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Abstract— Intelligent Environments (IEs) are expected to sup-
port people in their daily lives. One of the hidden assumptions
in IEs is that they propose a change of perspective in the
relationships between human and technology, shifting from a
techno-centered perspective to a human-centered one. Unlike
current computing systems where the user has to learn how
to use the technology, an IE adapts its behaviour to the users,
even anticipating their needs, preferences or habits. For that, the
environment should learn how to react to the actions and needs
of the users, and this should be achieved in an unobtrusive and
transparent way. In order to provide personalized and adapted
services, it is necessary to know the preferences and habits of
users. Thus, the ability to learn patterns of behaviour becomes
an essential aspect for the successful implementation of IEs.

This paper presents a system, Learning Frequent Patterns of
User Behaviour System (LFPUBS), that discovers user’s frequent
behaviours taking into consideration the specific features of IEs.
The core of LFPUBS is the Learning Layer, which, unlike some
other components, is independent of the particular environment
in which the system is being applied. On one hand, it includes a
language that allows the representation of discovered behaviours
in a clear and unambiguous way. On other hand, coupled with the
language, an algorithm that discovers frequent behaviours has
been designed and implemented. For that, it uses association,
workflow mining, clustering and classification techniques.

LFPUBS was validated using data collected from two real
environments. In MavPad environment, LFPUBS was tested with
different confidence levels using data collected in three different
trials, whereas in WSU Smart Apartment environment LFPUBS
was able to discover a predefined behaviour.

Index Terms— Ambient Intelligence, intelligent environments,
pattern learning, machine learning techniques.

I. INTRODUCTION

Intelligent Environments (IEs) defined as digital environ-
ments that proactively, but sensibly, support people in their
daily lives [1], present the opportunity to use technology for
the benefit of society in a range of applications. Potential ben-
efits include making our environment more comfortable, safer
and more energy efficient. Consider the following scenario that
illustrates an IE that makes the life of its user easier and safer.

Michael is a 60-year-old man who lives alone and enjoys
an assistance system that makes his daily life easier. On
weekdays, Michael’s alarm goes off close to 08:00 a.m.; 10-
15 minutes later, he usually steps into the bathroom and the
lights are turned on automatically. On Tuesdays, Thursdays
and Fridays, he usually takes a shower; Michael prefers the
temperature of the water to be 24-26 degrees Celsius in the

Manuscript received ??; revised ??.
A.Aztiria, R.Basagoiti and A.Izaguirre are with the University of Mon-

dragon (Spain), J.C.Augusto is with Middlesex University (U.K.), D.J.Cook
is with Washington State University, (U.S.A.).

winter and around 21- 23 degrees Celsius in the summer. When
he finishes taking a shower, the fan of the bathroom is turned
on if the relative humidity level of the bathroom is high (in
Michael’s case >70%). When he leaves the bathroom the fan
and the lights are turned off automatically.

When he leaves home, the lights are turned off. Safety checks
assess potentially hazardous situations (e.g., checking if the
stove is turned on), and if needed, the assistance system acts
accordingly (e.g., turning the stove off).

A. Motivation

Environments developed so far, are reactive environments
that based on predefined patterns provide actions that are
considered ‘intelligent’. IEs will be really intelligent and
adaptive if they are able to provide personalized services
instead of services based on rigid or predefined patterns. For
that, it is necessary to discover user habits and patterns.

Considering the activation of the bathroom fan in the
example. When Michael has a shower, identified using activity
recognition technologies, the fan can always be activated
independently of the relative humidity level. It can also be
activated when the relative humidity level exceeds a certain
level (predefined level) or it may never be activated. If the
environment uses a pre-defined rule to activate a device, the
general rule does not take into account the preferences of the
user, or else the rule is defined by someone who knows the
user’s preferences. In the first case, the environment does not
fulfill the requirements of providing personalized services; in
the second case, such an adaptation is achieved only by human
input. The ideal environment automatically adapts to Michael’s
preferences and habits. In order to provide personalized and
adapted services, the requirement of knowing the preferences
and frequent habits of users is clear. In IEs, learning means that
the environment has to gain knowledge about the preferences,
needs and habits of the user in order to better assist the user
[2], [3].

A frequent behaviour, can be initially defined as a set
of actions and/or activities that a user frequently performs
under certain conditions. Michael’s morning habits include
actions like ‘Alarm On’, ‘Bathroom On’, ‘Shower On’, ...
which are related in a specific way (e.g., ‘Shower On’ comes
after ‘Bathroom On’), and they occur under certain conditions
(e.g., ‘Shower On’ occurs only on Tuesdays, Thursdays and
Fridays).

B. Advantages of Learning Frequent Behaviours

Assuming that human beings perform behaviours based on
habits, it could be inferred that patterns describing past and
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present behaviours will define future behaviours as well.
Michael’s example shows how the environment, knowing

his frequent behaviours, can act proactively to make his life
easier and safer. In this case, acting proactively means the
environment can automatically turn the lights and the fan on
and off or turn the radio on. The automation of actions and/or
devices can be considered as positive side effects that can be
obtained once the environment has learned his frequent habits.

Apart from automating actions or devices, patterns can also
be used to understand his behaviour and act in accordance
with it. Thus, unhealthy habits can be detected (e.g., he does
not take the pill) and act in response (e.g., reminding him that
he has medicine to take).

Making the environment more efficient in terms of saving
energy (e.g., turning the fan on only when the relative humidity
level is >70%) or increasing safety (e.g., turning off the stove
or issuing an alarm whenever Michael leaves it on) are other
dimensions of daily life that can be supported by an IE because
of knowledge it has discovered.

C. Intelligent Environments’ special features

Learning systems, i.e., systems that automatically discover
new knowledge, are being developed or used in many different
areas. However, each area has different objectives, needs and
features that influence the learning process. IEs have some
features that can be used to differentiate them from other
environments. In what follows, the most important features
that influence the process of learning are analysed.

1) Importance of the user: Users are the focus of any
development in IEs, and the fact that the environment is
technologically rich must not require any extra effort by the
users to obtain benefits from the IEs [4], [5].

2) Collected data: The importance of sensing increases
when considering the learning process. The data collected from
the sensors will greatly influence the learning process. One
should consider the nature of the raw data. Actually, within
the IEs field there are specific areas, named ‘Data Fusion’ and
‘Activity Recognition’ that deal with this problem.

