Logical Foundations and Implementation
of an Extension of Temporal Prolog

Maria Laura Cobo Juan Carlos Augusto
GIRILT.!'-1CIC.?
Departamento de Ciencias de la Computacion
Universidad Nacional del Sur
Bahia Blanca - Argentina
Fax +b4 291 4595136
[mlcobo, ccaugust] @criba.edu.ar

3

Abstract

The need of counting with the appropriate management of situations involving time and the
notion of change, has been recognized as an important aspect in many Computer Science areas.
This fact has made evident the need of tools to handle this kind of information. As a reflection
of this relevance many temporal logic programming languages have been proposed in the last
few years. In particular, we will present here a temporal logic programming called ETP. This
language is based on the proposal presented by Gabbay in [Gab87|. The present article concerns
the explanation of its logical foundations and the most important aspects of its implementation.
We are going to leave out the interpreter’s implementation code of this new language for space
reasons, although, the reader can find it in [Cob98|.

Initially we will present an abstract of Gabbay’s work in order to familiarize the reader with
the language we are going to extend and we will explain the usefulness of such extension. As
regards the extension, we will provide the extended logic in detail and the definition of the
language that take it as its base. We will also present the algorithm which provides answers for
the queries of this language. The algorithm will be accompanied by a demonstration to prove
that it computes a total function. Finally some examples will be presented to show potential
uses of the language, together with the analysis of the goals reached and the remaining tasks.

Key words: Temporal Logic, Logic Programming, Temporal Logic Programming.

1 Introduction

In Computer Science the study and computational treatment of temporal notions has aroused a
growing interest in the last decades. Whenever we need to model a dynamic system, temporal
notions will have to be considered through to show how the system evolves time.

There are many Computer Science areas where time is involved in a direct and almost
unavoidable way and where the temporal logics are used. The logic programming area, which
is the one of interest in this work, has had a constant and notable development in the last two
decades, see [L1095]|. Nevertheless, the classical model of logic programs limited to Horn’s clauses
with fixed point semantics, see [VEK76], is not enough for several purposes. In case we need to
represent change models associated with time, we will require an extended language and, as a
consequence, a computational procedure in agreement with the new language.

Temporal Information Representation Research Group.
ZInstitute of Computer Science and Engineering.
3Partially supported for the Secretary of Science and Technology (Universidad Nacional del Sur).

There are two main approaches to the treatment of temporal notions and therefore for
presenting temporal logics. One is based on First Order Logic and the other on Modal Logic.
Both focuses are very useful and it can not be said that one is better than the other. This depends
on the problem we are trying to solve, and many other theoretical and practical considerations,
such as the philosophical/temporal conception of the person trying to solve it.

As a natural consequence of the research done on logic programming in the last decade a
number of proposals have arisen to attenuate this absence of “temporal logic programming”.
These proposals are based on different basic principles. The best known strategies are:

o Inlerval Logic Programming where the semantic of the formulas is given through a temporal
interpretation based on intervals.

o Temporal Logic Programming, this strategy is based on linear or branched-time temporal
logics. The underlying idea is the extension of the traditional logic programming with the
addition of temporal operators.

An abstract of the most representative works of the above mentioned alternatives, can be
found in [OM94]. We will assume that the reader is familiarized with the basic terminology
related to logic programming ([Llo84] or [Llo95]). The main goal of this article is to develop
a temporal logic programming language, K'TP. This language allows us a simple handling of
those situations that involve the notions of time and change. The best known strategies to
face the development of this kind of languages has been presented above, the language we are
going to present is based on the second strategy mentioned, Temporal Logic Programming. Some
languages that are similar to the one presented here have been considered, in particular the one
offered in [Gab87|, called Temporal Prolog. The language used in this article is an extension of
Temporal Prolog, because it considers the most commonly used temporal operators and gives a
solution to some cases unspecified by Temporal Prolog.

In the first place and taking into consideration the fundamental contribution of Gabbay’s
proposal to our work, we will present an abstract of it in the next section. Then we will give
the extension realized, section 3; after that we will mention some aspects of its implementation,
section 4; and finally illustrate its work in section 5.

