to Rysi).

As aresult of the argumentation processes executed dur-
ing sleeping/resting activities, the number of false positives
in the bedroom and living room is significantly reduced with
respect to the pilot study as observed in Fig. 4(b), specially
for Homel. Those that still appear in these locations are due
to the normal times established for such activities has been
exceeded. The rest of false positives in other locations, e.g.,
due to excessive lack of movement in the bathroom, are still
occurring in our AAL system since the timers for those lo-
cations are the same ones employed in the pilot study. To
avoid them, the usage of new sensors and the definition of
pattern contexts are being studied.

6 Conclusion and Future Work

The development of Ambient Assisted Living (AAL) sys-
tems is one of the most active research lines within the Am-
bient Intelligence community. A fundamental service ex-
pected from such systems is an increase in safety for the
occupant of a house. To this end, AAL systems rely on In-
telligent Environments infrastructures to collect information
about the situations that are taking place in the house. Al-
though industry has made good progresses in the production
of these infrastructures, the data provided by them often lead
the AAL system to ambiguous and/or inconsistent pictures
of the observed situations.

In this paper we propose the design of an AAL system
which deals with such ambiguous and inconsistent context
information by means of a qualitative approach. This ap-
proach is based on a multi-agent architecture where each
agent supports its point of view about the occupant’s con-
text through arguments. Such arguments enable the develop-
ment of a well-structured and sound reasoning process when
inconsistent contexts are detected. In those cases, the eval-
uation of arguments through this reasoning process deter-
mines which context is the most plausible. As the evaluation
of arguments relies on qualitative well-known criteria, it of-
fers an alternative which is easier to understand and validate
than quantitative approaches focused on intrinsic algorithms
or complex models. Our proposal has been deployed and
evaluated within a real AAL project and the results obtained

show encouraging results in this direction. An evaluation of
the AAL system in homes with a larger number of different
types of sensors is being also developed at the moment.

We are currently exploring the inclusion of learning ca-
pabilities in the AAL system by means of data mining tech-
niques to automatically extract pattern contexts from the oc-
cupant’s habits. Another planned extension to the system
is the addition of more structured representations of spatio-
temporal knowledge and their associated reasoning modules
to inform the argumentation process.

Acknowledgements This work has been supported by the Research
Projects CARONTE (TSI-020302-2010-129) and DIA++ (TRA2009-
0141), by the Fundacion Séneca within the Program “Generacion del
Conocimiento Cientifico de Excelencia” (04552/GERM/06), Murcia,
Spain, and by the Spanish Ministerio de Ciencia e Innovacién under
the FPU grant AP2006-4154.

References

1. Atallah, L., Yang, G.Z.: The use of pervasive sensing for behaviour
profiling — a survey. Pervasive and Mobile Computing 5(5), 447 —
464 (2009)

2. Bamis, A., Lymberopoulos, D., Teixeira, T., Savvides, A.: The Be-
haviorScope framework for enabling ambient assisted living. Per-
sonal and Ubiquitous Computing 14, 473-487 (2010)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci-
entific American 284(5), 3443 (2001)

4. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT
Press (2008)

5. Botia, J.A., Villa, A., Palma, J.T., Pérez, D., Iborra, E.: Detecting
domestic problems of elderly people: simple and unobstrusive sen-
sors to generate the context of the attended. In: First International
Workshop on Ambient Assisted Living, IWAAL) (2009,LNCS
5518)

6. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A.,
Wilkinson, K.: Jena: implementing the Semantic Web recommen-
dations. In: WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference, pp. 74-83. ACM Press, New York,
NY, USA (2004)

7. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient Intelligence:
applications in society and opportunities for AI. Pervasive and
Mobile Computing 5, 277-298 (2009)

8. van Harmelen, F., McGuinness, D.L. (eds.): OWL Web Ontology
Language Overview. World Wide Web Consortium (W3C) Rec-
ommendation (2004)

9. Muiloz, A., Botia, J.A.: ASBO: Argumentation System Based on
Ontologies. In: M. Klusch, M. Pechoucek, A. Polleres (eds.) Co-
operative Information Agents XII, Lecture Notes in Artificial In-
telligence, vol. 5180, pp. 191-205. Springer (2008)

10. Nieto, L., Botia, J.A., Gomez-Skarmeta, A.F.: Information and Hy-
brid Architecture Model of the OCP Contextual Information Man-
agement System. Journal of Universal Computer Science 12(3),
357-366 (2006)

11. Parsons, S.: Qualitative Methods for Reasoning Under Uncer-
tainty. The MIT Press (2001)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services
and Agents on the World Wide Web 5(2), 51-53 (2007)

