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Abstract. This paper presents a parameterized reasoning approach with
uncertainty based on a lattice-valued logic system. In this uncertain rea-
soning approach, some parameters are used to represent uncertainty aris-
ing from different sources, which is a common phenomenon in rule-based
systems. In our system, reasoning with different parameter values means
reasoning with different levels of belief and consistency. Some methods
are presented for selecting appropriate parameter values during the un-
certain reasoning process which allow us to find suitable parameter values
to meet the diverse practical and theoretical requirements.
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1 Introduction

Rules are one of the most common forms for representing knowledge. Rule-based
systems (or knowledge-based systems) using IF-THEN rules to represent knowl-
edge and to reason with it, have been applied successfully in many areas [10]. A
crucial issue in rule-based systems is to utilize all information available to ana-
lyze the current situation as expressed by the rules, and infer the consequences
which will lead to corresponding actions. Often, this is a process of uncertain
reasoning, i.e., inferring conclusions based on rules and new information under
uncertainty.

Uncertainty may arise from different aspects of the reality that is being rep-
resented. For example, suppose that we are evaluating the quality of a car from
4 aspects: price, safety, comfort and fuel economy, which will be discussed in
more detail as an illustrative example in the paper. Uncertainty may arise from
subjective judgement about a car, e.g., “this car is quite safe”, where “quite”
depicts the truth degree of the judgement or evaluation about the safety of the
car. There is also uncertainty on the belief degree of the experts on the rule,
e.g., “the rule is highly true”. Uncertainty may also exist in the reasoning pro-
cess from the observations of a car to the overall evaluation due to the subjective
and ambiguous situations. And there are sometimes contradicting observations
or opinions about a car, which is represented by the consistency level of the
observations. We use different parameters in the uncertain reasoning approach
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to represent all these different types of sources of uncertainty, which vary from
problem to problem.

From the viewpoint of symbolism, the confidence and rationality of uncer-
tain reasoning relies on logics which are extensions of classical logic, so-called
non-classical logics [11]. Zadeh [19] developed a theory of uncertain reasoning
based on the notion of linguistic variable and fuzzy logic, which then influenced
research of uncertain reasoning with strict logical foundation. Pavelka [9] and
Novak [8] then laid the foundation for the research of uncertain reasoning theory
and methods based on strict logic system. Many researchers have made many im-
portant progress in this area [4], [5], [6], [15]. There are also some works related
to reasoning method with uncertainty from different sources, such as, Larsen
and Yager [7] presented a method for crisis recognition under uncertainty in
the framework of possibility logic by using belief measure to reflect the type of
uncertainty in the observations and knowledge base. Benferhat and Sossai [1]
proposed a method for reasoning with multiple-source information by merging
uncertain knowledge bases, provided by different sources, into a new possibilis-
tic knowledge base in the framework of possibilistic logic. Zhou et.al. [20] gave
a graded reasoning method in the framework of n-valued R0-logic L∗n. Sottara
et.al. [12] introduced an architecture depending on a number of configuration
parameters which could be set by the user, individually or as a whole for the
entire rule base.

In this paper, we will propose a parameterized uncertain reasoning method
which will take the advantage of direct reasoning with observed information to
get the result, without the underlying numerical approximation needed by fuzzy
set based method. This uncertain reasoning method is based on lattice-valued
logic with truth values in lattice implication algebra (LIA) [15], which is a type
of non-classical logic.

The paper is organized as follows. First some related concepts and results
about lattice-valued logic and lattice implication algebra are recalled and revised.
Then, review and analysis of the uncertain reasoning approach based on lattice-
valued logic is given, followed by the introduction of methods for parameter
selection when applying the uncertain reasoning approach in a specified lattice-
valued logic system, L2nf . Finally, an example is given to illustrate the proposed
method.

2 Lattice-Valued First-Order Logic

Lattice implication algebra [15] is a kind of lattice-valued logical algebra, which
is the truth-value field of lattice-valued logic. It has been shown in [15], [18]
that lattice implication algebra defines a residuated lattice [9], which possesses
the common features in various fuzzy logical systems based on the different
particular algebraic structures [13].