Different types of sensors provide information that can be
used for different purposes in the learning process. Some
sensors provide direct information about user actions (e.g., a
sensor installed in the bathroom’s light switch provides direct
information about when someone switches on the light). Other
sensors provide information about the environment itself (e.g.,
a temperature sensor installed in the bathroom). Other types
of sensors provide information about the health and emotional
status of the user (e.g., sensors that capture parameters like
heart rate) or externally gathered information (e.g., agenda
information).

3) Representation of the discovered knowledge: Depending
on the objectives of each environment, different represen-
tations can be desirable. For example, if the only goal is
to automate, i.e., to provide an output given certain inputs
(e.g., switch on the light given the current situation), the
environment does not require a representation of the patterns
that can be understood by the user. However the representation

of the user’s patterns can be relevant. In these cases, a human-
understandable, i.e., comprehensible, representation of the
patterns is an essential feature for the success of the system.

Representing frequent behaviours by means of Action Maps
seems to be a promising approach. Action Maps, based on
workflow representation, represent the complexity of users’
behaviours (see Figure 1 for an example). This type of
representation allows inter-relations between actions (e.g.,
‘Bathroom On’ and ‘BathroomLights On’). At the same time,
it allows the representation of time relations using relative
time references instead of absolute times (e.g., ‘Shower Off’; 4
seconds later; ‘BathroomFan On’). General Conditions help to
contextualize the whole sequence (e.g., ‘On weekdays between
8 a.m. and 9 a.m.’), whereas Specific Conditions describe
the conditions under which an action is performed or not
(e.g., ‘BathroomFan On’ only if the relative humidity level
is >70%).

Fig. 1. Example morning ritual represented in an Action Map.

4) Scheduling the learning process: Although this work is
focused on discovering frequent patterns of behaviour from
data collected by sensors, the development of a complete IE
demands other considerations.

It is desirable for the system to act as intelligently as
possible from the very beginning, i.e., even when it is just
beginning to collect data. Typically, actions performed at this
point will not be as intelligent or efficient as those performed
after learning the patterns of the user, and minimal services
can be expected at this stage.

Once patterns are discovered, they must be continuously
revised and updated:

• The user can change his/her preferences or habits (e.g.,
Michael takes a shower every weekday).

• New patterns could appear (e.g., Michael has started
receiving visitors on weekends).

• Previously learned patterns were incorrect (e.g., the sys-
tem wrongly concluded that Michael gets up around
07:00 a.m.).

This adaptation process could mean the modification of
parameters in a pattern discovered previously, adding a new
pattern or even deleting a pattern. This sustained process will
last throughout the lifetime of the environment. To achieve this
constant revision effectively, the user’s feedback is essential.
This feedback is obtained using an interaction system (See
Section III-D) for more details.

II. STATE OF THE ART

Mozer et al. [6] and Chan et al. [7] were amongst the first
reports on applications for AmI environments in which user
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patterns were considered. In the case of Mozer et al., the aim of
their system (installed in the Adaptive House) was to design an
adaptive control system that considers the lifestyle and energy
consumption of the inhabitants. For that, they used a feed-
forward neural network to develop an occupancy predictor and
zone anticipator. Chan et al. developed a similar application
in order to assess if a given situation was normal or abnormal.
Other authors have kept using Artificial Neural Networks
(ANNs) [8]. The use of ANNs has a limitation related to their
internal structure not being easily comprehensible.

Cook and colleagues initially focused on building universal
models, represented by means of Markov models, in order
to predict either future locations or activities [9]. They made
improvements by developing applications to discover daily and
weekly patterns [10]. Jakkula and Cook [11] extend this work
to predict actions using temporal relations, defined by means
of Allen’s temporal logic relations [12].

The efforts of researchers at Essex’s iDorm [13] [14]
focused on developing an application that generated a set of
fuzzy rules to represent users’ patterns.

Probabilistic methods such as Bayesian logic networks and
Markov logic networks have been used to model activities [15]
[16].

Other techniques have also been used. The ‘SmartOffice’
group [17] developed an algorithm that discovered conditions
for situations in which examples indicate different reactions.
Research conducted under the MyCampus project filtered
messages based on the preferences of the user [18]. Including
a system, based on Case-Based Reasoning (CBR), they signif-
icantly improved the quality of filtering (i.e., user satisfaction
increased from 50% to 80%).

[19] analyses the strengths and weaknesses of these tech-
niques for learning frequent user behaviours. We can state
that due to specific characteristics of Intelligent Environments,
each problem calls for the use of certain techniques, but as
Muller pointed out [4], ‘the overall dilemma remains: there
does not seem to be a system that learns quickly, is highly
accurate, is nearly domain independent, does this from few
examples with literally no bias, and delivers a user model that
is understandable and contains breaking news about the user’s
characteristics’.

III. GENERAL ARCHITECTURE

One of the main characteristics of IEs is the key role that
the user plays as the focus of the entire process. The process
starts by collecting data about the user and the environment in
which the user is situated, and it finishes by acting intelligently
for the user.

This research suggests an architecture for learning users’
frequent behaviours that distinguishes those aspects of the
learning process related to particular environments in which
each particular environment requires a different treatment
(environment-dependent), from those aspects that can be
generalized for all types of environments (environment-
independent). The system proposed in the current work, Learn-
ing Frequent Patterns of User Behaviour System (LFPUBS),
is based on a three-layered architecture that takes into account
all aspects related to the learning process (Figure 2).

Fig. 2. Three-layered global architecture of LFPUBS.

A. Transformation Layer

The Transformation Layer transforms raw data, i.e., data
collected from sensors, into useful information for the learning
layer. An important transformation includes inferring users’
actions from raw data. See Figure 3 for an example where the
information provided by sensors is already meaningful.

Fig. 3. Example where Transformation Layer can easily transform sensor
information.

In this case, the action itself is meaningful because the
action of the user can be directly inferred from it. However,
there are other actions that are difficult to infer from the sensor
activation. For example, the inference of the simple action
’Go into the Bathroom’ requires combining data coming from
different sources to infer such an action. Figure 4 shows that
there is a motion in the corridor, followed by the RFID tag
installed in the door of the bathroom detecting the presence
of Michael and finally there is motion in the bathroom.

Fig. 4. Example where inferring a meaningful action demands to combine
different actions.

The most basic way of inferring these actions is by means of
templates. Templates define which actions must be combined
as premises as well as which constraints must be considered.
The importance of each action in the template is different, so
that actions can be labeled either as mandatory or as optional.
Constraints can affect the order of the actions or the duration.
See Figure 5 for an example.