2 Temporal Prolog

Temporal Prolog is an extension to the traditional logic programming proposed by Gabbay in
[Gab87| to obtain a temporal logic programming. In his proposal the following connectives,
familiar in the modal temporal logic literature, are used:

Fq: “g will be true in the future”
Pq: “q was true in the past”

Gq =der ~Fq

Hq =gey =P—q

Og=def qV FqV Pq

Dg =ges ¢ ANGg A Hq

The proposal is, then, based on the following logic:

DEFINITION 1 (adapted from [Gab87|, page 217) The underlying logic of the temporal logic
programming proposal, called Temporal Prolog has the following axiom schemata and rules of
inference:

1. All the theorems and rules of the predicate logic.

2. The following rules of inference:

- A . - A . FAFA—B
- PA ! - FA ! - B

3. The following axiom schemata:
G(A — B) - (GA — GB)
H(A— B)— (HA — HB)
GA — GGA
HA— HHA

A— GPA
A— HFA

4. The following axiom schemata indicating the use of a linear temporal structure:
FANFB — F(ANFB)V F(BAFA)V F(AAB)

PAAPB — P(ANPB)V P(BAPA)V P(AA B)

The syntax of Temporal Prolog can be resumed through the next definition:

DEFINITION 2 (|Gab87|, page 222)
A program (or Data Base) is a set of “clauses”.
A clause is either an “Always clause” or an “Ordinary clause”.
An Always clause is OA where A is an “Ordinary clause”.
An Ordinary clause is a “Head” or an B — H, where H is a “Head” and B is a “Body”.
A Head is either an atomic formula or F'A4 or PA, where A is a conjunction of Ordinary clauses.

A Body is either an atomic formula, a conjunction of bodies, an FA or PA or —A where A is
a body.

A goal is any body. |
Through the above definition the consideration of formulas like the following is allowed:
PIF(FA(z) N PB(y) A Ay)) A Ay) A B(z)] — PIF(A(z) — FP(Q(2) — Q1)))]

The reader interested in this language can find the description of the algorithm in [Gab87].
We do not include it for space reasons. Furthermore, it is implicitly considered in the algorithm
given in the next section.

3 An extension to Gabbay’s algorithm and its implementation

The main idea of this section is to obtain a tool for temporal logic programming, having as its
base a modal temporal logic. Considering the intuitive the operators are for the management
of temporal notions. Among the different proposals of this kind we choose Gabbay’s one, called
“Temporal Prolog”, presented in the previous section. The reason for choosing this proposal
is that although its algorithm is pretty well known, there is no implementation which can be
publicly accessed. It is not included here for space restrictions, but could be accessible on
request to the authors or from [Cob98]. Some aspects of it were also corrected and the use of
more temporal operators to facilitate the queries is allowed.

The extension mentioned before can be observed below: first through the consideration of
the logic, then in the definition of the language and finally in the algorithm. On the other hand,
considering that the extended algorithm was implemented some aspects of that implementation
are commented. Finally we show some uses of the new tool.

3.1 The temporal operators

In the rest of this article we are going to use a set of symbols for the representation of the
different temporal operators considered here. The operators can be characterized by different
properties, before mentioning them, we will indicate the meaning of these properties:

reflexivity: when an operator is reflexive its semantics should necessarily consider the
moment of evaluation of the operator in question. For example if we consider that
the operator “always in the past” has this property, the proposition affected with
this operator must be true in the present and also in all the moments of the past. In
the case of considering binary operator as Since, Until the reflexivity of them means
that for a pair of propositions, A and B the truthness of B in the present verifies
Since (A, B) only by the presence of B in the actual moment. On the other hand, if
we ask the operator to be irreflezive, A must at least be true in the present for the
verification of the proposition we are considering.

strong: this property secures the existence of a next instant where the proposition
must be verified. The opposite, a weak operator, does not ensure the existence of a
next moment of time. In the case of binary operators as Since(A, B) the strength of
it implies that the B proposition must be true in some instant of time. In the case of
the weak version of the operator B could never be true. This case could be possible
if we always have A and not B in the data base.

In this article we will use the following operators:

M ¢: “Always in the future ¢” irreflexive.

B¢: “Always in the past ¢” irreflexive.

O ¢: BpA¢ABp (“Always in the past, now and future”)

& ¢ “Sometime in the future ¢” irreflexive.

< ¢ “Sometime in the past ¢” irreflexive.

O ©P VoV &P (“Sometime in the past, now or in the future”)
@ ¢: “In the next moment ¢” strong.

6 ¢: “In the previous moment ¢” strong.

Until(¢,4): “Until ¥ be true, ¢ will be true” strong and reflexive.

Since(p,). “Since ¥ be true, ¢ has been true” strong and reflexive.