In the following, we denote L as a lattice implication algebra (LIA) and Lvfl
as the lattice-valued first-order logic based on L. The generalized quantifiers in
Lvfl is denoted as Qu, where u ∈ U , U is an index set, which can be seen as
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a generalization of ∀ and ∃. The set of all well-formed formulae (wffs), such as
ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ, (Qux)ϕ, in Lvfl is denoted as Ff . A well-formed formula
is called a formula for short. In the car evaluation example, formulas ϕ, ψ will
be used to represent the attibutes of cars. For example, ϕi(x) represents the i-th
attribute, say comfort of car x. Let ϕ, ψ ∈ Ff , we also denote

ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ) (1)

ϕ⊗ ψ = (ϕ→ ψ′)′ (2)

An interpretation of wffs in Lvfl is a mapping DFf
: Ff −→ L, which is to

assign wffs truth degrees, e.g., assign truth degrees to the attributes of cars in
the car evaluation problem. The set of interpretations of wffs is denoted as

Ih ⊆ IH , {DFf
|DFf

is an interpretation of wffs}.

In the following, we also call I ⊆ FL(Ff ) as the set of interpretations of wffs,
where FL(Ff ) is the set of all L-type fuzzy subsets on Ff .

Definition 1 [15] Let Dn ⊆ Fn
f . A mapping rn : Dn −→ Ff is called an n-ary

partial operation of Ff , where Dn is the domain of rn, also denoted by Dn(rn).

Definition 2 [15] A mapping tn : Ln −→ L is said to be an n-ary truth-valued
operation on L, if
(1). α → tn(α1, · · · , αn) ≥ tn(α → α1, · · · , α → αn) holds for any α ∈ L and
(α1, · · · , αn) ∈ Ln.
(2). tn is isotone in each argument.

We denote

Rn⊆ {rn | rn is an n-ary partial operation of Ff},
Tn⊆ {tn | tn is an n-ary truth-valued operation on L},

Rn ⊆ Rn × Tn, R ⊆
+∞⋃
n=0

Rn.

If (r, t) ∈ Rn, then (r, t) is called an n-ary rule of inference in Lvfl.
It can be seen that there are two parts for an inference rule in Lvfl, r is for

the formal deduction of formulas, and t is for the transformation of truth values
of these formulas.

Definition 3 [15] Let X∈FL(Ff ), (r, t)∈Rn, α∈L. If

X ◦ r ⊇ α⊗ (t ◦
n∏
X) (3)

holds, then X is said to be α-I type closed w.r.t. (r, t). If

X ◦ r ⊇ t ◦
n∏

(α⊗X) (4)

holds, then X is said to be α-II type closed w.r.t. (r, t), where ◦ means the
composition of functions, and

∏
is cartesian product.
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If for any (r, t) ∈ R, X is α-i type closed w.r.t. (r, t), then X is said to be
α-i type closed w.r.t. R, i =I, II.

Definition 4 [15] Let α ∈ L, R is said to be α-i type sound w.r.t. I, if T is α-i
type closed w.r.t. R holds for any T ∈ I, i =I, II.

Here, α can be thought of as the level of soundness of the inference rule in
lattice-valued logic, which can be interpreted as the belief degree of the decision
rule in the rule base for car evaluation problem.

Definition 5 [15] Let X, Y ∈ FL(Ff ), ϕ ∈ Ff , α, β ∈ L, i=I, II.
(1).

CI : FL(Ff ) −→ FL(Ff ),
X 7−→ CXI ,

CXI (ϕ) ,
∧
T∈I

(
∧
ϕ∈Ff

(X(ϕ)→ T (ϕ))→ T (ϕ)), (5)

(2).

Cβ
(C∅

I ,R(α−i)) : FL(Ff ) −→ FL(Ff ),

X 7−→ Cβ,X
(C∅

I ,R(α−i)),

Cβ,X
(C∅

I ,R(α−i))(ϕ) ,
∧
{Y (ϕ) | Y ⊇ β ⊗ (C∅I ∪X),

Y is α-i type closed w.r.t. R }.
(6)

CI is a semantic closure operator reflecting the transformation of truth values
from X to CXI under interpretation set I, which will be used to get the uncertain
reasoning consequence. In the car evaluation problem, CXI gives the degree to
which the evaluation X of a specified car can be included in or can reflect
a general evaluation I of cars. β means the degree to which can we get the
evaluation result from the observations of a car and established rules.

