
1

Using Pattern Position Distribution for Software

Failure Detection
*

Chunping Li, Ziniu Chen, Hao Du

School of Software, Tsinghua University

Beijing 100084, China

E-mail: {cli, czn09@tsinghua.edu.cn}

Hui Wang, George Wilkie, Juan C. Augusto, Jun Liu

Faculty of Computing and Engineering, University of Ulster

Jordanstown, Northern Ireland, BT37 0QB, UK

E-mail: {H.Wang,FG.Wilkie,JC.Augusto,J.Liu}@ulster.ac.uk}

Abstract

In this paper, we present a novel approach to software failure detection based on pattern position distributions as

features. In this approach, we divide an execution sequence into several sections and then compute a pattern

distribution in each section. The distribution of all patterns is then used as a feature to train a classifier. This

approach outperforms conventional frequency based methods by more effectively identifying software failures

occurring through misused software patterns. Comparative experiments show the effectiveness of our approach.

Keywords: Sequential Patterns, Classification Algorithm, Software Failure, Anomaly Detection.

*
The work of this joint research project was facilitated through grant funding from the Natural Science Foundation in China and the Royal Society in

UK.

1. Introduction

As time goes by, computer software is playing an

increasingly important role in our daily lives. However,

it is difficult to validate the correctness of software.

When bugs occur in practice, costs can be tremendous.

Bugs can cause huge financial losses each year, in

addition to privacy and security threats. According to

the US NIST’s (National Institute of Standards and

Technology) report, software bugs cost the US economy

$59.5 billion annually [3].

To reduce the harm caused by software failure,

hidden defects must be found as soon as possible before

they cause damage. Unfortunately, traditional manual

code review or software testing methods are time

consuming, labor intensive and imprecise. These

methods are difficult to apply to large-scale or market-

sensitive software systems. As a result, many

researchers and industry devote much effort to

developing automatic software failure detection

techniques. The pattern-based software failure detection

approach is one of the most important topics in this area.

Patterns which are found in software usually correspond

to programming rules or usage patterns [1]. In software

sizing activities, it is common to look for often required

logic such as for ‘Adding’, ‘Deleting’, ‘Amending’,

‘Searching’ and ‘Listing’ data from a data store. There

will be consequent patterns associated with these

C.Li, et al

functions. These patterns are intuitive and commonly

found in software documentation, such as: the Resource

Locking Protocol: <lock, unlock> or the Java

Transaction Architecture (JTA) Protocol [5] :

<TxManager.begin,TxManager.commit>,

<TxManger.begin, TxManger.rollback>, etc. Software

Patterns have also been used as part of re-use strategies

when developing software systems. The seminal work

by Erich Gamma et al [27] introduces many software

patterns including the ‘Singleton’, ‘Observer’ and

‘Façade’ patterns which have been widely adopted by

industry.

These patterns, which reflect interesting program

behavior, can be identified (or mined) by analyzing a set

of program traces. Traces are an ordered list of events

[4], where an event can correspond to the invocation of

a method, or the execution of a program statement, etc.

From the data mining viewpoint, each trace can be

considered as a sequence. A pattern (e.g., <lock,

unlock>) can appear multiple times within a sequence.

Each pattern may be divided by an arbitrary number of

unrelated intervening events (e.g., lock -> resource use -

> … -> unlock) [1].

Pattern mining is found in a wide variety of application

domains such as intrusion detection, failure detection,

program comprehension [2], bioinformatics, weather

prediction, and system health management [6]. Various

pattern mining methods are proposed such as frequent

itemset mining [10], sequential pattern mining [11],

closed pattern mining [22, 23], episode mining [12],

iterative pattern mining [2] and Closed Unique Pattern

mining [1]. Recently there has been interest in

developing discriminative pattern-based classifiers. In

[7], Cheng et al. mine frequent itemsets for classifying

transaction data. In [8, 9], frequent connected subgraphs

are mined for classifying graph data. On a related front,

Lo et al. proposed a novel method to extract Closed

Unique Patterns for software failure detection [1].

Pattern-based software failure detection was inspired

by the emerging area of dynamic analysis where

program traces are analyzed in order to infer or mine

temporal program properties or patterns of behavior [2].