3.2 The new programming language

After introducing the operators that we will use, we will explain the logic which formalize their
behavior and then the temporal logic programming language derived from it. Let us consider
the following definitions, which are classic in the literature of the area:

Cg=qVoV<

Let us see the logic’s rules of inference and axiom schemata.

DEFINITION 3 (extension from the one given in [Gab87|, page 217)
The temporal logic, has the following axiom schemata and rules, in the language with the
operators: ©, €, @ and ©.

1. All the theorems and rules from the predicate logic.

2. The following rules of inference:
A A FAFA-SB FA FA
FBA ' FBEA +B " FeA ' FoA
3. The following axiom schemata:
(A — B) — (1A — @EB)
B(A — B) — (BA — B)
HA — HEA
BEA — EEA
A — BOCA
A — BOA
®(A— B)— (A — B
&(A— B)— (A — ©B)
Fe-A—-0A
Fo-A—-6A4
PoA—A
OpA—A

4. The following axiom schemata indicating the use of a linear temporal structure:
CANOB — Q(ANOB)V HBADA)V HANB)

SANOB — S(ANSGB)VS(BASA) V(AN B)
u

Below we are going to use the recently defined logic as a base of a temporal logic programming
language.

DEFINITION 4 (extension from the one given in [Gab87|, page 212)

Consider a language with propositional atoms, the logic connectives: A, V, —, = and the
temporal operators: <, ©, &, O, O, @, §, S, Since, Until. We define the notions of program,
clause, ordinary clause, always clause, head, body and goal as follows:

A program is a set of “clauses”.

A clause is either an “Always clause” or an “Ordinary clause”.

An Always clouse is OA, DA or HA, where A4 is an “Ordinary clause”.

An Ordinary clause is a “Head” or an B — H, where H is a “Head” and B is a “Body”.

A Head is either an atomic formula or ©A or ©A or A or A, where A is a conjunction of
Ordinary clauses.

A Body is either an atomic formula, a conjunction of bodies, an $A or A or A or SA or
—A where A is a body. A goal is any body or ¢A or OA or BA or BA or Since(A, B) or
Until(A, B), where A and B are bodies.

|

The operators © and B can be part of any body, although they are not explicit in the
definition. This is because they can be defined through the use of the other operators allowed
(see above in this section). It is important to point out the fact that Since and Until are not
available to the programmer, they can only be used by the user for the simplification of some
queries, or to make them more easily. Now, we will give an algorithm which answered the queries
made to a logic program in the version of extended “Temporal Prolog”. By simplifying the way
of referring to this new language, from now on we will call it ETP, abbreviation of “Extended
Temporal Prolog”.

DEFINITION 5 (extension to the one given in [Gab87|, page 222)

Let P be a database and GG a goal. We define the notion of a labelled compulation tree for
the success or failure of G from P. If G succeeds we write P?G'=1 and if G finitely fails we write
P?G=0. Let (T,<,0,V) be a labelled computation tree, such that 0 < ¢, for all t € T. V is a
labelling function giving each ¢ € T a triple (P(¢), G(t), X (1)), where P(t) is a database P in
the ¢-th moment, G(t) is a goal in the t-th moment and X () is the purpose for such query. If
X(t) = 0 we want the goal to fail, if X(¢) =1 we want it to succeed. [|

The algorithm presented below has as input a goal, we called it G, the objective of the query,
referenced through the variable X and P a temporal logic program. The algorithm’s output is
the affirmative or negative answer to the goal with the given objective respect to P.

ALCORITHM

(T, <,0,V) is a labelled computation tree for P?G = z if and only if the following conditions
are satisfied:

1. V(0) = (P, G, 2)

2. If t € T is an endpoint and X (¢) = 1 then G(t) is an atom ¢ then one of the following
conditions holds:

() g€ P(1)

3.

10.

(b) Oge P(t)
If t € T is an endpoint and X (¢) = 0 then one of the following conditions holds:
(a) G(t) is an atom ¢ and ¢ is neither the head of an ordinary clause, nor is there in P ()

any always clause with head ¢.

(b) G(t) has the form ®A (or ©A) and there are not clauses with head of the form ¢D
or ®A (©D or ©A respectively).

