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Abstract 

In this paper, we present a novel approach to software failure detection based on pattern position distributions as 

features. In this approach, we divide an execution sequence into several sections and then compute a pattern 

distribution in each section. The distribution of all patterns is then used as a feature to train a classifier. This 

approach outperforms conventional frequency based methods by more effectively identifying software failures 

occurring through misused software patterns. Comparative experiments show the effectiveness of our approach. 
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1. Introduction 

As time goes by, computer software is playing an 

increasingly important role in our daily lives. However, 

it is difficult to validate the correctness of software. 

When bugs occur in practice, costs can be tremendous. 

Bugs can cause huge financial losses each year, in 

addition to privacy and security threats. According to 

the US NIST’s (National Institute of Standards and 

Technology) report, software bugs cost the US economy 

$59.5 billion annually [3]. 

To reduce the harm caused by software failure, 

hidden defects must be found as soon as possible before 

they cause damage. Unfortunately, traditional manual 

code review or software testing methods are time 

consuming, labor intensive and imprecise. These 

methods are difficult to apply to large-scale or market-

sensitive software systems. As a result, many 

researchers and industry devote much effort to 

developing automatic software failure detection 

techniques. The pattern-based software failure detection 

approach is one of the most important topics in this area.  

Patterns which are found in software usually correspond 

to programming rules or usage patterns [1]. In software 

sizing activities, it is common to look for often required 

logic such as for ‘Adding’, ‘Deleting’, ‘Amending’, 

‘Searching’ and ‘Listing’ data from a data store. There 

will be consequent patterns associated with these 
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functions. These patterns are intuitive and commonly 

found in software documentation, such as: the Resource 

Locking Protocol: <lock, unlock> or the Java 

Transaction Architecture (JTA) Protocol [5] : 

<TxManager.begin,TxManager.commit>, 

<TxManger.begin, TxManger.rollback>, etc. Software 

Patterns have also been used as part of re-use strategies 

when developing software systems. The seminal work 

by Erich Gamma et al [27] introduces many software 

patterns including the ‘Singleton’, ‘Observer’ and 

‘Façade’ patterns which have been widely adopted by 

industry. 

These patterns, which reflect interesting program 

behavior, can be identified (or mined) by analyzing a set 

of program traces. Traces are an ordered list of events 

[4], where an event can correspond to the invocation of 

a method, or the execution of a program statement, etc. 

From the data mining viewpoint, each trace can be 

considered as a sequence. A pattern (e.g., <lock, 

unlock>) can appear multiple times within a sequence. 

Each pattern may be divided by an arbitrary number of 

unrelated intervening events (e.g., lock -> resource use -

> … -> unlock) [1]. 

Pattern mining is found in a wide variety of application 

domains such as intrusion detection, failure detection, 

program comprehension [2], bioinformatics, weather 

prediction, and system health management [6]. Various 

pattern mining methods are proposed such as frequent 

itemset mining [10], sequential pattern mining [11], 

closed pattern mining [22, 23], episode mining [12], 

iterative pattern mining [2] and Closed Unique Pattern 

mining [1]. Recently there has been interest in 

developing discriminative pattern-based classifiers. In 

[7], Cheng et al. mine frequent itemsets for classifying 

transaction data. In [8, 9], frequent connected subgraphs 

are mined for classifying graph data. On a related front, 

Lo et al. proposed a novel method to extract Closed 

Unique Patterns for software failure detection [1].  

Pattern-based software failure detection was inspired 

by the emerging area of dynamic analysis where 

program traces are analyzed in order to infer or mine 

temporal program properties or patterns of behavior [2]. 

In the dynamic analysis point of view, software can be 

viewed as a series of program execution traces which 

demonstrate a program‘s behaviors. When a program 

executes, it produces a massive amount of execution 

traces corresponding to its various behaviors. Some 

behaviors are desirable, while some others are not. 

These undesirable behaviors are often referred to as 

failures. A set of execution traces can be collected to 

construct a sequence database which is the basis of our 

analysis. 

Generally speaking, pattern-based software failure 

detection employs a three-step framework [1], first, 

mine a set of patterns from program execution traces; 

secondly, perform feature selection to extract 

discriminative patterns for the purpose of classification. 

These selected patterns are treated as features and their 

occurrence frequencies are treated as corresponding 

feature values. Thirdly, these features are used to train a 

classifier to detect failures. So, more specifically, 

pattern-based software failure detection is a pattern 

frequency-based method.  