In the dynamic analysis point of view, software can be

viewed as a series of program execution traces which

demonstrate a program‘s behaviors. When a program

executes, it produces a massive amount of execution

traces corresponding to its various behaviors. Some

behaviors are desirable, while some others are not.

These undesirable behaviors are often referred to as

failures. A set of execution traces can be collected to

construct a sequence database which is the basis of our

analysis.

Generally speaking, pattern-based software failure

detection employs a three-step framework [1], first,

mine a set of patterns from program execution traces;

secondly, perform feature selection to extract

discriminative patterns for the purpose of classification.

These selected patterns are treated as features and their

occurrence frequencies are treated as corresponding

feature values. Thirdly, these features are used to train a

classifier to detect failures. So, more specifically,

pattern-based software failure detection is a pattern

frequency-based method.

Existing research on pattern frequency based methods

has produced promising results. [1, 7] demonstrated that

this approach is much more discriminative than single

event approaches. But it has a natural weakness in that

the research neglects the pattern’s position within the

sequence. For example, consider the login pattern

P1=<login, passwd> and the set of user command

sequences S0-S4 as shown in Table 1. Sequences S0-S3

represent normal daily profiles of a user while the

sequence S4 is anomalous - one can never do any other

operations before logging into the system. Although S4

indicates an obvious failure, we are unable to

distinguish S0-S3 from S4 when using the pattern

frequency based method because the pattern P0 =

<login, passwd> does occur once in each of S0-S4. It is

very clear that pattern frequency based methods loose

their discriminating power in this case.

 Table 1 Sequences of User Commands

S0 login, passwd, mail, ssh, …, mail, web, logout

S1 login, passwd, mail, web, …, web, web, web, logout

S2 login, passwd, mail, ssh, …, mail, web, web, logout

S3 login, passwd, web, mail, ssh, …, web, mail, logout

S4 mail, ssh, web, …, web, mail, login, passwd, logout

From this example, we see how a number of

software failures could occur through misused software

patterns and merely using the pattern’s frequency as

feature cannot detect such kinds of failures. Notice that

the login pattern P0 occurred in the tail of S4, but

occurred in the head of S0-S3. So, patterns occurring in

the different positions of a trace are likely to represent

different meanings. A pattern’s position may imply

 Software Failure Detection

some important semantic information or design

constraints. In the example, it was: before we do any

other operations, we must login to the system. By using

the pattern position information, we can easily identify

abnormal sequences which contain misused patterns. So

it is appropriate to consider using positional information

to enhance the discriminating power of patterns.

In this paper, we propose a novel approach for using

the pattern positional distribution to detect software

failure instead of occurrence frequency, which is used in

traditional approaches. We present experiments using

both synthetic and real-world datasets to show that the

classification performance is improved significantly

compared with existing research. Our approach, with

the scheme of positional distribution, can be combined

with various pattern mining algorithms, which makes it

very flexible.

The organization of this paper is as follows. Section 2

introduces the concept definitions related to the pattern

position distribution. Section 3 describes our failure

detection method based on the pattern position

distribution. In Section 4, we provide our experimental

results and comparative study with existing published

research work. Section 5 then contains our concluding

remarks and ideas for future work.

2. Basic Concepts

This section provides the definitions for the following

four concepts:

(i) Pattern Instance;

(ii) Section;

(iii) Instance Position; and

(iv) Pattern Position Distribution.

In pattern mining, we denote a software execution

sequence S as it corresponds to a path which a program

takes when executing from its start to the end point

when it terminates [1]. Where each is an event, an event

in turn corresponds to a unit behavior of interest. This

can correspond to the execution of a statement, a

method call etc. The set of traces or sequence database

is denoted by TDB (Traces Database). An example

TDB is shown in Table 2.

In order to obtain a pattern’s positional information,

we need to define what we mean by a ‘pattern instance’.

This definition is given in DEFINITION 1, to follow.

The pattern instance definition can be expressed as a

Quantified Regular Expression (QRE). QRE is similar

to the standard regular expression but with a semicolon

denoting the concatenation operator, ‘[-]’ denoting the

exclusion operator (e.g., [-P, S] means any event except

P and S), and ‘*’ denoting 0 or more.

