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Abstract—This paper proposes a generic data driven inference 
methodology for rule-based classification systems. The generic 
rule base is in a belief rule base structure, where the consequent 
of a rule takes the belief distribution form. Other knowledge 
representation parameters such as the weights of both input 
attributes and rules are also considered in this framework. In an 
established rule base, the matching degree of an input between 
the antecedents of a rule is firstly computed to get the activation 
weight for the rule. Then a weighted aggregation of the 
consequents of activated rules is used for the inference process. 
Two numerical examples are provided to illustrate the proposed 
method. 
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I.  INTRODUCTION 
Rule is one of the most common forms for representing 

various kinds of knowledge. Rule-based systems (or 
knowledge-based systems), usually constructed from human 
knowledge in forms of if-then rules, are often applied to 
classification problems, such as safety analysis, biology, and 
medicine [1]. 

For a simple system, the rule base is usually obtained from 
human experts. However, this is not applicable when the 
system is complex, where the expert experience is incomplete. 
Many methods have been proposed in literature for generating 
or learning rule base from data, including heuristic approach 
[2], neural network technique [3], genetic algorithm approach 
[1, 4], support vector machine technique [5], particle swarm 
optimization method [6], and rough set based method [7]. 
Although there are already a lot of approaches proposed for 
learning rule base, it is still difficult to generate a fair rule base 
from real data due to the complexity and uncertainty of real 
situations. Furthermore, the rules extracted from the data are 
always representing the dominant features of the data by 
ignoring the minor ones, which will cause loss of information 
to some degree. So, it will be promising if all the data can be 
used directly and properly for predicting the class of the input 
without extracting or learning rules from them. 

Most existing methods on rule-based classification systems 
do not use attribute (feature) weights and rule weights. 
Sometimes, this can be done for fuzzy rule-based classification 
systems by adjusting the membership functions of antecedent 
attributes [8]. This paper will provide a generic data driven 

rule-base inference methodology for classification system, 
which will take into account both the attribute weights and rule 
weights. In this framework, the rule base is expressed as a 
belief rule base [9], with the consequent of a rule taken the 
form of belief distribution.  This method can not only be used 
for ordinary rule-based systems, but also be used directly on 
the data, which will be illustrated in the numerical study part. 

The paper is organized as follows. Section II proposes the 
data driven rule-base inference approach, which consists of 
four parts: the generic rule-base structure, matching degree 
computation of input, activation weights for a rule, and 
aggregation of weighted consequents. Numerical study is given 
in Section III to illustrate the methodology. Section IV comes 
to the concluding remarks. 

II. DATA DRIVEN RULE-BASE INFERENCE APPROACH 

A. Rule-Base Structure 
The rule base used in this paper takes the similar structure 

with the belief rule base proposed in [9], which is designed on 
the basis of belief structure. In a belief rule base, input for each 
antecedent is transformed into a distribution on the “referential 
values” [9] of this antecedent. This distribution describes the 
degree of each antecedent being activated. The activation 
weight of a rule can be generated by aggregating the degrees to 
which all antecedents in the rule are activated. The consequent 
of each rule is in a belief distribution form which is shown in 
(1). The weights of both input attributes and rules are also 
considered in this structure. 

Suppose that there are N classes in a dataset. The kth rule in 
a general belief rule base for classification in forms of a 
conjunctive rule can be expressed as 

Rk: if 1 2 k

k k k
TA A A� � �� , then, ( 1 2, , ,k k k

ND D D� ) 

with a rule weight k�  and attribute weights 1
k� , 2

k� , …, 

k

k
T� , {1, 2, , }k n� � ,                                                  (1) 

where k
iA  (i=1, …, Tk) is the referential value of the ith 

antecedent attribute in the kth rule, Tk is the number of 
antecedent attributes used in the kth rule, k

iD  (i=1, …, N) is the 
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belief degree of the consequent belongs to the ith class, and 
0 1k�� � , 0 1k

i�� � . 