Existing research on pattern frequency based methods 

has produced promising results. [1, 7] demonstrated that 

this approach is much more discriminative than single 

event approaches. But it has a natural weakness in that 

the research neglects the pattern’s position within the 

sequence. For example, consider the login pattern 

P1=<login, passwd> and the set of user command 

sequences S0-S4 as shown in Table 1. Sequences S0-S3 

represent normal daily profiles of a user while the 

sequence S4 is anomalous - one can never do any other 

operations before logging into the system. Although S4 

indicates an obvious failure, we are unable to 

distinguish S0-S3 from S4 when using the pattern 

frequency based method because the pattern P0 = 

<login, passwd> does occur once in each of S0-S4. It is 

very clear that pattern frequency based methods loose 

their discriminating power in this case. 

                 Table 1 Sequences of User Commands  

S0 login, passwd, mail, ssh, …, mail, web, logout 

S1 login, passwd, mail, web, …, web, web, web, logout 

S2 login, passwd, mail, ssh, …, mail, web, web, logout 

S3 login, passwd, web, mail, ssh, …, web, mail, logout 

S4 mail, ssh, web, …, web, mail, login, passwd, logout 

From this example, we see how a number of 

software failures could occur through misused software 

patterns and merely using the pattern’s frequency as 

feature cannot detect such kinds of failures. Notice that 

the login pattern P0 occurred in the tail of S4, but 

occurred in the head of S0-S3. So, patterns occurring in 

the different positions of a trace are likely to represent 

different meanings. A pattern’s position may imply 
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some important semantic information or design 

constraints. In the example, it was: before we do any 

other operations, we must login to the system. By using 

the pattern position information, we can easily identify 

abnormal sequences which contain misused patterns. So 

it is appropriate to consider using positional information 

to enhance the discriminating power of patterns. 

In this paper, we propose a novel approach for using 

the pattern positional distribution to detect software 

failure instead of occurrence frequency, which is used in 

traditional approaches. We present experiments using 

both synthetic and real-world datasets to show that the 

classification performance is improved significantly 

compared with existing research. Our approach, with 

the scheme of positional distribution, can be combined 

with various pattern mining algorithms, which makes it 

very flexible. 

The organization of this paper is as follows. Section 2 

introduces the concept definitions related to the pattern 

position distribution. Section 3 describes our failure 

detection method based on the pattern position 

distribution. In Section 4, we provide our experimental 

results and comparative study with existing published 

research work. Section 5 then contains our concluding 

remarks and ideas for future work. 

2. Basic Concepts 

This section provides the definitions for the following 

four concepts:  

 

(i) Pattern Instance;  

(ii)  Section;  

(iii) Instance Position; and  

(iv) Pattern Position Distribution. 

 

In pattern mining, we denote a software execution 

sequence S as it corresponds to a path which a program 

takes when executing from its start to the end point 

when it terminates [1]. Where each is an event, an event 

in turn corresponds to a unit behavior of interest. This 

can correspond to the execution of a statement, a 

method call etc. The set of traces or sequence database 

is denoted by TDB (Traces Database). An example 

TDB is shown in Table 2.  

In order to obtain a pattern’s positional information, 

we need to define what we mean by a ‘pattern instance’. 

This definition is given in DEFINITION 1, to follow. 

The pattern instance definition can be expressed as a 

Quantified Regular Expression (QRE). QRE is similar 

to the standard regular expression but with a semicolon 

denoting the concatenation operator, ‘[-]’ denoting the 

exclusion operator (e.g., [-P, S] means any event except 

P and S), and ‘*’ denoting 0 or more. 

 
Table 2 Traces Database 

Identifier Sequence 

0S  <D, B, C, F, B, A, F, B, C, E> 

 

 

1S  
<D, B, C, D, B, A, E, B, B, E, D, 

C, E, C, D, E, F, D, B, A> 

 

Definition 1: Pattern Instance Given a pattern 

0 1 1, ,..., nP e e e   , a substring f(f0,f1,...,fm-1) in a 

sequence S in TDB (traces database) is an instance of P 

iff it is of the following QRE expression 

0 0 1 1 0 1 1;[ ,..., ]*; ;...;[ ,..., ]*; .n n ne e e e e e e     

  An instance is denoted by a triplet （seq-id, start-pos, 

end-pos），where seq-id refers to the ID of a sequence 

S in the database while ‘start-pos’ and ‘end-pos’ refer to 

the starting point and ending point of a substring in S. 