(¢) G(t) has the form @A (or ©A) and there are not clauses with head of the form A
(8 A respectively)

. If ¢ is not an endpoint, X (t) = 1 and G(t) is an atom ¢ then ¢ has exactly one immediate

successor s in the tree with P(s) = P(t), X(s) = 1 and one of the following conditions
holds:

(a) G(s) - g€ P(t) or
(b) B(G(s) —q) € P()

. If t is not an endpoint, X(¢) = 1 and G(t) is a body ¢ then ¢ has exactly one immediate

successor s in the tree with P(s) = P(t), X(s) = 1 and one of the following conditions
holds:

(a) G(s) - g€ P(t) or
(b) B(G(s) —q) € P()

. If t is not an endpoint, X (f) = 0 and G(t) is an atom ¢ then ¢ has $1,..., $x as immediate

successors in the tree with P(s;) = P(t), X(s;) = 0 and for some m such that 0 < m <k,
the clauses G(s;) — ¢ for i < m and the clauses O(G(s;) — ¢q) for m < i < k are exactly
all the clauses with the above form in P(¢)

. If t is not an endpoint, X (t) = 1 and G(t) = Aj A Ag, then ¢ has two immediate successors,
s1 and $g, with P(s;) = P(t), X(s;) = 1 and G(s;) = A;

. If t is not an endpoint, X(t) = 0 and G(t) = A1 A Ag, then t has exactly one immediate suc-

cessor ¢, and for some ¢ € {1,2}, P(s) = P(), X(s;) = 0 and
G(Si):Ai

. If t is not an endpoint and G(t) = —A4, then ¢ has exactly one immediate successor s, and
P(s) = P(t), X(s) =1 —X(t) and G(s) = 4

If t is not an endpoint, X(¢) = 1 and G(t) = ©A, then ¢ has exactly one immediate
successor, §1 and the following condition holds:

P(s1) = P(t), X(s1) = 1 and G(s2) = BA;
or has exactly two immediate successors: s1, $2, and one of the following conditions holds:

(a) P(s1) = P(¢) and X(s1) = 1 and for some H
i. G(s1) — ©H € P(t) and
P(s2) = { all the always clauses in P (1)} U{H} U
ii. {&C|C is an ordinary clause in P (1)} U
{C|® C is an ordinary clause in P (t)} and
iii. X(sg) =1

11.

12.

13.

14.

15.

16.

iv. G(s2) = AV OA

(b) idem to item 10a except that the condition G(s1) — OH € P(t) is replaced by
0(G(s1) — ©H) € P(t)

(¢) idem to item 10b except that the condition O(G(s1) — OH) € P(t) is replaced by
O(G(s1) — H) € P(t) and G(s2) = AV ©A by G(s2) = ©A

(d) idem to item 10b except that the condition O(G(s1) — ©H) € P(t) is replaced by
B(G(s1) — ©H) € P(t)

(e) idem to item 10c except that the condition O(G(s1) — H) € P(t) is replaced by
B(G(s1) — H) € P(1)

If t is not an endpoint, X(¢) = 1 and G(t) = <A, then t has either one immediate successor
s1 or has exactly two immediate successors: s1, $o, and one of the conditions of the item
10 holds, applying the mirror image rule to the conditions described there.

If ¢ is not an endpoint, X(t) = 0 and G(t) = ©A, then ¢ has s1,...,s; as immediate suc-
cessors and for m,n such that 1 <m <n <k and some well formed formulas Dy, ..., Dg,
D;(i < m) are exactly all the clauses of the form O(B; — H;) in P(t), D(m+1),...,D(n)
are exactly all the clauses of the form O(B; — F'H;) in P(t), D(n+1),..., D(k) are exactly
all the clauses of the form B; — F'H; in P(t), and for each 1 < i < k one of the following
conditions holds:

(a) P(s;) = P(t), X(s;) =0 and G(s;) = B;
P(s;) = {all the always clauses in P (1)} U {H;} U
(b) {&C|C is an ordinary clause in P (1)}
{C| @ C is an ordinary clause in P(t)},
X(Sl) — 0,
G(s;) = AV QA, for 1 <i <k, except when 1 <14 <m, in which case G(s;) = ©A

If t is not an endpoint, X (¢) = 0 and G(f) = ©A, then conditions of termination are similar
to the ones in item 12 applying the mirror image rule.