After transforming raw data into simple actions, all actions
considered later are meaningful. Once simple actions have
been inferred, a similar process can be carried out in order
to infer complex actions such as ‘Make coffee’ or ‘Take a
pill’. This inference might be necessary because simple actions
do not always represent the type of actions to be analysed.
As in inferring simple actions, the most basic method for
inferring complex actions is the use of templates, with one
difference. Whereas the former transformation combines raw
data, inferring complex actions combines simple actions.
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Fig. 5. The template for the action ‘Go into bathroom’.

B. Learning Layer

The Learning Layer transforms the information from the
Transformation Layer into knowledge to be used by the
Application Layer. This layer discover users’ frequent behavior
in an environment-independent manner so that it can be used
in any environment without any modification in its design. The
Learning Layer is described in detail in Section IV.

C. Application Layer

Once pieces of knowledge about users’ frequent behaviours
have been learned, they can be used for different purposes.
This use will be mainly influenced by the objectives of
particular environments.

Michael’s scenario suggested that discovered frequent be-
haviours could be used in order to automate the activa-
tion/deactivation of devices. For instance, if the environment
knows that on weekdays between 8 a.m. and 9 a.m., Michael
turns on the lights of the bathroom 2 seconds after he goes
into the bathroom, it can act to proactively anticipate Michael’s
actions in those cases.

Another interesting application for patterns of behaviour is
that they allow us to understand users’ frequent behaviours in
order to detect unhealthy habits or provide help and support for
his daily tasks. A representation of patterns and related actions
must be comprehensible to make understanding them easier.
Here it detects when Michael does not take his medicine and
the environment generates a reminder to take medicine with
breakfast.

D. Interacting with LFPUBS

An important aspect of IEs has to do with their interaction
with users, a key element in the process of efficiently applying
the extracted knowledge. Given the importance of users for the
success of an IE, it is essential that there is a friendly and easy
way for the user to interact with the environment. The ability
of HCI systems to understand and react to human behaviours
has been widely analyzed [20], [21].

Here, a speech-based interaction system provides IEs with
a more natural way of interacting with all types of users.
As a first approach, a speech-based HCI system has been
developed. The goal of this system was to allow users to give
their feedback about discovered behaviours.

Different environments and different objectives require the
development of different interaction systems. The method-

ology to develop an HCI system where users’ frequent be-
haviours are involved is the same in all applications. Depend-
ing on the nature and the objectives of each environment, it
will be necessary to modify the possible questions as well
as the options given to the user, but the technology will
remain untouched. In this case, the chosen speech synthesizer
is FreeTTS 1.2 and the speech recognizer is Sphinx- 4 (See
[22]).

A Graphical User Interface (GUI) allows the user of LF-
PUBS to design the learning process that will be carried
out. Some of the components of LFPUBS allow the user of
LFPUBS to design the learning process based on the requisites
(runtime, complexity of the knowledge to discover etc.) of
different applications.

IV. LEARNING FREQUENT PATTERNS OF USER
BEHAVIOUR SYSTEM (LFPUBS)

Two different approaches for LFPUBS have been developed.
The general approach, named ‘Action Map Approach’, at-
tempts to discover patterns of users’ behaviours and represent
them in a comprehensible way (as depicted in Figure 1). The
second approach, named ‘Pairwise Approach’, is a particular
instantiation of the Action Map approach because it is focused
on discovering pairwise relations between the actions of the
user. In this work we are going to focus on the Action Map
Approach.

The main objective of this approach is to discover users’ fre-
quent behaviours and represent them in a comprehensible way.
As mentioned in Section I, different sensors provide different
types of data that define different aspects of users’ behaviours.
Therefore, the nature of different pieces of information must
be taken into account in the learning process. Thus, LFPUBS
considers two main different groups of information:

• (type A) Information about the actions of the users. This
information can be directly provided by sensors installed
in objects (devices, furniture, domestic appliances etc.) or
inferred by combining different pieces of information in
the Transformation Layer. This set of actions is denoted
by A = {ai}.

• (type C) Context information. Some sensors provide
information about context, but not about actions of the
user. Temperature, light and smoke sensors are examples
of type C sensors. The context information is denoted by
C = {ci}.

The Learning Layer is made up of two modules, the
representation module and the discovering module. The core
of the representation module is a language (LLFPUBS) that
provides a standard conceptualization of the patterns so that
the environment is able to represent all type of patterns that
can occur in the environment [22]. The process of discovering
is based on an algorithm (ALFPUBS) that takes into account
for characteristics of the IEs’ attempts to discover frequent
patterns.

A. Representing patterns with LLFPUBS

Because of the complexity of IEs, defining a language that
allows the environment to represent discovered patterns in a
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clear and unambiguous way is difficult but necessary. The
language integrated within LFPUBS is based on ECA (Event-
Condition-Action) rules [23]. Besides providing a standard
way of representing patterns, it makes sure those patterns are
clearly specified and enables other technologies to check their
integrity [24]. A frequent behaviour is defined by means of
an Action Map, which contains all of the specific relations
between actions. An Action Map is created relating actions in
pairs, and each of those relations is an Action Pattern, which
is defined by means of ECA rules. The complete Action Map
is then created by linking different Action Patterns.

In the same way as ECA rules, each Action Pattern relates
two actions (defined by the ON and THEN clauses) and the
specific conditions (defined by the IF clause) under which that
relation occurs. Unlike basic ECA rules, LLFPUBS allows
the environment to define the time relation between both
actions. The behaviour of turning on the fan in the bathroom
is represented using LLFPUBS in Figure 6:

Fig. 6. Action Pattern for turning on fan.

The ON clause defines the event that occurs and triggers
the relationship specified by the pattern. The components of
the Event Definition are the device (‘Shower’) implied in the
action, the nature of the action (‘Off’) and the timestamp of
such an action (‘t0’). As patterns relate users’ behaviours, the
ON event must be the effect of a user’s action. Such actions
are collected by A-type sensors.

The IF clause defines the necessary conditions under which
the action specified in the THEN clause is the appropriate
reaction to the event listed in the ON clause. Because it is
almost impossible for an Event-Action relation to be true
under any condition, appropriate conditions are necessary to
represent accurate patterns. Conditions are defined by means
of attribute-value pairs. Whereas the ON and THEN clauses
define the actions of the user, the conditions must specify
the status of the environment at that moment, such that the
information involved in that clause must be related to the
context. LLFPUBS has two ways to define conditions:

• Information coming from C-type sensors (e.g., ‘Relative
humidity level’ or ‘Temperature’).