Table 2 Traces Database

Identifier Sequence

0S <D, B, C, F, B, A, F, B, C, E>

1S
<D, B, C, D, B, A, E, B, B, E, D,

C, E, C, D, E, F, D, B, A>

Definition 1: Pattern Instance Given a pattern

0 1 1, ,..., nP e e e , a substring f(f0,f1,...,fm-1) in a

sequence S in TDB (traces database) is an instance of P

iff it is of the following QRE expression

0 0 1 1 0 1 1;[,...,]*; ;...;[,...,]*; .n n ne e e e e e e

 An instance is denoted by a triplet （seq-id, start-pos,

end-pos），where seq-id refers to the ID of a sequence

S in the database while ‘start-pos’ and ‘end-pos’ refer to

the starting point and ending point of a substring in S.

All indices start from 0.

The starting point and ending point can indicate the

absolute position of an instance but cannot represent the

whole positional information on their own because the

length of sequences in TDB may not be equal. For

example, consider a pattern P = <A, B> and the two

sequence
0S ,

1S shown in Table 2. There are two

instances I (0, 5, 7), J (1, 5, 7) of pattern P. The length

of
0S is 10 and the length of

1S is 20. Although

I , J have the same absolute position, I appears in the

second half of
0S while J appears in the first half of

1S .

So, the same absolute position may indicate different

positional information. To avoid the weakness of the

absolute position, we use the relative position to

represent the positional information. In order to use

relative position, we divide all sequences into N

‘sections’ separately, and then determine what section

or sections an instance belongs to. In this way, we can

position an instance.

Definition 2: Section. Divide a sequence

seq idS 0 1 2 1, , ,... ne e e e into N parts

s.t.
1

0 1 2 1

0

, , ,...
N

i n

i

part e e e e

 and
1

0
i

N

i

part

 , this

C.Li, et al

partition divide
seq idS

 into N sections iff

, . 0 , 1, . . 1i ji j i j N s t part part , where

ipart denotes the i-th part of the sequence and
ipart

denotes the number of the event in
ipart .

After dividing a sequence into N sections, a sequence

can be denoted by
0, 1 1(sec sec ,...,sec)Ntion tion tion

,

and then we can determine the ‘instance position’ which

is given in the following definition.

Definition 3: Instance Position. Given an instance I

（seq-id, start-pos, end-pos）, a sequence divides into

N sections
seq idS 0, 1 1(sec sec ,...,sec)Ntion tion tion

 that

contains I . The position of I is represented as (seq-id,

start-section, end-section), where ‘start-section’ refers

to the ID of the section s.t.

sec secID IDtion I tionstart pos start pos end pos and

end-section refers to the ID of the section s.t.

sec secID IDtion I tionstart pos end pos end pos , where

Istart pos and
Iend pos refer to the starting point

and ending point of I ,
sec IDtionstart pos and

sec IDtionend pos refer to the starting point and ending

point of sec IDtion .

When we have obtained all instance positions of

pattern P, we can compute P’s position distribution.

Definition 4: Pattern Position Distribution. Pattern

P’s position distribution in sequence S will be denoted

by
, 1 2 1(, ,...,)P S NPD count count count , where

,P SPD

means pattern P’s position distribution in sequence S, N

refers to the number of sections,
icount refers to the

number of P’s instances in the sec ition Instance I in

the sec ktion means

sec sec. s.t. start-pos j
k kI I tion tionj start pos j end pos end pos

A part of Instance I in the sec ktion means

sec sec. s.t. start-pos j
k kI I tion tionj start pos j end pos end pos

.

As an example, consider a pattern P = <A, B> and the

TDB shown in Table 3, the set of instances of P denoted

by ()Inst P
are represented as: ()Inst P {(0,2,4),

(0,5,7), (1,2,4), (1,7,8)}. Then we divide all sequences

into 4 sections separately. For
0S ,

0section =<D, B,

A>,
1sec tion =<F, B>,

2sec tion =<A, F, B> and

3sec tion =<C, E>. For
1S ,

0section =<D, B, A>,

1sec tion =<D, B>,
2sec tion =<B, B> and

3sec tion =<A, B>. Instance position for all instances

belonging to ()Inst P will be represented as (0, 0, 1), (0,

2, 2), (1, 0, 1) and (1, 3, 3) separately. Pattern P’s

position distribution in sequence
0S is denoted by

0,P SPD =(1, 1, 1, 0) and P’s position distribution in

sequence
1S is denoted by

1,P SPD =(1, 1, 0, 1).