If ¢ is not an endpoint, X(t) = 0 and G(t) = A; V Ag, then ¢ has exactly two immediate
successors: $1 and sg, with P(s;) = P(t), X(s;) =0 and G(s;) = 4;

If ¢t is not and endpoint, X(t) =1 and G(t) = Ay V Ag, then ¢ has exactly one immediate
successor 8, P(s) = P(t), X(s) =1 and G(s) is either 4; or A

If t is not an endpoint, X(t) = 1 and G(t) = @A, then ¢ has exactly two immediate
successors, $1 and so, and one of the following conditions holds:

P(s1) = {all the always clauses in P (1)} U

(a) {&C|C is an ordinary clause in P (1)} U
{C| & C is an ordinary clause in P (t)},
X(s1)=1and G(s1) = A
(b) P(s1) = P(t), X(s1) =1, B(G(s1) — 4) € P(1)
(c) P(s1) = P(t), X(s1) = 1, and for some H, G(s1) — @H € P(t) P(s2) = P(1),
X(s2) =1 and G(s2) = A

(d) idem to item 16¢ except that the condition G(s1) — @©H € P(t) is replaced by
0(G(s1) — @H) € P(¥)

(e) idem to item 16¢ except that the condition G(s1) — @H € P(t) is replaced by
B(G(s1) — H) € P(1)

17. If t is not an endpoint, X(t) = 0 and G(t) = ®A, then ¢t has exactly one immediate
successor, $, and one of the conditions of item 16 holds with X(s) = 1 replaced by X(s) =0

18. If ¢ is not an endpoint, X(t) = 1 and G(t) = ©A, then ¢ has exactly two immediate
successors, §1, o, and one of the conditions of item 16 holds applying the mirror image
rule.

19. If ¢ is not an endpoint, X (t) = 0 and G(t) = ©A4, then ¢t has one immediate successor, s,
and the condition of item 17 holds applying the mirror image rule.

20. If ¢ is not an endpoint, X(t) = 1 and G(t) = Until(A, B), then ¢ has one immediate
successor, s, and one of the following conditions holds:

(a) P(s) =P(t), X(s) =1 and G(s) = ANHAA OB
(b) P(s) =P(t), X(s) =1 and G(s) = BV (A A D(Until(A, B)))

21. If t is not an endpoint, X(t) = 0 and G(t) = Until(A, B), then ¢ has one immediate
successor, s, and one of the following conditions holds:

(a) P(s) =P(t), X(s) =0 and G(s) = ANHAASB
(b) P(s) =P(t), X(s) =0 and G(s) = BV (A A D(Until(A, B)))

22. If t is not an endpoint, X(t) = 1 and G(t) = Since(A, B), then ¢ has one immediate
successor, s, and one of the following conditions holds:

(a) P(s) =P(t), X(s) =1 and G(s) = ANBAAOB
(b) P(s) =P(t), X(s) =1 and G(s) = BV (A A &(Since(A, B)))

23. If t is not an endpoint, X(t) = 0 and G(t) = Since(A, B), then ¢ has one immediate
successor, s, and one of the following conditions holds:

(a) P(s) =P(t), X(s) =0 and G(s) = ANBAAOB

(b) P(s) =P(t), X(s) =0 and G(s) = BV (A A &(Since(A, B)))
O

DEFINITION 6 (|Gab87|, page 224) P?G succeeds if P?G = 1 has a finite computation tree.
P?G finitely fails if P?G = 0 has a finite computation tree. |

Another interesting aspect of the proposal developed in the article is the possibility of an-
swering questions of importance easily through the use of logic programming. In the rest of
this section we will demonstrate that every ETP program ends its computation. First we are
going to demonstrate a similar result for “Temporal Prolog”; in this way we complete Gabbay’s
proposal, who did not publish such result.

We are going to symbolize the content of a program written in ETP as P(t), t > 0. This
must be understood as the content of the program after the addition of pieces of information.
For example, the initial program will be denoted as P(0). After the use of some rules of inference
t times, t pieces of information can be added to it, and this will be denoted through P(t).

In order to prove the following Theorems and Lemmas we have the following hypothesis:

e This result is over the algorithm, not considering a particular implementation. For exam-
ple, if we use Prolog, it will be enough to consider a function or omit occurs check to
obtain infinite computations.

e The algorithm responds to the queries checking the set of facts and applying the rules of
inference that form the base P. It is going to do this for each case, where the goal may be
a success or failure.

e Make sure that there are no cycles, introduced by the programmer. Note that the algorithm
do not consider the tautologies.