• Calendar information (e.g., ‘Time of Day’ or ‘Day of
Week’).

Possible attribute values depend on the nature of each
attribute. LLFPUBS considers two types of values:

• Qualitative values (e.g., ‘Tuesday’).
• Quantitative values (e.g., ‘20C’ or ‘20:30:00’).
The THEN clause defines the action that the user usually

carries out given the ON clause and given the conditions
defined in the IF clause. It must be a user action, so that
is it made up of the device (‘BathroomFan’), the nature
of the action (‘On’) and the Time Relation between the

Event and Action situations. The Time Relation can be either
quantitative (t = t0 + 4s.) or qualitative (t is after t0), with the
usefulness of each type of relation being different. Compared
to qualitative relations, quantitative relations provide higher
quality information because it is possible to use them for other
purposes. One of those additional purposes is the automation
of devices, which is possible with quantitative relations. Con-
sider Michael’s behaviour of turning on the fan 4 seconds after
having a shower. If such a relation was defined by means of a
qualitative term like ‘after’, the system would not be able to
infer when it had to turn on the fan because it would not know
whether the time delay was 4 seconds, 5 minutes or 2 hours.
However, using quantitative relations (4 seconds in Michael’s
case) allows the system to turn on the fan at the right time.

B. Learning patterns with ALFPUBS

The algorithm (ALFPUBS) discovers the frequent be-
haviours of the users (See Figure 7). In order to coordinate
with LLFPUBS and discover complete and unambiguous
patterns, ALFPUBS must consider different aspects defined by
the language. Therefore, the ALFPUBS has to be able to dis-
cover Action Maps that represent users’ frequent behaviours.

Fig. 7. Steps to be performed by the learning algorithm.

The pseudocode of the algorithm can be seen in Figure 8:

Fig. 8. ALFPUBS algorithm.

The parameters for the learning process can be defined by
means of the GUI.

1) Identifying Frequent Sets of Actions: This step discovers
the sets of actions that frequently occur together (Frequent
Sets). Defining a demanded minimum level (minimum confi-
dence level ), it discovers all those sets of actions that occur
more times than the minimum level (See Figure 9). These sets
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of actions are treated as Frequent Sets. Let F denotes the set
of Frequent Sets of a user. Then fi ∈ F is a set of actions
{fik : fik ∈ A}. The set of Sequences in which the Frequent
Set is present is also identified. To discover Basic Frequent
Sets in large amounts of data, the Apriori algorithm [25] was
used. Starting from 1-item sets (Step 1), the algorithm attempts
to find subsets (Step 2) which are common at least a minimum
number of times (Step 3).

Fig. 9. Identifying Frequent Sets of Action algorithm.

In Michael’s case, this first step would discover that the
following actions frequently occur together.

Actions: ‘Alarm On’; ‘Bathroom On’; ‘Bathroom Off’;
‘BathroomLights On’; ‘BathroomLights Off’; ‘Cabinet On’;
‘Cabinet Off’; ‘Mouthwash On’; ‘Towel On’; ‘Gel On’;
‘Shower On’; ‘Shower Off’; ‘BathroomFan On’; ‘Bathroom-
Fan Off’;

2) Identifying Topology: In order to properly model the
user’s behaviours, it is necessary to define the order of included
actions. The goal of this step is to discover the frequent order
(defined as Topology) of the actions in the behaviour of the
user. In this context, representing the user’s behaviours by
means of Action Maps makes them easier to understand and
makes it possible to use them in tasks such as prediction or
automation of future actions. As stated previously, few groups
have dealt with this problem in IEs. Because of this, other
meaningful domains in which user’s actions have been used
to extract models of behaviour have been analysed. One of the
closest domains is the area of Workflow Mining [26]–[28] in
which process models are discovered from event logs. Instead
of event logs, ALFPUBS considers the actions of the user.
Because of the nature of IEs, some particularities must be
taken into account.

First, considering Frequent Set’s actions, all relations de-
fined by the data are represented in an Action Map. The objec-
tive is to define the initial probabilities, P0,j = Pr(fij |fistart

)
(Step 1) and the transition probabilities for each Action
Pattern P = [Pk,j ] where Pk,j = Pr(fij |fik) (Step 2) (See
Figure 10).

Although this step does not discover anything, at this point,

Fig. 10. Identifying Topology algorithm.

it provides the first formal representation of the behaviour
based on the LLFPUBS in which the ON and THEN clauses
of different Action Patterns are defined. In Michael’s case, his
behaviour would be represented by the Action Map depicted
in Figure 11.

Fig. 11. The basic representation of Michael’s behaviour.

Repetitive Actions
Unlike other domains in which an action is unique and there

is no more than one occurrence of each action per Sequence,
in IEs, there could be different occurrences of the same action.
In fact, the nature of repetitive occurrences will probably be
different because the user can do the same action with different
purposes. Thus, a methodology to identify repetitive actions
and create different instantiations of them is created based on
the idea that the meaning, and by extension, the nature of
an action is mainly defined by the previous and next actions.
Thus, the nature of different actions is defined by creating
groups of actions that take into account the similarities among
previous and next actions. LFPUBS includes two different
techniques to create groups:

• Manually define the number of groups or clusters to
create. The system helps the user considering a.) the
average number of occurrences of an action in a Sequence
and b.) the maximum number of occurrences of an action
in a Sequence.

• Automatically define the number of groups or clusters us-
ing the Expectation-Maximization (EM) algorithm [29].

In Michael’s case, it would discover that the actions ‘Cabi-
net On’ and ‘Cabinet Off’ occur more than once with different
objective. Thus, it would create as many instantiation as
necessary (two in this case) for each one of those actions.
In Michael’s case, the representation of his behaviour, taking
into account repetitive actions, can be seen in Figure 12.
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Fig. 12. Michael’s behaviour with repetitive actions.