All indices start from 0.  

The starting point and ending point can indicate the 

absolute position of an instance but cannot represent the 

whole positional information on their own because the 

length of sequences in TDB may not be equal. For 

example, consider a pattern P = <A, B> and the two 

sequence
0S , 

1S  shown in Table 2. There are two 

instances I  (0, 5, 7), J (1, 5, 7) of pattern P. The length 

of 
0S  is 10 and the length of 

1S is 20. Although 

I , J have the same absolute position, I appears in the 

second half of 
0S  while J appears in the first half of 

1S . 

So, the same absolute position may indicate different 

positional information. To avoid the weakness of the 

absolute position, we use the relative position to 

represent the positional information. In order to use 

relative position, we divide all sequences into N 

‘sections’ separately, and then determine what section 

or sections an instance belongs to. In this way, we can 

position an instance.  

Definition 2: Section. Divide a sequence 

seq idS  0 1 2 1, , ,... ne e e e    into N parts 

s.t.
1

0 1 2 1

0

, , ,...
N

i n

i

part e e e e






   and 
1

0
i

N

i

part




 , this 
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partition divide 
seq idS 

 into N sections iff 

, . 0 , 1,  . . 1i ji j i j N s t part part       , where 

ipart  denotes the i-th part of the sequence and 
ipart  

denotes the number of the event in 
ipart . 

After dividing a sequence into N sections, a sequence 

can be denoted by
0, 1 1(sec sec ,...,sec )Ntion tion tion 

, 

and then we can determine the ‘instance position’ which 

is given in the following definition. 

Definition 3: Instance Position. Given an instance I

（seq-id, start-pos, end-pos）, a sequence divides into 

N sections 
seq idS  0, 1 1(sec sec ,...,sec )Ntion tion tion 

 that 

contains I . The position of I  is represented as (seq-id, 

start-section, end-section), where ‘start-section’ refers 

to the ID of the section s.t. 

sec secID IDtion I tionstart pos start pos end pos      and 

end-section refers to the ID of the section s.t. 

sec secID IDtion I tionstart pos end pos end pos     , where 

Istart pos  and 
Iend pos  refer to the starting point 

and ending point of I , 
sec IDtionstart pos  and 

sec IDtionend pos  refer to the starting point and ending 

point of sec IDtion . 

When we have obtained all instance positions of 

pattern P, we can compute P’s position distribution.  

Definition 4: Pattern Position Distribution. Pattern 

P’s position distribution in sequence S will be denoted 

by 
, 1 2 1( , ,..., )P S NPD count count count  , where 

,P SPD  

means pattern P’s position distribution in sequence S, N 

refers to the number of sections, 
icount  refers to the 

number of P’s instances in the sec ition  Instance I  in 

the sec ktion   means 

sec sec.  s.t. start-pos j
k kI I tion tionj start pos j end pos end pos       

A part of Instance I  in the sec ktion  means 

sec sec.  s.t. start-pos j
k kI I tion tionj start pos j end pos end pos       

. 

As an example, consider a pattern P = <A, B> and the 

TDB shown in Table 3, the set of instances of P denoted 

by ( )Inst P  
are represented as: ( )Inst P  {(0,2,4), 

(0,5,7), (1,2,4), (1,7,8)}. Then we divide all sequences 

into 4 sections separately. For 
0S , 

0section =<D, B, 

A>, 
1sec tion =<F, B>, 

2sec tion =<A, F, B> and 

3sec tion =<C, E>.  For 
1S , 

0section =<D, B, A>, 

1sec tion =<D, B>, 
2sec tion =<B, B> and 

3sec tion =<A, B>. Instance position for all instances 

belonging to ( )Inst P  will be represented as (0, 0, 1), (0, 

2, 2), (1, 0, 1) and (1, 3, 3) separately. Pattern P’s 

position distribution in sequence 
0S  is denoted by 

0,P SPD =(1, 1, 1, 0) and P’s position distribution in 

sequence 
1S  is denoted by 

1,P SPD =(1, 1, 0, 1). 