LEMMA 1 Let P(t), t > 0, a Temporal Prolog’s program, P(t) is always a finite set of clauses.
[|

Proof 1 Let nl be the amount of facts, n2 the amount of ordinary rules, n3 the amount of always
rules, k1 the amount of inferred facts and k2 the amount of inferred rules. If P(0) is the initial
program in Temporal Prolog then |P(0)| = n1 +ng +ns. To calculate the cardinality of P(t) an
additional fact must be taken into account: the syntax of Temporal Prolog only allows the use
of the O operator in the most outside level of a rule. Then no always rule can be the consequent
of an implication and can not be deduced by Modus Ponens either. Considering that only the
amount of facts and ordinary clauses can grow, we have |P(t)| = (n1 + k1) + (n2 + k2) + nas,
ki,ko > 0. The k1 and ko constants have a superior cota, this is because each time we use an
inference rule this one is applied to an only one rule and only once. O

THEOREM 1 Every Temporal Prolog labelled computation tree has a finite set of nodes. |

Proof 2

We know that each step is based on the facts and rules that are in P(t) :

1) G(t) is an atom, in the cases analogous to the items 2, 3a or 4 in [Gab87], all the facts an
rules from P(¢)must be inspectioned.

2) G(t) is of the form A A B worst case: x(t) = 1 with number of son nodes:2

3) G(t) is of the form A V B worst case: x(t) = 0 with number of son nodes:2

4) G(t) is of the form —A worst case a unique successor in the tree

5) G(t) is of the form ©A (analogous for ©A), worst case 2(f) = 0 and must be verified that can

not be deduced from the P(¢)’s clauses, analogous cases to the items 2, 3a o 4 in [Gab87].

In each case the amount of sons of each node forms a set which cardinality is less or equal to
the P(t)’s. For each query the tree will build a finite amount of nodes, each of them will have
a finite amount of facts and rules (lemma 1). O

LEMA 1 Let P(t), t > 0, an Extended Temporal Prolog’s program, P(t) is always a finite set of
clauses. |

Proof 3 Idem lemma 1. O

THEOREM 2 Each Extended Temporal Prolog labelled computation tree has a finite set of
nodes. |

Proof 4 All we have to do is the extension of the demonstration below for the consideration of
the added operator:

If G(t) is of the form @A (the result is similar for ©A4), worst case z(t) = 1 with two
immediate successors, one of them implies the search through all the rules in P(t).

We must recall that the restrictive queries made with the operators S o U are translated to

their equivalent formula using the operators considered above. Again the tree will build a finite
amount of nodes, each of them deal with a finite amount of facts and rules (lemma 1). O

10

However, it is important to point out that the results about the finishing of the algorithms are
applicable only over the logical part. On the other hand, the results do not concern a particular
implementation, as can be one in Prolog that we know could never finish. This result is useful
because it let us know that if we use another tool for the implementation of the interpreter, for
example, one without functions and breadth first search the algorithm is always going to find
an answer.

4 Considerations about the implementation

Apart from presenting some considerations related to the implementation divergences between
our proposal and Gabbay’s one will be indicated. It is important to point out that the imple-
mentation of the inference rules and axioms plays a fundamental role in the efficiency of this kind
of tools. But it is one of the most difficult aspects to reach. Knowing how critical this aspect
is for these kinds of programs, we try to make this work more efficient adding some additional
rules to avoid the process of inference in trivial cases or queries of direct answer.

An important aspect in which our proposal differs form Gabbay’s one is the following: If
we find a goal of the form &(A A B) being A and B any ordinary clauses, it is intuitively clear
that it is not equivalent to solve ®A A ©B. In the first formula the temporal operator has more
precedence than the logical one, that is why A and B must be true in the same moment. In
the second one the temporal operators that affect A and B are independent between them so
A and B do not need to be true in the same moment. Gabbay’s algorithm does not provide a
way to solve this kind of formulas appropriately, that is why rules were added to the extended
algorithm. This leads us to the addition of an special rule in the implementation too. The
introduction of this rule makes necessary the revision of all the items in rule 10, except the first
one, the condition G #£ Fy A Fy A ... A F,, where the goal is &G. We mentioned above that a
new rule was introduced which solves queries of the form ¢&(A4 A B):

If t is not an endpoint, X(t) = 1 and G(t) = &(A A B), then ¢ has exactly two
immediate successors: s1, s2 and one of the following conditions holds:

1. P(s1) = P(t) y X(s1) = 1 and for some H
(a) G(s1) — ©H € P(t) and
P(s2) = all always clauses in P(t) U{H} U
(b) {&C|C is an ordinary clause in P (1)} U
{C|® C is an ordinary clause in P (t)} and

(c) X(s2) =1
(d) G(s2) — 0A

2. idem item 1 except that the condition G(s1) — ©H € P(t) is replaced by
O(G(s1) — ©H) € P(1)