Definition 6 [15] Let X ∈ FL(Ff ), ϕ ∈ Ff , θ, α, β ∈ L. (P i, (n), X, (ϕ, θ) −
(α, β)) is said to be an (α, β)-i type proof of ϕ from X with the truth-valued
degree θ (shortly, θ-(α, β)-i type proof of ϕ from X), if the mapping

P i : (n) −→ Ff × L, (n) = {1, 2, · · · , n}
j 7−→ (ϕj , θj),

satisfies:
(1). (ϕn, θn) = (ϕ, θ) and
(2). θj = β ⊗ C∅I(ϕj), or
(3). θj = β ⊗X(ϕj), or
(4). there exist j1, · · · , jk < j, and (r, t) ∈ Rk, such that

(ϕj , θj)=(r(ϕj1 , · · · , ϕjk), α⊗ t(θj1 , · · · , θjk)), i = I,
(ϕj , θj)=(r(ϕj1 , · · · , ϕjk), t(α⊗ θj1 , · · · , α⊗ θjk)), i = II,

where n is said to be the length of θ-(α, β)-i type proof of ϕ from X under P i,
and is denoted by l(P i), i =I, II.
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Definition 7 [15] Let X ∈ FL(Ff ), τ ∈ L, i=I, II. If∨
{Cβ,X

(C∅
I ,R(α−i))(ϕ)⊗Cβ,X

(C∅
I ,R(α−i))(ϕ

′)|ϕ ∈ Ff} ≤ τ, (7)

then X is said to be τ ′-i type consistent w.r.t. (α, β, I).

τ ′ represents the level of consistency of X which can be antecedent or con-
sequent in the inference rule. For example, there may be some conflicting obser-
vations of a car or conflicting rules in the rule-base, and τ ′ is used to represent
the degree to which they are not conflicting, i.e., consistent.

Theorem 8 [15] Let X ∈ FL(Ff ), α, β ∈ L, and the truth-valued operations
in R satisfy the finite semicontinuity. Then for any ϕ ∈ Ff , i =I, II,

Cβ,X
(C∅

I ,R(α−i))(ϕ)=
∨
{ θ | ∃(P i, (n), X, (ϕ, θ)− (α, β))}, (8)

where (P i, (n), X, (ϕ, θ)− (α, β)) is an (α, β)-i type proof of ϕ from X with the
truth-valued degree θ.

Theorem 9 [15] Let α, β ∈ L, and for any X ∈ FL(Ff ), R is α-i type sound

w.r.t. I, and Cβ,X
(C∅

I ,R(α−i)) ∈ I. Then for i =I, II,

Cβ,X
(C∅

I ,R(α−i)) = Cβ⊗XI . (9)

Theorems 8 and 9 state the soundness and completeness of lattice-valued
logic to some degree, i.e., the compatibility between syntax and semantics in
lattice-valued logic.

3 Uncertain Reasoning Approach Based on Lattice-
Valued Logic Lvfl

We take the typical uncertain reasoning model to explain the uncertain reasoning
approach based on lattice-valued logic Lvfl. It should be noticed that this model
is not only a single-input single-output model, because X and Y are actually
assignments of truth degrees to a set of formulas (attibutes).

Rule : If X, then Y,

Fact : X̃,

Conclusion : Ỹ ,
(10)

where X, Y , X̃, Ỹ ∈ FL(Ff ).
Based on the above model, an uncertain reasoning theory and approach has

been proposed in [2], which has strict logic foundation, i.e., lattice-valued first-
order logic Lvfl. The uncertain reasoning consequence is expressed as:

Ỹ = Cβ⊗X̃I , (11)
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where CI is defined in Definition 5. Here, we need the uncertain reasoning model
(10) to be (α, β, τ, I)-i type regular [14], [2], i.e., there exist α, β, τ ∈ L, I ⊆
FL(Ff ) and R such that X, Y , X̃ is τ ′-i type consistent w.r.t. (α, β, I), and
CXI ⊇ τ ′ ⊗ Y .

Furthermore, if the above selected α, β, τ , I and R make Cβ,X̃
(C∅

I ,R(α−i)) ∈ I,

then from Theorems 8 and 9, the uncertain reasoning consequence can also
be obtained by a strict formal deduction in Lvfl, i.e., the uncertain reasoning
consequence is not only semantically sound, but also syntactically provable to
some degree.

It should be noticed that the above conditions for parameters are always
satisfiable. For example, equation (7) always holds for τ = I, i.e., any X is
consistent at O level, this of course is useless. So, what we need to do is to
choose reasonable values, according to practical and logical requirements, for
these parameters under certain situations.

In [2], we have chosen a set of inference rules R∗, including three special rules
and five classes of rules, which can cover rules used frequently in most cases.