Table 3 Traces Database 

Identifier Sequence 

0S  <D, B, A, F, B, A, F, B, C, E> 

1S  <D, B,A, D, B, B, B, A, B> 

 

3. Pattern Position Distribution based Software 

Failure Detection 

In this section, we present a four-step approach for the 

software failure detection based on pattern position 

distribution. First, we extract a set of patterns from a 

Traces Database (TDB). Secondly, pattern selection is 

performed to select discriminative patterns. Thirdly, we 

compute the position distribution for each selected 

pattern. This distribution will be used as the features. 

Finally, features are used to train a classifier to detect 

software failure. 

3.1.  Pattern Mining 

Creating a pattern mining algorithm is an essential 

component to building the pattern-based classifier. Our 

position distribution based approach can be combined 

with various pattern mining algorithms. We use two 

different pattern mining algorithms separately. The first 

algorithm is the state of art Closed Unique Iterative 

Pattern mining algorithm proposed by David Lo et al [1]. 

This algorithm performs a depth-first traversal of the 

search space to grow patterns. It first computes frequent 

single events in the traces database (TDB). The frequent 

events are then grown in a depth-first fashion. Unique 

pattern detection [1] and InfixScan pruning strategies [2] 

are performed to cut the search space of non-closed 

patterns to get a compact set of patterns. The second 

algorithm is the classical FP-growth algorithm proposed 

by J. Han et al [26]. The FP-growth algorithm 

represents the transaction database as a prefix tree 

which is enhanced with links that organize the nodes 

into lists referring to the same item. The search is 

carried out by projecting the prefix tree, working 

recursively on the result, and pruning the original tree. 
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3.2. Pattern Selection 

A large set of patterns will be mined from the set of 

failing and normal traces. Some of these patterns may 

be indiscriminative. To reduce the number of patterns 

and eliminate those that are indiscriminative, pattern 

selection is performed. 

 

We employ the popularly used statistical measurement, 

e.g., Fisher score [14], this score is defined as follows. 

 

2

1

2

1

( )
k

i ii

k

i ii

n u u
Fr

n









           

                                (1) 

 

where in  is the number of data samples in class ic , i  

is the average pattern value in class ic , we treat a 

pattern’s instance number in a sequence S as the 

corresponding pattern value.   is the average pattern 

value in the whole dataset. i  is the standard deviation 

of the pattern values in class ic . k  is the number of 

classes. Assumed that ijx is the pattern value for the j
th

  

instance in class ic , then  , i  and i  are defined as  

 

, 

 

respectively. According to the formula, if a pattern has 

very similar values within the same class and very 

different values across different classes, the Fisher score 

becomes large, which means this pattern is very 

discriminative to differentiate instances from different 

classes. Otherwise, it is not discriminative. 

 

A pattern selection algorithm is proposed in [1]. The 

algorithm ranks the patterns according to their Fisher 

Score and then select patterns in descending order until 

all data instances covered by at least   times have been 

processed. 

 

Algorithm 1:  Pattern Selection 

 

Inputs: Pattern set P , Trace Database TDB, Coverage 

Threshold  . 

Output: A selected pattern set 
sP  

1:   for each pattern 
iPat P  

2:     compute Fisher score of 
iPat  

3:    sort P  in decreasing order of Fisher score; 

4:    for each pattern 
iPat P  

5:      if 
iPat  covers at least one sequence in TDB 

6:           add 
iPat  into 

sP  

7:           remove
iPat   from P  

8:     if a sequence S in TDB is covered   times 

9:         remove S from TDB; 

10:    if all sequence are covered   times or P  ; 

11:       break; 

12:   return  
sP
 

 

3.3. Position Distribution based Features 

The conventional feature representation approach 

simply uses a pattern’s occurrence frequency as a 

feature value, this method is straightforward but 

imperfect. If a pattern’s frequency is the same in two 

different sequences, no matter what position the pattern 

instance appears in, in the viewpoint of this method, the 

two sequences are exactly the same. However, patterns 

occurring in different positions of a trace are likely to 

represent different meanings. For example, initialization 

patterns usually appear in the head of a normal sequence; 

data process patterns mainly in the middle and tail of a 

normal sequence etc. Patterns which do not appear in 

the “right” place usually indicate areas of potential 

software failure. Simple use of frequency as a feature 

would lose a lot of information and thereby reduce the 

discriminative power. 