3. idem item 1 except that the condition G(s1) — ®H € P(t) is replaced by
D(G(s1) — H) € P(1)

4. idem item 1 except that the condition G(s1) — OH € P(t) is replaced by
B(G(s1) — OH) € P(t)

5. idem item 3 except that the condition O(G(s1) — H) € P(t) is replaced by
B(G(s1) — H) € P(1)

In addition to this new rule for goals of the form &(A A B) we need some predicates. The
reason for their existence was explained previously and their function is to solve trivial situations
as the fact that the goal is part of some conjunction. As an example, let us suppose that we

11

have the goal &(A A B) and in the base we have the following clause {AAC A ... A B). If we
do not add these predicates the algorithm has no way of finding ¢(A A B) although it is pretty
obvious that the query has a successful answer from the logical program. We have an analogous
situation for ¢ applying the mirror image rule.

This fact makes evident the necessity of predicates that realize the inverse work, i.e., if we
deduce something from a ®¢ clause, we know that the deduced formula and the one that makes
possible the deduction happens in the same moment. This is very important if the clause that
dares the deduction is affected by an <& or & operator, because if we do not save the relation
between these clauses, it will be lost because of the vagueness of the operator. On the other
hand, with the other operators the relation does not need to be kept because they are more
precise and the relation holds implicitly although is not expressed explicitly in the base. The
following situation exemplifies the above idea, if we have OA — B and A, it is clear that we
deduce ©B. We also know that A and B are true in the same moment of the future, but if we
do not put &(A A B) in the base, the relation that exists between A and B will be lost because
the operator does not make any reference to a precise moment.

Another important divergence is pointed out by the addition of two rules, that are used to
travel through the temporal line. These rules follow this strategy: “If the algorithm can not
solve a query in the present moment in none of the ways provided by the algorithm, then if
some different reasoning is possible in the next moment or in the previous one, move to that
instant and transform the query in the appropriate way’. In case it is useful to move through
the temporal line to the next moment we transform the query A in ©A, in an analogous way if
we move to the previous moment we transform it in @A.

The possibility of obtaining a different reasoning lies in counting with at least one @A clause,
in the base of the present moment, for moving the query one instant to the future or at least
one ©A clause for doing it to the past.

5 Examples

The examples we consider here include some of the examples considered by Gabbay for his
algorithm besides our own examples which are used for the testing of special cases as well as
basics queries.

ExampLE 1 (Example 3.1, page 215 (|Gab87|)) This is just a simple example where only basic
operators are used. In ETP the example will be:
Base: { a—b,
a(b — @) ,
a}

Answer to the query $c: yes. O

ExampLE 2 (Example 3.5, page 219 ([Gab87])) In this example we show the possibility of
dealing with predicates, i.e., it allowed us to show that the tool was not build only for the
management of propositions. In ETP the example will be:
Base: { al(a),
al(X) — ®bL(Y) }
Answer to the query &(b1(a) A b1(b)): no.
Note: al and b1 are names for any predicate, X and Y represent variables. O

ExaMpPLE 3 This example shows how it is possible to answer a query that involves a Since
operator, although this one can not be in the data base. In ETP the example will be:

12

Base: { d,

d—a,
a— e(ec) ,
e(e(c—a(a) , Blc—a),
O(c —) }
Answer to the query Since(a,b): yes. O

Prolog has been used as a query language for data bases. Analogously, a temporal logic
programming language can be used as the base of some logical queries system over data bases
with some temporal information, such us historic data bases ([TCG193]). We will present now,
an example of a real application. Let us see how some of the examples presented by Abadi y
Manna in [AM89], page 288, look in this new system. Take the following example.

ExaMpPLE 4 We have a data base with some facts related to the history of some company after
some initial date. We have information such as who worked in which department and the salary
earned by that employee. We would like to get a list of the employees, X, with their salaries,
Y. Only those who worked in the toys department after the initial date. And also worked there
while the manager was John. In temporal logic we simply write the query as:

O(manager(John) Ain_department(X, Toy) A salary(X,Y))

we suppose that the predicate manager, in_department and salary have been defined in an ap-
propriate way, in accordance with the program. We obtain then the wished output for the query.