Unordered Subsets of Actions
An unordered subset of actions represents a set of actions

in which it has not been possible to define an order for such
actions. Michael’s scenario offers a typical example of this.
When he opens the cabinet, he sometimes gets the towel
first and then the gel, and other times the order is reversed.
As in the parallel actions of Workflow mining cases, the
representation of unordered set of actions shows bidirectional
relationships between such actions. To decide whether a bidi-
rectional relationship (for example between a1 and a2) must be
considered as an unordered set of actions, LFPUBS includes
a set of parameters:

• Minimum Level for Origin (MLO) (%). The percentage
of occurrences of a1 followed by a2 out of the total
occurrences of a1 must be higher than the demanded
minimum level.

a1 → a2/Occurrences(a1) ≥MLO (1)

• Minimum Level for Destiny (MLD) (%). The percentage
of occurrences of a2 followed by a1 out of the total
occurrences of a2 must be higher than the demanded
minimum level.

a2 → a1/Occurrences(a2) ≥MLD (2)

• Minimum Balanced Level (MBL) (%). The percentage of
occurrences of a1 followed by a2 out of the occurrences
of a2 followed by a1 (and vice versa) must be higher
than the demanded minimum level.

((a1 → a1)/(a2 → a1))&((a2 → a1)/(a1 → a2)) ≥MBL
(3)

In Michael’s case, the only bidirectional relationship in-
volves the actions ‘Towel On’ and ‘Gel On’. Depending on the
parameters we define, those actions may be identified as part of
an unordered subset of actions. In that case, Michael’s morning
behaviour could be represented as shown in Figure 13:

Fig. 13. Michael’s behaviour with unordered subsets of actions.

Granularity and Allowed Maximum Granularity

Once the behaviours of the user have been discovered and
represented, LFPUBS allows the user of the system to select
the complexity (granularity) of the Action Map. The selected
granularity indicates the threshold for the relationships. Thus,
relationships with a lower frequency than the threshold will
not be represented. Therefore, a high granularity will provide
a more general representation of an Action Map, whereas a
low granularity will provide a more complex representation
of it. Selecting granularities without any limit can lead to
illogical representations. To avoid illogical representations,
LFPUBS includes the heuristic ‘Uniform-cost search’ [30],
which calculates the maximum granularity (Allowed Maxi-
mum Granularity) that guarantees at least one path from start
to end. Thus, the system does not allow the user to select a
higher granularity level than this parameter, making sure that
the Action Maps maintains a minimum logic in all cases.

Assume that in Michael’s case LFPUBS allows the user of
the system to select any granularity and he/she chooses ’5’,
such that all relationships with a frequency under ’5’ would
be removed. As can be seen in Figure 14, the representation of
Michael’s behaviour would lose its sense, making it difficult
to understand it logically.

Fig. 14. Michael’s behaviour without considering the Allowed Maximum
Granularity parameter.

In Michael’s case, using the ’Uniform-cost search’ heuristic,
LFPUBS would discover that the Allowed Maximum Granu-
larity is ‘4’. Thus, the user of LFPUBS will not be able to
select a granularity level higher than ‘4’.

3) Identifying Time Relations: The Topology defines a
first temporal representation of the frequent behaviour by
means of qualitative relations (using the term ‘after’) and their
probabilities. The objective of this step is to discover frequent
quantitative Time Relations between the actions defined by
each one of the Action Patterns.

As stated above, qualitative relations allow one to under-
stand the logical order of the actions. Such patterns would pro-
vide higher quality information if the relations were defined,
if possible, by means of a quantitative relations. Therefore,
the objective of this step is to discover quantitative Time
Relations, T (fij , fik),∀fi ∈ F , in order to better define users’
behaviours. LFPUBS includes two different algorithms.

Before applying any algorithm, the first task is to collect
the necessary data. The relations to study are already defined
by the patterns discovered in the previous step. Thus, for
each pattern the system collects the Time Distances of all
occurrences.

Once the Time Distances are collected, the next step is to
identify possible quantitative time relations. LFPUBS includes
two algorithms - the ‘Basic Algorithm’ and the ‘EM Algo-
rithm’ - so that the user of the system may choose either of
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them to identify such quantitative relations. Both algorithms
are based on the same idea of grouping occurrences by taking
into account their similarity and deciding whether a group
represents a quantitative Time Relation. Figure 15 shows the
pseudo code of the ‘Basic Algorithm’. For each group, taking
as starting point any of the time relations from the dataset (Step
1), the idea is to calculate the distance from each occurrence
to all groups (Step 2), and assign it to that group with the
minimum value (Step 3), until all groups are steady (Step 4).
For more details about these algorithms see [31].

Fig. 15. Identifying Time Relations algorithm.

Considering Michael’s case, and particularly the Action
Pattern that relates the actions ‘Shower Off’ and ‘BathroomFan
On’, the objective of this step is to define a quantitative Time
Relations for such a pattern. Consider that the collected Time
Distances between both actions are depicted in Figure 16.

Fig. 16. Time Distances between occurrences of ‘Shower Off’ and ‘Bath-
roomFan On’.

After using any of the algorithms, two groups (‘group 0’ and
‘group 1’) are created, which cover three and one occurrences,
respectively. In order to extract quantitative Time Relations,
LFPUBS checks whether the confidence level of different
groups is over the demanded one. ‘group 0’ represents a
quantitative Time Relation because it covers 3 out of 4
occurrences (75%), whereas ‘group 1’ does not. Thus, the
mean value of ‘group 0’ defines a quantitative Time Relation,
creating a pattern shown in Figure 17:

4) Identifying Conditions: A final step that identifies the
Specific and General Conditions for each Action Map is

Fig. 17. Action Pattern for turning on fan with Time Relation.

necessary in order to create accurate representations of the
behaviours of the user. Next, both processes of identifying
Specific and General Conditions are explained in more detail.
Let E denotes a set of conditions. Then ei ∈ E is a set of
contextual and temporal information, {eik : eik ∈ C}.

Identifying specific conditions
All of the relations represented in an Action Map are

supported by a number of occurrences. One situation is the
case in which an action is followed by two (or more) different
actions. In an Action Map, these situations are easily identified
because these situations are represented as splitting points
from which more than one relation are created. In those cases,
it is necessary to identify under what conditions each of those
relations is true.

Once such situations are identified, the process of identi-
fying conditions is as follows. For each possible relation a
table is created. In each table the occurrences covered by that
relation are collected, together with the calendar and context
information collected when such occurrences happened. Once
the tables are created, separating both tables by using the
information they contain allows one to discover conditions.
The task of separating can be solved by treating it as a
classification problem [32]. This is a recursive algorithm (See
Figure 18) that starting from a tree (Step 1), calculates if
that tree classifies well all occurrences (Step 2). For that,
function allPositive(e,D) and allNegative(e,D) return if
all occurrence of D are classified positively or negatively
respectively by the e Node. If not, a new attribute is selected
(Step 3) and added to the tree, creating a new branch for each
possible value (Step 4) and checking if it is final (Step 5).