As discussed in Section 2, we use relative position 

to build positional information. For this, a program trace 

will be divided into N sections. That is, a sequence is 

partitioned into N nearly equal parts. There may be 

several ways to divide a sequence into N sections. As an 

example, for a sequence S<D, B, A, F, B, A, F, B, C, 

E>, there are 6 ways to divide S into 4 sections. All 6 

solutions are show in Table 4. If each sequence in TDB 

randomly chooses its partition strategy, then different 

pattern position distributions may be deduced in 

repeated experiments and this would lead to unstable 

results. In order to unify partition strategies for each 

sequence, we use the following partition method to 

allocate every event into a corresponding section: for 

event e  at the position i in sequence seq idS   , we 

allocate e  into 
jsection where  

 

                                                                               (2) 

                                        )( idseqseqlen

N
ij






C.Li, et al 

 

N denotes the number of sections, ( )jseqlen seq id  

denotes that the total number of events of the sequences 

whose ID is
jseq id . Using the above strategy, for the 

j
th

   instance of pattern
iP , we denote it 

by ( ) ( , , )i j j j jInst P seq id start pos end pos    , the 

corresponding start-section is 

 

                                                                                      (3) 

 

 

Similarity, the corresponding end-section is  

 

                                                                                      (4) 

 

 As ( )i jInst P  across multiple sections from 

sec jstart tion  to sec jend tion , the value between 

sec jstart tioncount 
 
and sec jend tioncount   all plus 1.  

 
Table 4 all solutions to divide S into 4 sections 

Solutions Section partition 

Solution1 <D, B, A, |F, B,| A, F, B,| C, E> 

Solution2 <D, B, A,| F, B, A,| F, B,| C, E> 

Solution3 <D, B, A,| F, B,| A, F,| B, C, E> 

Solution4 <D, B,| A, F, B,| A, F,| B, C, E> 

Solution5 <D, B, |A, F, B,| A, F, B,| C, E> 

Solution6 <D, B,| A, F,| B, A, F,| B, C, E> 

 

In this way, we can determine the distribution of each 

pattern in the sequence, but we can’t use it directly as a 

feature vector. For instance, consider pattern P and its 

distribution in sequence 
00 ,:  (5,  10,  5,  10)P SS PD   andits 

distribution in sequence 11 ,:  (55,  60,  55,  60)P SS PD 
. 

It is easy to determine that these two distributions are 

very similar except for their baseline. For similarity 

analysis of distributions, we need to consider 

differences in the baseline and scale (or amplitude). A 

straightforward approach for solving the baseline and 

scale problem is to apply a normalization transformation 

[15]. For example, a distribution 

0 1 1( , ,..., )Ncount count count 
 can be replaced by a 

normalized distribution ' ' '

0 1 1( , ,..., )Ncount count count 
using 

the following formula. 

 

' i i
i

i

count
count






                                              (5) 

where i  
is the mean value of the distribution 

0 1 1( , ,..., )Ncount count count 
 
and i  is the standard 

deviation of 0 1 1( , ,..., )Ncount count count  . We use 

normalized pattern distribution as features. Each 

pattern’s position distribution will be connected to 

generate the whole feature vector. 

As an example, consider the login pattern 

0P =<login, passwd> and the traces database shown in 

Table 1. We divide each sequence into two sections, and 

then count pattern 
0P ’s position distribution. In this 

situation, 
0 3S S  will be represented as 

0 , (1,  1) ( 0  3)
iP SPD i to    and 

4S  will be 

represented as 
0 3, ( 1,  1) P SPD   . In this way, the 

differences between
0 3S S and 

4S  are significant and 

the wrong sequence can be easily identified. From the 

example in Section 1, the frequency based method loses 

the discriminating power in this case, it is clear that 

pattern’s position distribution is more discriminating 

than frequency. 

Algorithm 2 presents the pseudo code for Position 

Distribution Based Feature Representation. 