Taking the same suppositions exposed above and considering that the present is the initial
date for the activities of the company and that the query is being made in that instant. The
query in E'TP will look like this:

(manager(John) Ain_department(xz, Toy) A salary(z,y))V

(S(manager(John) Nin_department(x, Toy) A salary(z,y))
Observation: the disjunction is necessary because we assume <& irreflexive (see section
3.1) O

ExaMpPLE 5 In a similar way, we would like to know how much the salary of John has increased
when he got the promotion from salesman to manager. Supposing that the program counts with
the rule:

increase(X,Y) «— salary(X, Y1), ®salary(X,Y2),Y is (Yo — Y1)

expressing that the increase in the salary of X from the moment n to the moment n + 1, is the
difference between the salary of X in the moment n and the salary of X in the moment n + 1,
and the query:

O(salesman(John) A @manager(John) A increase(John,Y'))

Taking the same set of suppositions that for the previous example, the program and query
will look respectively as follows:

increase(X,Y) «— salary(X, Y1) A ®salary(X,Y2) AY is (Yo — Y1)

(salesman(John) A ®@manager(John) A increase(John,Y))V
(S(salesman(John) A ®@manager(John) A increase(John,Y)))

13

ExaMpLE 6 Finally we would want to express that every employee has always been an employee:
Oemployee(x) +— employee(x)
In ETP we express it, in an equivalent way, as:

O(employee(X) — ®(employee(X)))

6 Conclusions and future work

We have presented a temporal logic programming language, which is an extension of “Temporal
Prolog”. Turning our attention to the temporal logical language, its definition considers as basic
operators the set formed by: ©, ©, © and &, which gives us the idea of the extension mentioned
above, because “Temporal Prolog” does not consider the operators & and & in its definition.
It is important to notice that we allow the use of Since and Unlil operators in the user level to
make the formulation of some queries easier although this does not add more expressive power.
This is so because we only use them for a more confortable way of writing some queries that can
also be written using the ©, &, ® and & operators. This extension has been implemented and
we have commented some of their main characteristics. We also gave an algorithm for the reader
and a demonstration that always stops. Besides the implementation is based on the notion of
labelled computation tree. This notion had been defined by Gabbay in [Gab87]. It important
to point out that the language we proposed is a cut of the temporal logic taken as its base,
just as Prolog is of the predicate calculus. The presentation of this programming language born
through an extension of Prolog, represents an advance in giving a way to solve the problems
that are influenced by time in a more natural way.

We can say that the extension realized is very interesting not only for the new operators
but also for the solution provided for some queries. This last point is important because the
Temporal Prolog algorithm does not provide a way to solve them. We have already mentioned
that Gabbay did not give an implementation of his algorithm or at least it is not accessible, we
count with an implementation of ETP algorithm and can be obtained from [Cob98| or contacting
the authors. The implementation can be improved in many aspects. One of them is to deal the
control and handling of the levels used in the implementation to an external meta-predicate.
This strategy was suggested by Sterling and Shapiro in [SS86]). This improvement makes the
actual predicates to be simpler and smaller, because we get rid of the propositions that control
the levels and change them. Another aspects of fundamental importance is to try to rise the
efficiency of the deductive mechanism, i.e., of the implementation of the inference rules. It is
also important to mention that a definition of systematic testing techniques for this kind of
programs are in elaboration.

Acknowledgments

We would like to thank to the members of GIRIT, Marisa Sanchez and Maria Mercedes Vitturini
for the collaboration given in the elaboration of this article.

References

[AM89] M. Abadi and Z. Manna. Temporal logic programming. Symbolic Computation, 8:277
— 295, 19809.

14

[Cob9s]

[Gab87]

[Llo84]
[Ll095]

[OM4]

[5S86]
[TCG193]

[VEK?76]

Maria Laura Cobo. Dos propuestas de programacion en légica temporal. Tesis de
Licenciatura. Departamento de Cs. de la Computacion, Universidad Nacional del
Sur, 1998.

D. Gabbay. Modal and temporal logic programming. In Antony Galton, editor,
Temporal Logic and their Applications, pages 197-236. Academic Press, 1987.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,
third edition edition, 1995.

M. Orgun and W. Ma. An overview of temporal and modal logic programming. In
Proceedings of the FICTL (ICTL 94), pages 445-479, Bonn, Germany, 1994. Springer
Verlag.

Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal
Data Bases (Theory, Design and Implementation). The Benjamin Cummings Pub.
Co., California, 1993.

M. van Emdem and Robert Kowalski. The Semantics of Predicate Logic as a
Programming Language. Journal of the Association for Computing Machinery,
23(4):733-742, 1976.

15