B. Matching Degree of Input to a Rule 
Before an inference process can start, the relationship 

between an input (fact) and the antecedents in a rule needs to 
be determined. The matching degrees to which an input is 
consistent with the antecedents in a rule are processed to 
generate an activation weight for the rule, which is used to 
measure the degree to which the packet antecedent of the rule 
is activated by the input. 

The determination of matching degree can be done through 
many different ways. In a belief rule base, the matching 
degree is obtained through referential values of the attributes. 
The basic idea is to examine all the referential values of each 
attribute in order to determine a matching degree to which an 
input belongs to a referential value. This is equivalent to 
transforming an input into a distribution on referential values 
using belief degrees [9, 10]. For example, one may use such 
linguistic terms as “highly good,” “good,” “fair,” “poor,” and 
“very poor.” These linguistic terms are the referential values 
for an antecedent attribute “comfort.” In a general rule base, 
the set of referential values may be numerical or linguistic. 

A general input form corresponding to all antecedent 
attributes is given as 

* * *
1 1 2 2( , ) ( , ) ( , )T TA A A� � �� � �� ,                   (2) 

where i� expresses the belief degree assigned to the input 

value *
iA  of ith attribute, and T is the total number of different 

antecedent attributes involved in all the rules in a rule base. 

By using the distribution assessment approach [9, 10], a 
referential value of an attribute may in general be regarded as 
an evaluation grade, and the input *( , )i iA �  for the ith attribute 
can be transformed to a distribution on the referential values of 
the attribute using belief degrees as 

*( , ) {( , )}i i ij ijR A A� �	 ,                            (3) 

where ijA  is the jth referential value of the ith attribute, ij�  

the degree to which the input *
iA  belongs to the referential 

value ijA  with 0ij� 
  and 
1

1iJ
ijj

�
	

�� . ij�  could be 

generated using various ways, depending on the nature of an 
antecedent attribute. For instance, in evaluation of qualitative 
antecedent attributes, subjective judgments could be used. In 
assessment of the quality of a product (if its referential set is 
{poor, indifferent, average, good, excellent}), for example, 
examiners may give judgment as 

“40% sure that its quality is at the average level and 60% 
sure that it is good.” 

Hence, the set of referential values of “quality” is 
R(quality)={(poor, 0), (indifferent, 0), (average, 0.4), (good, 
0.6), (excellent , 0)}. 

In fuzzy rule-based systems, the matching degree to which 
an input is consistent with the antecedents in a rule can also be 
computed via the similarity measure between the input fuzzy 
set and the corresponding antecedent fuzzy set in a rule. For 
example, a simple similarity measure can be used between 
fuzzy sets A and B is: 

                             ( , )
A B

S A B
A B
�

	



,                              (4) 

where � denotes the cardinality of a set, and the �  and 
  
operators represent the intersection and union, respectively. 

The matching degree between numerical input A and the 
corresponding antecedent k

iA in the k-th rule can be obtained 
by a normalized difference between the corresponding 
numbers, one may use the simple one as: 

                     
1

( , ) 1
max{ , , }
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i k k
n

A A
S A A
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,                 (5) 

C. Activation Weight for a Rule 
Consider an input given in a format shown in (3) 

corresponding to the kth rule defined as in (1) 

             1 1 2 2( , ) ( , ) ( , , )
k k

k k k k k k
T TA A A� � �� � �� ,              (6) 

where { ; 1, , }k
i ij iA A j J� 	 �  and { ;k

i ij� ��  

1, , }ij J	 � . 

The total degree k�  to which the input matches the packet 

antecedent kA  in the kth rule can be calculated using the 
following formula: 

                    1 1(( , ), , ( , ))
k k

k k k k
k T T� � � � � �	 � .                  (7) 

Here, �  is an aggregation function that reflects the 
relationship among the Tk antecedents in the kth rule.  