Table 3 Traces Database

Identifier Sequence

0S <D, B, A, F, B, A, F, B, C, E>

1S <D, B,A, D, B, B, B, A, B>

3. Pattern Position Distribution based Software

Failure Detection

In this section, we present a four-step approach for the

software failure detection based on pattern position

distribution. First, we extract a set of patterns from a

Traces Database (TDB). Secondly, pattern selection is

performed to select discriminative patterns. Thirdly, we

compute the position distribution for each selected

pattern. This distribution will be used as the features.

Finally, features are used to train a classifier to detect

software failure.

3.1. Pattern Mining

Creating a pattern mining algorithm is an essential

component to building the pattern-based classifier. Our

position distribution based approach can be combined

with various pattern mining algorithms. We use two

different pattern mining algorithms separately. The first

algorithm is the state of art Closed Unique Iterative

Pattern mining algorithm proposed by David Lo et al [1].

This algorithm performs a depth-first traversal of the

search space to grow patterns. It first computes frequent

single events in the traces database (TDB). The frequent

events are then grown in a depth-first fashion. Unique

pattern detection [1] and InfixScan pruning strategies [2]

are performed to cut the search space of non-closed

patterns to get a compact set of patterns. The second

algorithm is the classical FP-growth algorithm proposed

by J. Han et al [26]. The FP-growth algorithm

represents the transaction database as a prefix tree

which is enhanced with links that organize the nodes

into lists referring to the same item. The search is

carried out by projecting the prefix tree, working

recursively on the result, and pruning the original tree.

 Software Failure Detection

3.2. Pattern Selection

A large set of patterns will be mined from the set of

failing and normal traces. Some of these patterns may

be indiscriminative. To reduce the number of patterns

and eliminate those that are indiscriminative, pattern

selection is performed.

We employ the popularly used statistical measurement,

e.g., Fisher score [14], this score is defined as follows.

2

1

2

1

()
k

i ii

k

i ii

n u u
Fr

n

 (1)

where in is the number of data samples in class ic , i

is the average pattern value in class ic , we treat a

pattern’s instance number in a sequence S as the

corresponding pattern value. is the average pattern

value in the whole dataset. i is the standard deviation

of the pattern values in class ic . k is the number of

classes. Assumed that ijx is the pattern value for the j
th

instance in class ic , then , i and i are defined as

,

respectively. According to the formula, if a pattern has

very similar values within the same class and very

different values across different classes, the Fisher score

becomes large, which means this pattern is very

discriminative to differentiate instances from different

classes. Otherwise, it is not discriminative.

A pattern selection algorithm is proposed in [1]. The

algorithm ranks the patterns according to their Fisher

Score and then select patterns in descending order until

all data instances covered by at least times have been

processed.

Algorithm 1: Pattern Selection

Inputs: Pattern set P , Trace Database TDB, Coverage

Threshold .

Output: A selected pattern set
sP

1: for each pattern
iPat P

2: compute Fisher score of
iPat

3: sort P in decreasing order of Fisher score;

4: for each pattern
iPat P

5: if
iPat covers at least one sequence in TDB

6: add
iPat into

sP

7: remove
iPat from P

8: if a sequence S in TDB is covered times

9: remove S from TDB;

10: if all sequence are covered times or P ;

11: break;

12: return
sP

3.3. Position Distribution based Features

The conventional feature representation approach

simply uses a pattern’s occurrence frequency as a

feature value, this method is straightforward but

imperfect. If a pattern’s frequency is the same in two

different sequences, no matter what position the pattern

instance appears in, in the viewpoint of this method, the

two sequences are exactly the same. However, patterns

occurring in different positions of a trace are likely to

represent different meanings. For example, initialization

patterns usually appear in the head of a normal sequence;

data process patterns mainly in the middle and tail of a

normal sequence etc. Patterns which do not appear in

the “right” place usually indicate areas of potential

software failure. Simple use of frequency as a feature

would lose a lot of information and thereby reduce the

discriminative power.