In Michael’s case, the action ‘Shower Off’ is followed
by either ‘BathroomFan On’ or ‘BathroomLights Off’ ac-
tions. As there are two possible relations two tables (See
Figure 19) are created. Context and calendar information
collected when occurrences of ‘Shower Off’ were followed
by the action ‘BathroomFan On’ are recorded in the ta-
ble ‘ShowerOff-BathroomFanOn’. Information collected when
occurrences of ’Shower Off’ were followed by the action
‘BathroomLights Off’ are recorded in the table ‘ShowerOff-
BathroomLightsOff’.

There are different ways of separating both tables because
of the small number of Sequences considered in Michael’s
case. The condition that better separates both tables is the
context information Bathroom relative humidity level (‘Hum.
Bathroom’). For the relation ‘Shower Off’-‘BathroomFan On’,
the Specific Condition defined by the ALFPUBS can be seen
in Figure 20.

Identifying general conditions
It is necessary to define the general context in which an
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Fig. 18. Identifying Conditions algorithm.

Fig. 19. ‘Shower Off - BathroomFan On’ and ‘Shower Off - Bathroom-
Lights Off’ tables with calendar and context information

Action Map occurs. General Conditions refer to calendar
and context information that allows the user of the system
to understand under what conditions the whole Action Map
occurs. Here, only calendar information (‘Time of Day’ and
‘Day of Week’) has been considered, although LLFPUBS

also allows one to represent General Conditions using context
information.

In order to identify General Conditions, defined by the terms
‘Time of Day’ and ‘Day of Week’, we have adopted a very
basic strategy. Such a strategy is based on covering all the
occurrences. Thus, all occurrences are covered by the range
defined by ‘Time of Day’ and ‘Day of Week’ terms.

In Michael’s case, it discovers that the particular behaviour
we are considering happens on weekdays and between 08:00
a.m. and 09:00 a.m.. This first version provides quite simple
and ‘excessive’ conditions.

Fig. 20. Specific Condition for the Action Pattern

V. VALIDATION

Part of the validation process involved the use of datasets
collected from two real environments. Some of the validations
were general, whereas others were focused on validating
specific steps of the ALFPUBS . The validation process was
carried out using different datasets collected in MavPad and
WSU Smart Apartment environments.

A. Validating LFPUBS with the MavPad dataset

The MavPad is an on-campus student apartment located at
University Village on the University of Texas at Arlington’s
campus [33]. Figure 21 shows the sensors installed in MavPad:

• A1...A16: Sensors for living room electrical outlets,
lamps and fan.

• B1...B13: Sensors for Bathroom and Kitchen lights, elec-
trical outlets and fan.

• C1...C10: Sensors for Bedroom lamps and electrical
outlets.

• S1...S144: Temperature, humidity, smoke and gas sensors.
• V1...V40: Motion sensors.

Fig. 21. a.) Sensors installed in different items. b.) Distribution of context
and motion sensors. [33]

The dataset used to validate LFPUBS was collected in three
different time periods: Trial 1 (spanning 15 days), Trial 2
(spanning almost 2 months) and Trial 3 (spanning 3 months).
The frequent behaviours were not known in advance. The data
collected in each trial was independent from the other trials’
data.

Regarding the ‘Identifying Frequent Sets of Actions’ step,
the number and the nature of the Frequent Sets to be discov-
ered were unknown. At this point, the tests were only able to
confirm that LFPUBS was able to discover Frequent Sets of
Actions in unknown datasets.

One of the Frequent Sets discovered in Trial 1 with a
minimum confidence level of 50% shows that the user per-
formed the actions of ‘BedroomLight On’, ‘Bedroom- Light



SYSTEMS, MAN AND CYBERNETICS: PART A JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, ? 10

Off’, ‘BedroomLuxo1 On’ and ‘BedroomLuxo1 Off’ together.
The number of Frequent Sets does not provide interesting
information by itself. For that, it was necessary to discover
the topology of each Frequent Set. Identifying the topology
of different Frequent Sets implied the discovery of repetitive
actions and unordered subsets of actions as well as identifying
the Allowed Maximum Granularity for each Frequent Set.

Considering the Frequent Set that involved the actions of
‘BedroomLight On’, ‘BedroomLight Off’, ‘BedroomLuxo1
On’ and ‘BedroomLuxo1 Off’, the topology discovered for
this set of actions shows that the user first turned on the
room light. Then sometimes he/she first turned off the room’s
light before turning on the luxo lamp, and other times he/she
first turned on the luxo lamp and then turned off the room’s
light. This behaviour is represented by means of an unordered
subset that groups the actions of ‘BedroomLight Off’ and
‘BedroomLuxo1 On’. The user turned off the luxo lamp. Once
the topology was defined, it was possible to represent such a
behaviour by means of the LLFPUBS . Table I shows the num-
ber of patterns discovered in each trial and the convergence
time for the discovering of patterns and their topology.

TABLE I
THE NUMBER OF ACTION MAPS AND THE EXPERIMENTS’ RUNTIMES (IN

MILLISECONDS) OBTAINED IN DIFFERENT TRIALS.

Trial 1 Trial 2 Trial 3

Confidence
Level Total Patterns Total Patterns Total Patterns

25% 8 (328 ms) 3 (5969 ms) 1 (200ms)

50% 4 (141 ms) 1 (5422 ms) 1 (115 ms)

75% 1 (109 ms) 1 (718 ms) 1 (103 ms)

100% 0 (35 ms) 0 (35 ms) 0 (35 ms)

Time Relations were calculated using the ‘Basic Algorithm’.
In this case, it was also impossible to foresee the quantitative
Time Relations to be discovered. However, it was possible to
extract interesting information. Table II shows the number of
Time Relations (and the percentage they represent) discovered
in each trial. The runtime of each experiment is directly related
to the number of relations to be analysed and the number of
particular Time Distances to consider in each one of them. For
example, this last aspect is essential to understand the runtimes
of Trial 1 and Trial 2, because in both situations the number
of relations to analyse were equal (56), but the number of
particular Time Distances to consider was higher in Trial 2.

In some situations there was not any relation to analyse.
There could be two reasons for that, on one hand, because it
was not discovered any Frequent Set (e.g., Trial 1, Trial 2 and
Trial 3 with confidence level of 100%). It could be because all
the actions of the Frequent Set were included in an unordered
subset of actions (e.g., Trial 1 with confidence level of 75%
and Trial 3 with confidence level of 25%, 50% and 75%).