Suppose the “� ” connective is used for all antecedents in a 
rule, such as “if A� B� C.” In such cases, one may use the 
max-min one or the following simple weighted multiplicative 
aggregation function to calculate k� : 

                                  
1

( )
k k

i

T
k

k i
i
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	� .                            (8a) 

If the “� ” connective is used for all antecedents in a rule, 
such as “if A � B � C,” then one may use the following 
recursively defined weighted product–sum aggregation 
function proposed in [10] to calculate k� : 

  (1) 1 1 1
k k k

k h� � �	 	 �   

( 1) ( ) ( ) 1(1 ) for 1, , 1k
k i k i k i i kh i T� � �� �	 � � 	 ��  



                                ( )kk k T� �	 ,                                    (8b) 

where k k k
j j jh � �	 � , j=1, 2, …,Tk. 

The activation weight k�  of the packet antecedent kA  in 
the kth rule is generated by weighting and normalizing the 
matching degree k�  given by (8a) or (8b) as 

                                  

1

k k
k n

i i
i

� �
�
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�
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where k�  is the relative weight of the kth rule. Note that 

0 1k�� �  (k=1, …, n), and 
1

1n
ii

�
	

	� . 

D. Aggregation and Exploitation 

With the activation weight k�  for the kth rule in the rule 
base, then the output must be Di to a certain degree. The degree 
is measured by both the degree to which the kth rule is 
important to the overall output and the degree to which the 
antecedents of the kth rule are activated by the actual input.  

The final result (D1, D2, …, DN) is computed through the 
weighted aggregation of the consequents of all activated rules, 
where the simple weighted addition can be used as in (10). 

1 2 1 2
1 1 1

( , , , ) , , ,
n n n

k k k
N k k k N

k k k
D D D D D D� � �

	 	 	

� �	 � �
� �
� � �� � . (10) 

The output can also be interpreted again by a belief 
distribution format as in (1), like, “40% sure that it belongs to 
class 1 and 60% sure that it is in class 3.” One can also just 
select the one with maximum belief degree as the final decided 
class for the input. 

III. ILLUSTRATIVE EXAMPLES 
In this section, two examples about Iris data and wine data 

are given to illustrate the application of proposed method. 
These data sets are available from the UCI machine learning 
repository (http://archive.ics.uci.edu/ml/). 

A. Iris Data Set 
The best known Iris dataset consists of 3 classes of Iris 

flower: Setosa (class 1), Versicolour (class 2), and Virginica 
(class 3). Each class contains 50 samples and each sample is 
represented by 4 attributes: sepal length (x1), sepal width (x2),  
petal length (x3), and petal width (x4). The first class is linearly 
separable from the other two classes, while class 2 and class 3 
are not separable from each other. 

The 10-fold cross-validation is made on this dataset. The 
original dataset is randomly divided into 10 groups with each 
group containing the same proportions of the 3 types of class 
labels. In each validation, 9 from the 10 groups are selected for 

constructing the rule base, and the rest one is used for test. 
Some examples of the rule are listed in Table I.  

TABLE I.  RULE BASE WITH BELIEF STRUCTURE 

Number  Antecedent Consequent x1 x2 x3 x4 

1 1 4.9 3 1.4 0.2 (1, 0, 0) 

2 1 5 3.2 1.2 0.2 (1, 0, 0) 

3 1 4.5 2.3 1.3 0.3 (1, 0, 0) 

4 1 5.5 2.4 3.8 1.1 (0, 1, 0) 

5 1 6.8 2.8 4.8 1.4 (0, 1, 0) 

6 0.6 5.6 3 4.5 1.5 (0, 1, 0) 

7 1 7.2 3.2 6 1.8 (0, 0, 1) 

8 0.8 6 2.2 5 1.5 (0, 0, 1) 

9 1 6.7 3 5.2 2.3 (0, 0, 1) 

 

In Table I,  means the rule weight, and the consequents are 
the flower classes expressed by belief distribution. There are 
also attribute weights associated with each attribute as 
expressed in (1). Here, we assume that the attribute weights are 
(0.4, 0.1, 1, 0.8). 

Now, suppose that we have a new flower with attribute 
values (5, 3.3, 1.4, 0.2), we will follow the steps in the 
proposed method to decide which class this flower belongs to. 

Step 1. Input transformation 

Taking into account that the attribute values of this example 
are numerical, we can use the normalized difference between 
the corresponding attribute values of the antecedents in the 
rules and the new flower as the matching degrees, which are 
shown in Table II.  