As discussed in Section 2, we use relative position

to build positional information. For this, a program trace

will be divided into N sections. That is, a sequence is

partitioned into N nearly equal parts. There may be

several ways to divide a sequence into N sections. As an

example, for a sequence S<D, B, A, F, B, A, F, B, C,

E>, there are 6 ways to divide S into 4 sections. All 6

solutions are show in Table 4. If each sequence in TDB

randomly chooses its partition strategy, then different

pattern position distributions may be deduced in

repeated experiments and this would lead to unstable

results. In order to unify partition strategies for each

sequence, we use the following partition method to

allocate every event into a corresponding section: for

event e at the position i in sequence seq idS , we

allocate e into
jsection where

 (2)

)(idseqseqlen

N
ij

C.Li, et al

N denotes the number of sections, ()jseqlen seq id

denotes that the total number of events of the sequences

whose ID is
jseq id . Using the above strategy, for the

j
th

 instance of pattern
iP , we denote it

by () (, ,)i j j j jInst P seq id start pos end pos , the

corresponding start-section is

 (3)

Similarity, the corresponding end-section is

 (4)

 As ()i jInst P across multiple sections from

sec jstart tion to sec jend tion , the value between

sec jstart tioncount

and sec jend tioncount all plus 1.

Table 4 all solutions to divide S into 4 sections

Solutions Section partition

Solution1 <D, B, A, |F, B,| A, F, B,| C, E>

Solution2 <D, B, A,| F, B, A,| F, B,| C, E>

Solution3 <D, B, A,| F, B,| A, F,| B, C, E>

Solution4 <D, B,| A, F, B,| A, F,| B, C, E>

Solution5 <D, B, |A, F, B,| A, F, B,| C, E>

Solution6 <D, B,| A, F,| B, A, F,| B, C, E>

In this way, we can determine the distribution of each

pattern in the sequence, but we can’t use it directly as a

feature vector. For instance, consider pattern P and its

distribution in sequence
00 ,: (5, 10, 5, 10)P SS PD andits

distribution in sequence 11 ,: (55, 60, 55, 60)P SS PD
.

It is easy to determine that these two distributions are

very similar except for their baseline. For similarity

analysis of distributions, we need to consider

differences in the baseline and scale (or amplitude). A

straightforward approach for solving the baseline and

scale problem is to apply a normalization transformation

[15]. For example, a distribution

0 1 1(, ,...,)Ncount count count
 can be replaced by a

normalized distribution ' ' '

0 1 1(, ,...,)Ncount count count
using

the following formula.

' i i
i

i

count
count

 (5)

where i
is the mean value of the distribution

0 1 1(, ,...,)Ncount count count

and i is the standard

deviation of 0 1 1(, ,...,)Ncount count count . We use

normalized pattern distribution as features. Each

pattern’s position distribution will be connected to

generate the whole feature vector.

As an example, consider the login pattern

0P =<login, passwd> and the traces database shown in

Table 1. We divide each sequence into two sections, and

then count pattern
0P ’s position distribution. In this

situation,
0 3S S will be represented as

0 , (1, 1) (0 3)
iP SPD i to and

4S will be

represented as
0 3, (1, 1) P SPD . In this way, the

differences between
0 3S S and

4S are significant and

the wrong sequence can be easily identified. From the

example in Section 1, the frequency based method loses

the discriminating power in this case, it is clear that

pattern’s position distribution is more discriminating

than frequency.

Algorithm 2 presents the pseudo code for Position

Distribution Based Feature Representation.