 

Algorithm 2: Feature Representation 

 

Inputs: A selected set of patterns 
sP , Number of 

sections N , Trace database TDB 

Outputs: Feature Vector FV  
1:  for each patterns 

i sPat P  

2:     Let ( )iInst Pat  = all instance of 
iPat
;
 

3:     for each instance ( ) ( )i j iInst Pat Inst Pat  

4:         Let 

sec
( )

j j

j

N
start tion start pos

seqlen seq id

 
    

   ;

 

5:         Let 

sec
( )

j j

j

N
end tion end pos

seqlen seq id

 
    

   ;

 

6:         for k = sec jstart tion  to sec jend tion  

7:             Let [ ][ ]jFV seq id i N k   
;
 

8:     normalization 

( [ ][ sec ]j jFV seq id i N start tion     to 

[ ][ sec ]j jFV seq id i N end tion    ); 

9: return FV ; 
It is also noteworthy that when N=1, the pattern 

distribution based method is exactly the same as the 

pattern frequency based method, this shows that pattern 

)(
sec

idseqseqlen

N
j

posstart
j

tionstart




)(
sec

idseqseqlen

N
i

posend
i

tionend
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position based method is more general than pattern 

frequency based one. 

After generating the feature vectors, these features were 

used to train a classifier to detect software failure. When 

the classifier was built, suspicious program traces were 

processed in the same way, and then the feature vectors 

were put into the classifier, to test whether they contain 

failures or not. For the sake of comparison with a 

previous study, we used LIBSVM [16] as the classifier. 

4. Experiment and Analysis 

The experiment was carried out in two parts. Firstly, we 

compared our method with the state of art closed unique 

Iterative pattern’s frequency based method proposed in 

[1]. To make the experimental results more persuasive, 

for the datasets, all arguments of pattern mining, pattern 

selection and classifier are completely the same. 

Detailed arguments can be reviewed in [13]. Secondly, 

to further illustrate the strength and universality of our 

method, we compared our method with Frequent 

Pattern’s frequency base method. Frequent Patterns are 

mined using the FP-growth algorithm proposed in [26]. 

We performed 5-fold cross validation for each dataset. 

In the first experiment, the datasets were a mixture of 

synthetic datasets and real-life datasets. The datasets 

corresponded to traces databases (TDB). The synthetic 

datasets included CVS Application and X11 Windowing 

Protocol. Synthetic datasets were generated using the 

simulator QUARK [24]. Given a software component 

model in the form of a probabilistic finite state 

automaton as input, QUARK can generate traces that 

represent the model following some coverage criteria. 

QUARK is also able to inject errors into the synthetic 

traces. In this experiment, three types of errors were 

injected into the traces, they were: addition bugs, 

omission bugs and ordering bugs. Table 5 explains the 

meaning of each type of bug. The correct execution 

traces were labeled as 0 and failing execution traces 

were labeled as 1. 
Table 5 Three Types of Errors 

Error Types Explanation 

Omission bugs Missing method calls. 

Addition bugs Injection of additional events resulting 

in failures 

Ordering bugs The order of events occurring is wrong 

  
Almost all of the real existing bugs belong to these 

three types, so the synthetic dataset can well simulate 

the real-life conditions. For the comparison experiments, 

argument N (number of sections) is the only adjustable 

argument, increasing N means divided program traces 

into more equal sections, and this would improve the 

veracity of the pattern’s position distribution but also 

generates more feature dimensions. As a compromise, 

we set N to 4, which means dividing the program traces 

into four equal sections. Comparative experimental 

results of synthetic datasets are shown in Table 6. 

Datasets “X11” and “CVS Omission” contain only 

‘addition’ and ‘omission’ bugs respectively, “CVS 

Ordering” contains ordering bugs and “CVS Mix” 

contains a mixture of all three types of bugs. The 

number of correct and error traces is also shown in 

Table 6. We denote the closed unique Iterative pattern’s 

frequency based method as CUP-Pat-Fre and our closed 

unique Iterative pattern’s position distribution based 

method as CUP-Pos-Dist. “Add” refers to Addition bugs, 

“Omis” refers to Omission bugs, and “Order” refers to 

Ordering bugs. Classification accuracy, defined as the 

percentage of test cases correctly classified, was used as 

the performance metric. 

From Table 6, our proposed position distribution 

method is better than the frequency-based method in all 

four synthetic datasets, which proves that additional 

position distribution information can help with software 

failure classification in different failure types. 