R∗ = {(r02, t∗2), (r∗2 , t
∗
2), (r42 , t

∗
2)} ∪ {(rθ01 , t

θ0
1 ) |θ0 ∈ L}

∪{(ru1 , t1) | u ∈ U} ∪ {(ru2 , t1) | u ∈ U}
∪{(ru3 , t1) | u ∈ U} ∪ {(ru4 , t1) | u ∈ U}

⊆ R,

(12)

where

r02(ϕ,ϕ→ ψ) = ψ, t∗2(θ, β) = θ ∧ β,
r∗2(ϕ→ γ, ϕ→ ψ) = ϕ→ (γ ∧ ψ),

r42 (ϕ→ ψ,ψ → γ) = ϕ→ γ,

rθ01 (ϕ) = θ0 → ϕ, tθ01 (α) = θ0 → α,

ru1 (ϕ) = (Qux)ϕ, t1(θ) = θ,

ru2 (ϕ→ ψ) = ϕ→ (Qux)ψ, x is not free in ϕ,

ru3 (ϕ→ ψ) = (Qux)ϕ→ ψ, x is not free in ψ,

ru4 (Qux)(ϕ⊗ ψ) = (Qux)ϕ⊗ ψ, x is not free in ψ.

In the following, we use the set of inference rules R∗ and the set of interpretations
Ii for uncertain reasoning, where

Ii = {T | T ∈ FL(Ff ), T is α-i type closed w.r.t. R∗}, i = I, II.

The following theorem shows that such selected R∗ and Ii can guarantee the
soundness and completeness of lattice-valued logic according to Theorem 9.

Theorem 10 [2] Given R and α. If

I = {T | T ∈ FL(Ff ), T is α-i type closed w.r.t. R},

then Cβ,X̃
(C∅

I ,R(α−i)) ∈ I, i=I, II.
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As for the truth-value field L, it should be selected according to real require-
ments. In this paper, in order to provide some ideas for dealing with qualitative
information which are widely used in real-life evaluation problems, we take the
algebraic structure for modeling linguistic terms, linguistic truth-valued lattice
implication algebra (L-LIA) [16], [17], as the truth-value field. L-LIA is con-
structed from the product of two finite  Lukasiewicz chain. One is a  Lukasiewicz
chain with two elements which are meta truth values, “true” and “false”, and
the other chain is the set of some modifiers, also know as linguistic hedges [19]
such as “very,” “less,” “possibly,” etc. The number of modifiers is always odd
[16], [3], such 3, 5 or 9. For more information about L-LIA, please refer to [16].

So, suppose that there are two finite  Lukasiewicz chain, L2 = {b1, b2} and
Ln = {a1, a2, · · · , an}, where n ∈ N+, an odd natural number. The product
LIA produced by them is denoted as L2n = Ln × L2, and the lattice-valued
first-order logic whose truth-value field is L2n is denoted as L2nf .

Then, there are three parameters, α, β and τ , whose values remain to be de-
termined. From the properties of Lvfl, α ≤

∧
θ∈L(θ∨θ′) can generally guarantee

that R∗ is α-i type sound w.r.t. Ii. So, in the following, we pay more attention
to the selection of the values of parameters β and τ .

4 Parameter Selection

Because of the importance of
∧
θ∈L(θ ∨ θ′) as a threshold for the soundness of

inference rule, we firstly find its concrete value in L2n.

Lemma 11 In the product LIA L2n,∧
θ∈L2n

(θ ∨ θ′) =

{
(an+1

2
, b2), n is odd,

(an
2 +1, b2), n is even.

Proof. In fact, ∧
θ∈L2n

(θ ∨ θ′) =
∧

(ai,bj)∈L2n

((ai, bj) ∨ (a′i, b
′
j))

=
∧

(ai,bj)∈L2n

((ai ∨ a′i), (bj ∨ b′j))

= (
∧

ai∈Ln

(ai ∨ a′i),
∧

bj∈L2

(bj ∨ b′j))

=

{
(an+1

2
, b2), n is odd,

(an
2 +1, b2), n is even.

In the following, we determine the values of parameters β and τ by applying
the uncertain reasoning process to some typical conditions.

Theorem 12 For any X ∈ FL(Ff ), if

X(ϕ) =

{
ϕ, ϕ ∈ L2n,
O, otherwise,
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where ϕ ∈ Ff . Then for any β ∈ L2n, X is I-i (i.e., τ = 0) type consistent w.r.t.
(α, β, Ii), where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II.