TABLE II.  MATCHING DEGREE 

Number Matching Degrees 
1 2 3 4 

1 0.99 0.93 1 1 

2 1 0.98 0.97 1 

3 0.94 0.77 0.99 0.96 

4 0.94 0.80 0.65 0.64 

5 0.77 0.89 0.51 0.52 

6 0.92 0.93 0.55 0.48 

7 0.71 0.98 0.33 0.36 

8 0.87 0.75 0.48 0.48 

9 0.78 0.93 0.45 0.16 

 

Step 2. Activation weights for all rules 

The total degrees  to which the input matches the packet 
antecedent in the rules can be calculated using formula (8a), for 



the relations between the antecedents are “and”. The activation 
weights for the above 9 rues are =(0.9878, 0.9688, 0.9049; 
0.4342, 0.267, 0.2943; 0.1284, 0.2443, 0.0932). 

Now, we can get the activation weights by using formula 
(9), and those for the above 9 rules are 0.01596, 0.01565, 
0.01462; 0.00701, 0.00259, 0.0475; 0.00207, 0.00316, 
0.00151). 

Step 3. Aggregation 

This step is to aggregate the activation weights from step 2 
and the corresponding consequents in belief distribution of the 
rule base to get the overall belief degree for each class by using 
formula (10) as: 

                                   (0.682, 0.227, 0.091)                           (11) 

Step 4. Exploitation (Ranking) 

By a simple comparison, we can get the final decision: the 
new flower belongs to class 1. It can also be interpreted as: 

“68.2% sure that the flower belongs to class 1, 22.7% sure 
that it is class 2, and 9.1% sure for class 3.” 

Step 5. Validation 

The above 4 steps are implemented for each sample in the 
test group. Then the cross-validation process is repeated 10 
times, with each of the 10 subsamples used exactly once as the 
validation data. The 10 results from the folds then can be 
averaged (or otherwise combined) to produce a single 
estimation. The average classification accuracy for the 10-fold 
cross-validation is 96.67%. 

B. Wine Data Set 
The wine data contains the chemical analysis of 178 wines 

grown in the same region in Italy but derived from three 
different cultivars, or three classes with 59 data for class 1, 71 
for class 2, and 48 for class 3. The 13 continuous attributes are 
available for classification. We use x1, x2, x3, x4, x5, x6, x7, 
x8, x9, x10, x11, x12, x13 to represent these attributes: alcohol, 
malic acid, ash, alcalinity of ash, magnesium, total phenols, 
Paranoids, nonflavanoids phenols, proanthocyaninsm, color 
intensity, hue, OD280/OD315 of dilluted wines and proline 
respectively. 

The 5-fold validation is made on this dataset along with the 
similar process to that for Iris dataset. Taking into account that 
the wine dataset is an unbalanced dataset, the dataset is 
randomly divided into 5 groups with each group containing 
different proportions of the 3 types of class labels. The rule 
weight for each rule is set to 1, and the attribute weights of 13 
attributes are given as (0.8, 0.5, 0.5, 0.5, 0.4, 0.5, 0.8, 0.5, 0.5, 
0.8, 0.7, 0.6, 1) according to the feature selection process in 
[1]. The average classification accuracy of the 5-fold cross-
validation is 97.75%. 

 

IV. CONCLUSIONS 
A generic framework for data driven rule base inference 

approach for classification system has been proposed. The rule 
base used was in a belief structure with the consequent taking 
the form of belief distribution, and the weights of both input 
attributes and rules were also considered in this framework. 
Two numerical examples were given to illustrate the 
application of the methodology.  

It should be noted that what presented in this paper is a 
general framework of data driven rule base inference 
methodology. Some related issues, such as feature selection 
and parameter optimization, are not discussed in detail. Future 
work will focus on these related issues, which will make the 
proposed methodology more applicable. Another interesting 
point is that the rule bases used in the two illustrative examples 
are directly interpreted from the data, i.e., there is no learning 
or training process needed, while the accuracy rates of the two 
illustrative examples were similar to those in [1-8]. 
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