Algorithm 2: Feature Representation

Inputs: A selected set of patterns
sP , Number of

sections N , Trace database TDB

Outputs: Feature Vector FV
1: for each patterns

i sPat P

2: Let ()iInst Pat = all instance of
iPat
;

3: for each instance () ()i j iInst Pat Inst Pat

4: Let

sec
()

j j

j

N
start tion start pos

seqlen seq id

 ;

5: Let

sec
()

j j

j

N
end tion end pos

seqlen seq id

 ;

6: for k = sec jstart tion to sec jend tion

7: Let [][]jFV seq id i N k
;

8: normalization

([][sec]j jFV seq id i N start tion to

[][sec]j jFV seq id i N end tion);

9: return FV ;
It is also noteworthy that when N=1, the pattern

distribution based method is exactly the same as the

pattern frequency based method, this shows that pattern

)(
sec

idseqseqlen

N
j

posstart
j

tionstart

)(
sec

idseqseqlen

N
i

posend
i

tionend

 Software Failure Detection

position based method is more general than pattern

frequency based one.

After generating the feature vectors, these features were

used to train a classifier to detect software failure. When

the classifier was built, suspicious program traces were

processed in the same way, and then the feature vectors

were put into the classifier, to test whether they contain

failures or not. For the sake of comparison with a

previous study, we used LIBSVM [16] as the classifier.

4. Experiment and Analysis

The experiment was carried out in two parts. Firstly, we

compared our method with the state of art closed unique

Iterative pattern’s frequency based method proposed in

[1]. To make the experimental results more persuasive,

for the datasets, all arguments of pattern mining, pattern

selection and classifier are completely the same.

Detailed arguments can be reviewed in [13]. Secondly,

to further illustrate the strength and universality of our

method, we compared our method with Frequent

Pattern’s frequency base method. Frequent Patterns are

mined using the FP-growth algorithm proposed in [26].

We performed 5-fold cross validation for each dataset.

In the first experiment, the datasets were a mixture of

synthetic datasets and real-life datasets. The datasets

corresponded to traces databases (TDB). The synthetic

datasets included CVS Application and X11 Windowing

Protocol. Synthetic datasets were generated using the

simulator QUARK [24]. Given a software component

model in the form of a probabilistic finite state

automaton as input, QUARK can generate traces that

represent the model following some coverage criteria.

QUARK is also able to inject errors into the synthetic

traces. In this experiment, three types of errors were

injected into the traces, they were: addition bugs,

omission bugs and ordering bugs. Table 5 explains the

meaning of each type of bug. The correct execution

traces were labeled as 0 and failing execution traces

were labeled as 1.
Table 5 Three Types of Errors

Error Types Explanation

Omission bugs Missing method calls.

Addition bugs Injection of additional events resulting

in failures

Ordering bugs The order of events occurring is wrong

Almost all of the real existing bugs belong to these

three types, so the synthetic dataset can well simulate

the real-life conditions. For the comparison experiments,

argument N (number of sections) is the only adjustable

argument, increasing N means divided program traces

into more equal sections, and this would improve the

veracity of the pattern’s position distribution but also

generates more feature dimensions. As a compromise,

we set N to 4, which means dividing the program traces

into four equal sections. Comparative experimental

results of synthetic datasets are shown in Table 6.

Datasets “X11” and “CVS Omission” contain only

‘addition’ and ‘omission’ bugs respectively, “CVS

Ordering” contains ordering bugs and “CVS Mix”

contains a mixture of all three types of bugs. The

number of correct and error traces is also shown in

Table 6. We denote the closed unique Iterative pattern’s

frequency based method as CUP-Pat-Fre and our closed

unique Iterative pattern’s position distribution based

method as CUP-Pos-Dist. “Add” refers to Addition bugs,

“Omis” refers to Omission bugs, and “Order” refers to

Ordering bugs. Classification accuracy, defined as the

percentage of test cases correctly classified, was used as

the performance metric.

From Table 6, our proposed position distribution

method is better than the frequency-based method in all

four synthetic datasets, which proves that additional

position distribution information can help with software

failure classification in different failure types.

We continued the first experiment by analyzing real-

world datasets from the Siemens Test Suite [17] and a

data race concurrency bug from MYSQL [19]. The

Siemens Test Suite was originally used in testing

coverage adequacy and error localization [25]. The test

suite contains several programs. Each program contains

several different versions where each version has one

bug. To simulate the real-life situation where probably

there are many bugs occurring in one program, 3 bugs

and 3 additional simulated ordering bugs were injected

into each program execution trace. We selected the

three largest programs in the test suite. They are referred

to as: schedule, print tokens and replace. A data race

concurrency bug from MYSQL is also analyzed, this

bug causes the wrong ordering of statement executions

and can result in inconsistency of the database. The

maintainers of MYSQL rate this bug as serious in their

bug database. More information about the test suite and

data race bug is available in [1, 17, and 18]. The

comparative experimental results from the real-life

datasets are show in Table 7.