Specific and General Conditions were discovered. In some
cases, for example with ‘Action Map 1’, it was not necessary
to discover Specific Conditions because there was no situation
in which an action was followed by two different actions.
In contrast, in other Action Maps, it was necessary to define
Specific Conditions. Table III shows the percentage of times

TABLE II
THE NUMBER OF ACTION PATTERNS WITH TIME RELATIONS, THE

PERCENTAGE OF THE TOTAL AND THE EXPERIMENTS’ RUNTIMES (IN

MILLISECONDS) OBTAINED IN DIFFERENT TRIALS.

Trial 1 Trial 2 Trial 3

Confidence
Level

Action Patterns
with Time
Relations

Action Patterns
with Time
Relations

Action Patterns
with Time
Relations

25% 48 (48/56 (86%))
(844 ms)

43 (43/56 (77%))
(2071 ms)

No Time
Relations needed

50% 18 (18/22 (82%))
(437 ms)

5 (5/7 (71%))
(1651 ms)

No Time
Relations needed

75% No Time
Relations needed

5 (5/7 (71%))
(578 ms)

No Time
Relations needed

100% No Time
Relations needed

No Time
Relations needed

No Time
Relations needed

in which it was possible to discover Specific Conditions when
situations required this. The runtime of these experiments does
not directly depend on the number of situations in which
conditions were needed, but it was more influenced by the
amount of data to be considered in each one of them.

TABLE III
THE NUMBER OF ACTION PATTERNS WITH SPECIFIC CONDITIONS, THE

PERCENTAGE OF THE TOTAL SITUATIONS THAT REQUIRED THIS AND THE

EXPERIMENTS’ RUNTIMES OBTAINED IN DIFFERENT TRIALS.

Trial 1 Trial 2 Trial 3

Confidence
Level

Action Patterns
with Conditions

Action Patterns
with Conditions

Action Patterns
with Conditions

25% 7 (7/10 (70%))
(500 ms)

6 (6/9 (67%))
(1015 ms)

No Conditions
needed

50% 2 (2/3 (67%))
(188 ms)

1 (1/2 (50%))
(1062 ms)

No Conditions
needed

75% No Conditions
needed

1 (1/2 (50%))
(156 ms)

No Conditions
needed

100% No Conditions
needed

No Conditions
needed

No Conditions
needed

Because of the ability of the algorithm to generalise, it was
possible to discover General Conditions for all of the Action
Maps. For example, LFPUBS discovered that the Action Map
described above occurred between 08:00 a.m. and 04:15 a.m.
of the next day. Once General Conditions were discovered,
‘Action Map 1’ was represented as shown in Figure 22:

B. Validating LFPUBS with the WSU Smart Apartment dataset

The testbed WSU Smart Apartment is an environment
created at Washington State University [34]. Figure 23 shows
the installed sensors:

• M01...M26: motion sensors.
• I01...I08: item sensors for oatmeal, raisins, brown

sugar,bowl, measuring spoon, medicine container, pot and
phone book.

• D01: cabinet sensor
• AD1-A, AD1-B, AD1-C: water and burner sensors.
• AD1-C: burner sensor.
• asterisk: phone usage.
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Fig. 22. Action Map after general conditions were discovered.

Fig. 23. a.) Distribution of motion sensors. b.) Cabinet and other sensors’
distribution. [34]

Data collected in the WSU Smart Apartment represented
participants performing the same five ADLs (Activities of
Daily Living) in the apartment, so the frequent behaviours
that LFPUBS should discover were known in advance. The
five tasks were; make a phone call, wash hands, cook, eat and
clean (see actions in Table IV).

As the behaviours were known in advance, this test evalu-
ated the steps of ‘Identifying Frequent Sets of Actions’ and
‘Identifying Topology’.

The objective of the first step, ‘Identifying Frequent Sets
of Actions’, was to discover the set of actions involved in the
different ADLs. Each particular Sequence showed a participant
performing the five ADLs, so the same actions were involved
in most of the particular Sequences. Thus, even for a high
confidence level (for example, 60%), all of the actions involved
in the ADLs, shown in Table IV, were identified as frequent.

‘PhoneBook On’, ‘Phone On’, ‘Phone Off’, ‘Water On’,
‘Water Off’, ‘Cabinet On’, ‘Cabinet Off’, ‘Raisins On’,

TABLE IV
ACTIONS INVOLVED IN EACH ADL.

Activity Involved Actions

Make a
phone

call
‘PhoneBook On’ –>‘Phone On’ –>‘Phone Off’

Wash
hands ‘Water On’ –>‘Water Off’

Cook

‘Cabinet On’ –>‘Raisins On’ –>‘Oatmeal On’
–>‘MeasuringSpoon On’ –>‘Bowl On’ –>‘Sugar On’

–>‘Cabinet Off’ –>‘Water On’ –>‘Water Off’
–>‘Pot On’ –>‘Burner On’ –>‘Burner Off’

Eat
‘Cabinet On’ –>‘Medicine On’ –>‘Cabinet Off’
–>‘Water On’ –>‘Water Off’ –>‘Cabinet On’

–>‘Medicine Off’ –>‘Cabinet Off’

Clean ‘Water On’ –>‘Water Off’

‘Oatmeal On’, ‘MeasuringSpoon On’, ‘Bowl On’, ‘Sugar
On’, ‘Pot On’, ‘Burner On’, ‘Burner Off’, ‘Medicine On’,
‘Medicine Off’.

Once the set of actions involved in the Action Map was
identified, the next step was to discover the frequent order
of such actions. The particularity of this dataset was that,
although the order of all of the actions was not clearly
defined, the order of activities defined it in some way. The first
difficulty faced was to identify repetitive actions because the
same action could be performed as part of different activities.
For example, the actions ‘Water On’ and ‘Water Off’ were
involved in activities such as ‘Wash hands’, ‘Cook’, ‘Eat’ and
‘Clean’. In the case of the actions ‘Water On’ and ‘Water Off’
LFPUBS was able to define that four different ‘Water On’ and
‘Water Off’ actions were needed.