We continued the first experiment by analyzing real-

world datasets from the Siemens Test Suite [17] and a 

data race concurrency bug from MYSQL [19]. The 

Siemens Test Suite was originally used in testing 

coverage adequacy and error localization [25]. The test 

suite contains several programs. Each program contains 

several different versions where each version has one 

bug. To simulate the real-life situation where probably 

there are many bugs occurring in one program, 3 bugs 

and 3 additional simulated ordering bugs were injected 

into each program execution trace. We selected the 

three largest programs in the test suite. They are referred 

to as: schedule, print tokens and replace. A data race 

concurrency bug from MYSQL is also analyzed, this 

bug causes the wrong ordering of statement executions 

and can result in inconsistency of the database. The 

maintainers of MYSQL rate this bug as serious in their 

bug database. More information about the test suite and 

data race bug is available in [1, 17, and 18]. The 

comparative experimental results from the real-life 

datasets are show in Table 7. 
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The results show that the position distribution based 

method outperforms the frequency-based method in all 

real-life datasets, the standard deviation is also smaller 

than for the Pat-Fre method. The results further 

illustrate that the pattern’s position distribution based 

method is more discriminative and stable than the 

pattern’s frequency based method.  

In the second experiment, we tested a real-life dataset 

- tot_info which comes from the Siemens Test Suite. 

Detailed information about the dataset is shown in Table 

8.  

We used the FP-growth algorithm to generate 

frequent patterns and LIBSVM as the classification 

model. The support threshold was set at 0.88 and 119 

patterns were mined. Sixty two patterns were selected. 

We performed 5-fold cross validation in this dataset. 

Comparison results in each fold and summarized results 

are shown in Table 9. “FP-Fre” refers to frequent 

pattern’s frequency based method, and “FP-Pos-Dist” 

refers to frequent pattern’s position distribution based 

method. 

From Table 9, our method outperforms the frequency 

based method both in accuracy and standard deviation. 

It further confirms the strength of our method. It also 

demonstrates that our pattern position distribution 

method can be connected to other pattern mining 

algorithms, which makes it flexible. 

The results from both synthetic and real-life datasets, 

indicate that our proposed position distribution based 

method can better distinguish normal and failing 

program traces than the pattern frequency based method 

by catching the positional information of patterns. This 

information implies that by getting the 

semantics/constraints between statement sets, enables us 

to obtain a more complete description of the software 

being analyzed, which helps improve the performance 

of software failure detection. Considering the data are 

collected both under the synthetic and real-world 

conditions, we can conclude that our method will be 

generally applicable to the detection of software failures. 

5. Conclusions 

In this paper, we present a novel method to use a 

pattern’s position distribution as features to detect 

software failure occurring through misused software 

patterns. This method can catch the semantics 

/constraints information between statement sets while 

the traditional pattern frequency based method cannot. 

This method allows us to extract more complete 

information from program sequences and then to 

generalize more discriminative models. Comparative 

experiments show that our method outperforms the state 

of art pattern frequency based method. Our method can 

also be easily connected to any pattern mining algorithm, 

which makes it very flexible. 

In future work, we are going to develop a new 

pattern presentation method, apply this method to other 

domains, such as malware detection, and attempt to 

utilize multi-classifiers to leverage classification 

performance. 
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Table 6.  experiments 1: comparison results on synthetic datasets 

Dataset Correct( traces ) Error( traces ) Accuracy with standard deviation 

Add/Omis Order CUP-Fre CUP-Pos-Dist 

X11 125 125 0 97.20 3.35 100 0 

CVS Omission 170 170 0 100 0 100 0 

CVS Ordering 180 0 180 85.28 2.71 86.95 2.22 

CVS Mix 180 90 90 93.89 5.94 96.39 4.72 

 
Table 7 experiments 1: results on real-life datasets 

Dataset 
Correct( traces ) Error( traces ) 

Accuracy with standard deviation 

Add/Omis Order CUP-Fre CUP-Pos-Dist 

schedule 2140 289 1851 86.26 14.90 88.67 10.79 

print_tokens 3108 187 187 99.94 0.06 100 0 

replace 1259 269 269 90.84 2.54 93.24 2.21 

MySQL 51 0 51 100 0 100 0 

 
Table 8 experiments 2: detailed information about tot_info dataset 

Dataset Correct( traces ) Error( traces ) 

Add/Omis Order 

tot_info 302 208 94 

 

Table 9 experiments 2: comparison results on tot_info dataset 

 Accuracy with standard deviation 

5-flod cross validation FP-Fre FP-Pos-Dist 

fold-1 70.83% 93.33% 

flod-2 68.3% 72.5% 

fold-3 95.83% 91.67% 

fold-4 80.83% 87.5% 

fold-5 63.33% 74.17% 

summarized result 75.83 12.87 83.83 9.84 
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