C.Li, et al

The results show that the position distribution based

method outperforms the frequency-based method in all

real-life datasets, the standard deviation is also smaller

than for the Pat-Fre method. The results further

illustrate that the pattern’s position distribution based

method is more discriminative and stable than the

pattern’s frequency based method.

In the second experiment, we tested a real-life dataset

- tot_info which comes from the Siemens Test Suite.

Detailed information about the dataset is shown in Table

8.

We used the FP-growth algorithm to generate

frequent patterns and LIBSVM as the classification

model. The support threshold was set at 0.88 and 119

patterns were mined. Sixty two patterns were selected.

We performed 5-fold cross validation in this dataset.

Comparison results in each fold and summarized results

are shown in Table 9. “FP-Fre” refers to frequent

pattern’s frequency based method, and “FP-Pos-Dist”

refers to frequent pattern’s position distribution based

method.

From Table 9, our method outperforms the frequency

based method both in accuracy and standard deviation.

It further confirms the strength of our method. It also

demonstrates that our pattern position distribution

method can be connected to other pattern mining

algorithms, which makes it flexible.

The results from both synthetic and real-life datasets,

indicate that our proposed position distribution based

method can better distinguish normal and failing

program traces than the pattern frequency based method

by catching the positional information of patterns. This

information implies that by getting the

semantics/constraints between statement sets, enables us

to obtain a more complete description of the software

being analyzed, which helps improve the performance

of software failure detection. Considering the data are

collected both under the synthetic and real-world

conditions, we can conclude that our method will be

generally applicable to the detection of software failures.

5. Conclusions

In this paper, we present a novel method to use a

pattern’s position distribution as features to detect

software failure occurring through misused software

patterns. This method can catch the semantics

/constraints information between statement sets while

the traditional pattern frequency based method cannot.

This method allows us to extract more complete

information from program sequences and then to

generalize more discriminative models. Comparative

experiments show that our method outperforms the state

of art pattern frequency based method. Our method can

also be easily connected to any pattern mining algorithm,

which makes it very flexible.

In future work, we are going to develop a new

pattern presentation method, apply this method to other

domains, such as malware detection, and attempt to

utilize multi-classifiers to leverage classification

performance.

References

1. D. Lo, H. Cheng, J. Han, S-C. Khoo, and C. Sun,

Classification of software behaviors for failure detection:

a discriminative pattern mining approach, In Proc. KDD

(2009) pp 557-566.

2. D. Lo, S-C. Khoo, and C. Liu, Efficient mining of

iterative patterns for software specification discovery, In

Proc. KDD (2007) pp 460-469.

3. G. Tassey, The economic impacts of inadequate

infrastructure for software testing, Planning Report

(National Institute of Standards and Technology, USA,

2002).

4. Z. Xing, A brief survey on sequence classification, J.

ACM SIGKDD Explorations Newsletter 12(1) (2010): 40-

48, 2010.

5. Java Trans. API Spec. http://java.sun.com/products/jta.

6. V. Chandola, A. Banerjee, and V. Kumar, Anomaly

detection for discrete sequences: A Survey, IEEE

Transactions on Knowledge and Data Engineering

99(2010): 1-19.

7. H. Cheng, X. Yan, J. Han, and C.Hsu, Discriminative

frequent pattern analysis for effective classification, in

Proc. ICDE (2007) pp.716-725.

8. M. Deshpande, M. Kuramochi, N.Wale, and G. Karypis,

Frequent substructure-based approaches for classifying

chemical compounds, IEEE Transactions on Knowledge

and Data Engineering 17(8) (2005): 1036-1050.

9. X. Yan, H. Cheng, J. Han, and P-S. Yu, Mining

significant graph patterns by scalable leap search, in Proc.

SIGMOD (2008) pp.433-444.

10. R. Agrawal and R. Srikant, Fast algorithms for mining

association rules, in Proc. VLDB (1994) pp 487-499.