Proof. If α ≤
∧
θ∈L2n

(θ ∨ θ′), then it follows from the properties of Lvfl that
IH ⊆ Ii. So there exists T0 ∈ IH , such that

Cβ⊗XIi (ψ) =
∧
T∈Ii

[(
∧
ϕ∈Ff

(β ⊗X(ϕ)→ T (ϕ)))→ T (ψ)]

=
∧
T∈Ii

[(
∧

(ai,bj)∈L

(β ⊗ (ai, bj)→ T ((ai, bj))))→ T (ψ)]

≤ [
∧

(ai,bj)∈L

(β ⊗ (ai, bj)→ T0((ai, bj)))]→ T0(ψ) = T0(ψ).

Therefore, Cβ⊗XIi (ψ)⊗ Cβ⊗XIi (ψ′) ≤ T0(ψ)⊗ T0(ψ′) = O = I ′.
Hence, X is I-i type consistent w.r.t. (α, β, Ii), i = I, II.

Theorem 13 For any X ∈ FL(Ff ), if

X(ϕ) =

{
ϕ, ϕ ∈ L2n,
ξ, otherwise,

where ϕ ∈ Ff , ξ ∈ L2n. Then we can select β = ξ′, such that X is I-i type
consistent w.r.t. (α, β, Ii), where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II.

Proof. Because α ≤
∧
θ∈L2n

(θ ∨ θ′), then IH ⊆ Ii. There exits T0 ∈ IH , such
that

Cβ⊗XIi (ψ) =
∧
T∈Ii

[(
∧
ϕ∈Ff

(ξ′ ⊗X(ϕ)→ T (ϕ)))→ T (ψ)]

=
∧
T∈Ii

[(
∧
µ�ξ

(ξ′ ⊗ µ→ T (µ)))→ T (ψ)]

≤ T0(ψ).

Therefore,

Cβ⊗XIi (ψ)⊗ Cβ⊗XIi (ψ′) ≤ T0(ψ)⊗ T0(ψ′) = O = I ′.

Hence, X is I-i type consistent w.r.t. (α, β, Ii), i = I, II.

The following theorem can be obtained easily from Theorems 10 and 13.

Theorem 14 If Y, X̃ ⊆ X in the uncertain reasoning model (10), and

X(ϕ) =

{
ϕ, ϕ ∈ L2n,
ξ, otherwise,
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where ϕ ∈ Ff , ξ ∈ L2n. Then the above selected R∗ and Ii makes the uncertain
reasoning model (10)(α, ξ′, 0, Ii)-i type regular, where α ≤

∧
θ∈L2n

(θ ∨ θ′), i =

I, II. Therefore, we can get the uncertain reasoning consequence Ỹ = Cβ⊗X̃Ii ,
which can also be obtained through a strict formal deduction in L2nf .

If Y and X̃ take the same forms as X in the above theorem, then we can get
the following theorem.

Theorem 15 If in the uncertain reasoning model (10), X, Y , X̃ are given in
the following forms:

X(ϕ) =

{
ϕ, ϕ ∈ L2n,
ξ1, otherwise;

Y (ϕ) =

{
ϕ, ϕ ∈ L2n,
ξ2, otherwise;

X̃(ϕ) =

{
ϕ, ϕ ∈ L2n,
ξ3, otherwise;

where ϕ ∈ Ff , ξ1, ξ3, ξ3 ∈ L2n. Let β = ξ′1∧ξ′2∧ξ′3, τ =
∧
{η ∈ L2n | η′⊗ξ2 ≤ ξ1},

then the uncertain reasoning model (10) is (α, β, τ, Ii)-i type regular, where α ≤∧
θ∈L2n

(θ ∨ θ′), i = I, II. Then the uncertain reasoning consequence Ỹ = Cβ⊗X̃Ii ,
which can also be obtained by a strict formal deduction in L2nf .

Furthermore, we can get the following theorem if X, Y , X̃ take more general
forms.