11. R. Agrawal and R. Srikant, Mining sequential patterns, in

Proc. ICDE (1995) pp 3-14.

12. H. Mannila, H. Toivonen, and A.I. Verkamo, Discovery

of frequent episodes in event sequences, J. Data Mining

and Knowledge Discovery (1) (1997): 259-289.

13. Software Failure Detection: Experimental Dataset,

http://www.mysmu.edu/faculty/davidlo/kdd09.htm, 2009

14. R. Duda, P. Hart, and D. Stork, Pattern Classification 2nd

Edition (Wiley Interscience, 2000)

http://java.sun.com/products/jta
http://www.mysmu.edu/faculty/davidlo/kdd09.htm

 Software Failure Detection

15. J. Han, M. Kamber, Data Mining: Concepts and

Techniques, 2nd Edition (Elsevier, 2006).

16. C. Chang and C. Lin. LIBSVM: a library for support

vector machines, 2001(Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm).

17. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,

Experiments on the effectiveness of dataflow- and

control-flow-based test adequacy criteria. In Proc. of Int.

Conf. on Software Engineering (1994) pp 191 -200.

18. C. Liu, X. Yan, H.Yu, J. Han, and P.S. Yu. Mining

behavior graphs for “backtrace” of noncrashing bugs, in

Proc. SDM (2005).

19. Mysql atomicity violation, http://bugs.mysql.com

20. W. Dickinson, D. Leon, and A. Podguriski, Finding

failures by cluster analysis of execution profiles, in Proc.

of Int. Conf. on Software Engineering (2001) pp 339-

348.

21. J.F. Bowring, J.M. Rehg, and M.J. Harrold, Active

learning for automatic classification of software b in

Proc. of Int. Symp. on Software Testing and Analysis

(2004)pp195-205.

22. J. Wang and J. Han. BIDE: Mining of frequent closed

sequences, in Proc. ICDE (2004) pp 79-90.

23. X. Yan, J. Han, and R. Afhar, CloSpan: Mining closed

sequential patterns in large datasets. In Proc. SDM (2003).

24. D. Lo and S. Khoo. QUARK: Empirical assessment of

automaton-based specification miners, in Proc. of

Working Conf. on Reverse Engineering (2006).

25. C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, SOBER:

statistical model-based bug localization, in Proc.

SIGSOFT ESEC-FSE (2005) pp286-295.

26. J. Han, H. Pei, and Y. Yin, Mining Frequent Patterns

without Candidate Generation, in Proc. SIGMOD (2000)

pp 1- 12.

27. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

Patterns: elements of Reusable Object-Oriented Software

(Addison-Wesley, 1995)

Table 6. experiments 1: comparison results on synthetic datasets

Dataset Correct(traces) Error(traces) Accuracy with standard deviation

Add/Omis Order CUP-Fre CUP-Pos-Dist

X11 125 125 0 97.20 3.35 100 0

CVS Omission 170 170 0 100 0 100 0

CVS Ordering 180 0 180 85.28 2.71 86.95 2.22

CVS Mix 180 90 90 93.89 5.94 96.39 4.72

Table 7 experiments 1: results on real-life datasets

Dataset
Correct(traces) Error(traces)

Accuracy with standard deviation

Add/Omis Order CUP-Fre CUP-Pos-Dist

schedule 2140 289 1851 86.26 14.90 88.67 10.79

print_tokens 3108 187 187 99.94 0.06 100 0

replace 1259 269 269 90.84 2.54 93.24 2.21

MySQL 51 0 51 100 0 100 0

Table 8 experiments 2: detailed information about tot_info dataset

Dataset Correct(traces) Error(traces)

Add/Omis Order

tot_info 302 208 94

Table 9 experiments 2: comparison results on tot_info dataset

 Accuracy with standard deviation

5-flod cross validation FP-Fre FP-Pos-Dist

fold-1 70.83% 93.33%

flod-2 68.3% 72.5%

fold-3 95.83% 91.67%

fold-4 80.83% 87.5%

fold-5 63.33% 74.17%

summarized result 75.83 12.87 83.83 9.84

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://bugs.mysql.com/