Theorem 16 If in the uncertain reasoning model (10), X, Y , X̃ are given as:

X(ϕ) =


c1, ϕ = ϕ1,
...
cm, ϕ = ϕm,
O, otherwise;

Y (ψ) =


d1, ψ = ψ1,
...
dl, ψ = ψl,
O, otherwise;

X̃(γ) =


e1, γ = γ1,
...
es, γ = γs,
O, otherwise,

where m, l, s ∈ N+, ϕ, ϕi, ψ, ψj, γ, γk ∈ Ff , ci, dj, ek ∈ L2n, i = 1, · · · ,m,
j = 1, · · · , l, k = 1, · · · , s. Then we can choose βX = c′1 ∧ · · · ∧ c′m, βY =
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d′1 ∧ · · · ∧ d′l, βX̃ = e′1 ∧ · · · ∧ e′s, and β = βX ∧ βY ∧ βX̃ . If there exists τ ∈ L2n,
such that CXI ⊇ τ ′⊗Y , then the uncertain reasoning model (10) is (α, β, τ, Ii)-i
type regular, where α ≤

∧
θ∈L2n

(θ ∨ θ′), i = I, II. Then the uncertain reasoning

consequence Ỹ = Cβ⊗X̃Ii , which can also be obtained by a strict formal deduction
in L2nf .

5 An Illustrative Example

In this section, we will give a simple example of evaluation of cars to show how the
proposed reasoning approach can be used in decision making with uncertainty.

Suppose that we are evaluating three kinds of cars: Benz (x1), Toyota (x2)
and Ford (x3), and there are four criteria or attributes: price (ϕ1), safety (ϕ2),
comfort (ϕ3) and fuel economy (ϕ4). The truth-value field for modeling linguistic
judgments is chosen as the L-LIA L9×2 in [16] with nine modifiers: slightly (a1),
somewhat (a2), rather (a3), almost (a4), exactly (a5), quite (a6), very (a7),
highly (a8) and absolutely (a9), and two prime terms: false (b1) and true (b2).
The judgment of each criterion for each kind of car is given in Table 1, by
taking a simple standardization of these natural expressed evaluations, e.g. the
evaluation “the car is rather cheap” is transformed into “the price of the car is
cheap” with a truth degree “rather true”.

Table 1. Evaluation matrix of cars

ϕ1 ϕ2 ϕ3 ϕ4

x1 (a6, b1) (a7, b2) (a7, b2) (a3, b1)
x2 (a3, b2) (a2, b1) (a3, b2) (a7, b2)
x3 (a2, b2) (a2, b2) (a2, b2) (a2, b2)

The evaluation values in Table 1 for car x1, x2, and x3 are expressed as X̃1,
X̃2, X̃3 respectively, e.g., that for x1 is

X̃1(ϕ) =


(a6, b1), ϕ = ϕ1(x1),
(a7, b2), ϕ = ϕ2(x1),
(a7, b2), ϕ = ϕ3(x1),
(a3, b1), ϕ = ϕ4(x1),
O, otherwise,

The decision rule is from our daily experience: “If the car is rather cheap,
very safe, very comfortable and with quite good fuel economy, then the car is
highly good”, with a belief degree α = (a5, b2). Then the decision rule can be
expressed as

If X then Y,
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where

X(ϕ) =


(a7, b2), ϕ = (∀x)ϕ1(x),
(a7, b2), ϕ = (∀x)ϕ2(x),
(a7, b2), ϕ = (∀x)ϕ3(x),
(a7, b2), ϕ = (∀x)ϕ4(x),
O, otherwise,

Y (ψ) =

{
(a8, b2), ψ = (∀x)ψ1(x),
O, otherwise.

The consistency levels of X, Y , and X̃i (i = 1, 2, 3) are all τ ′ = (a7, b2), and the
belief degree of the reasoning process is chosen to be β = (a7, b2). By applying
Theorem 16, we can get the overall evaluation result for car x1,

Ỹ1(ψ(x1)) = Cβ⊗X̃Ii = (a3, b1).

Similarly, we can get the overall evaluation results Ỹ2(ψ(x2)) = (a3, b2),

Ỹ3(ψ(x3)) = (a2, b2), for x2 and x3.
These results can be retransformed into natural language: car x1 is rather

bad, car x2 is rather good, car x3 is somewhat good, according to the provided
criterions and observations. It can be seen by a simple comparison that x2, i.e.,
Toyota, may be a better choice among these three cars.

6 Conclusions

This paper proposed a parameterized uncertain reasoning approach with pa-
rameters for featuring uncertainty from different sources, which is a common
phenomenon in many intelligent systems, based on a lattice-valued logic L2nf .
We discussed some methods for selecting appropriate parameters during the
uncertain reasoning process. Reasoning with different parameter values means
reasoning with different degrees of belief and consistency. This proposed param-
eterized uncertain reasoning approach takes the advantage of direct reasoning
with observed information to get the result, without the underlying numerical
approximation needed by some other methods. An example for car evaluation
was given to illustrate how the proposed uncertain reasoning approach work.
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