Different participants performed the same activities in the
same order, but this does not imply that they all performed
all of the actions in the same order. For example, when it
came to cooking, some of them took out the raisins first
and then the oatmeal, and others did the opposite. This is
proof that although the order of activities was defined in
advance, unordered subsets of actions could exist and have to
be identified. Considering the following parameters (Minimum
Level for Origin: 25%; Minimum Level for Destiny: 25%;
Minimum Balanced Level: 50%), only three unordered subsets
were discovered. The first one included the actions ‘Cabinet
On’ and ‘Cabinet Off’, the second one included the actions
‘Oatmeal On’ and ‘Raisins On’, whereas the last one included
the actions ‘Cabinet On’, ‘Burner Off’ and ‘Water Off’.

Once repetitive actions and unordered subsets of actions
were identified, it was possible to define the topology that
modelled participants’ behaviour. As in any Action Map, the
topology itself defined the qualitative Time Relations. To dis-
cover quantitative Time Relations, the ‘Basic Algorithm’ was
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used. Considering all the relations defined by the Topology,
the ‘Basic Algorithm’ was able to identify quantitative Time
Relations in 25 out of 29 (86%) cases. The representation
of the Action Map once Topology and Time Relations were
defined as shown in Figure 24:

Fig. 24. Action Map after Topology and Time Relations were discovered.

Specific and General Conditions were identified. Regard-
ing the Specific Conditions, very few situations demanded
Specific Conditions (only three). Besides, the lack of context
information meant Specific Conditions could only be identified
using calendar information. Using only calendar information,
it was possible to identify conditions in two out of three (67%)
cases. The identified General Conditions indicated when the
participants performed such actions. Thus, it was discovered
that all of the actions were carried out on weekdays between
10:45 a.m. and 18:15 p.m.

C. Comparing LFPUBS with other learning systems

As it can be seen in Section II, there have been many differ-
ent approaches to discover knowledge about users’ behaviours.
The main difference between LFPUBS and the rest of the
systems is that LFPUBS approaches the problem holistically,
i.e. it discovers all aspects of user behaviours (frequent actions,
order (topology), time relations and conditions), whereas the
other systems focus on one single aspect.

The first two steps (frequent actions and topology) can be
compared to works such as [6], [9], [13], [15]. The main

advantage of LFPUBS is that the output produced as a set
of rules are much easier to understand than other forms
of representation like Artificial Neural Networks [6], [7],
Markov Models and Bayesian Networks. Obtaining an output
which can be easily interpreted is important in this domain
of application, for example, it can facilitate the detection of
unhealthy habits and the deterioration of health or hygiene.

Jakkula and Cook [11] identified qualitative time relations
between actions in order to predict actions with higher ac-
curacy. Our LFPUBS’s step of ‘Identifying Time Relations’
provides more accurate relations because it prioritizes quanti-
tative relations over qualitative ones.

Classification techniques have been used by other groups
[17] in order to discover contextual conditions. We used a
similar approach in LFPUBS. The difference is that LFPUBS
discovers conditions when the topology of the frequent be-
haviour demands it, whereas other approaches discover con-
ditions in all the situations where there are different options,
without considering the topology of frequent behaviours.

Table V represents the comparison among LFPUBS and
other available approaches, considering their representation
and execution characteristics for intelligent environments. By
representation it is considered the format and comprehensibil-
ity of the patterns, and by execution what such patterns could
be used in intelligent environments for.

TABLE V
REPRESENTATION AND EXECUTION CHARACTERISTICS.

REPRESENTATION EXECUTION

Frequent Actions
Approach [6], [9],

[13], [15]
Difficult to understand Automation of actions

Time Relation
Approach [11]

Qualitative relations
between actions

Comprehensible
relations between

actions (no automation)

Contextual Condition
Approach [17]

Conditions under a
pattern becomes true

Automation of actions
under such conditions

(without considering the
sequence of actions)

Ontologies [35], [36]
Ontology based

representation (it needs
a learning technique)

Automation of actions.
Comprehend frequent
behaviours. (it needs a

learning technique)

LFPUBS

Frequent behaviours of
users with easier to
understand and use

output.

Automation of actions
informed by frequent

behaviours.

Time performance is also an important aspect on these
systems. Table V shows our system provides, through different
means, services equivalent to a group of systems. As such,
LFPUBS cannot be fairly compared with them in time perfor-
mance. The validation section included time performance for
the several steps of LFPUBS in different problems. It can be
seen some steps are computationally much more demanding
than others. LFPUBS was created to be used ’offline’. Initially
the sensor system is used for a period of time for data accu-
mulation only. LFPUBS will be then run to obtain an initial
set of rules. From time to time (depending on the application),
LFPUBS is run again over the newest and expanded data sets.
This produces an updated set of rules to drive automation.
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The system has produced good results efficiently even with
several months of data. This is consistent, or in many cases
better, than the state of the art.

VI. CONCLUSIONS AND FURTHER RESEARCH

Intelligent Environments (IEs) are real environments (Smart
Homes, Smart Classrooms etc.) that sensibly support people
in their daily lives. This pre-supposes a change of perspective
in the relationships between human and technology, shifting
from a techno-centered perspective to a human-centered one,
where the technology adapts its behaviour to users’ needs,
preferences and habits. Therefore, an environment should learn
how to react to the actions and needs of the user, and this
should be achieved in an unobtrusive and transparent way. Past
behaviour can be used to predict future behaviour, especially
in terms of habits and preferences, so that IEs could provide
personalised and adapted services. Thus, the ability to discover
users’ frequent behaviours becomes an essential aspect for
the successful implementation of IEs, allowing them to act
proactively.

Taking into account the need for an IE to be capable of
learning, the special features of IEs and the current state of
the art, a system that discovered users’ frequent behaviours
was designed and developed. The system, Learning Frequent
Patterns of User Behaviour System (LFPUBS), is based on a
three-layered architecture whose main objective is to separate
those aspects that are dependent on particular environments
in which the system is being used from those aspects that
are environment-independent. Thus, both the Transformation
Layer, which fills the gap from the real environment to
LFPUBS, and the Application Layer, which fills the gap from
LFPUBS to the real environment, are environment-dependent
because their performance depends on specific aspects (e.g.,
types of sensors/actuators) of particular environments. Ho-
wever, the Learning Layer, which implements all of the
algorithms that discover users’ frequent behaviours, is free of
any influence of particular environments.

The main focus of this paper has been the design and the
development of the necessary components of the Learning
Layer. The Learning Layer is made up of two modules:
the language module (LLFPUBS), which provides a standard
conceptualisation of the patterns; and the algorithm module
(ALFPUBS), which discovers the patterns. The system was
validated using data collected from two real environments:
MavPad and WSU Smart Apartment with very good results in
terms of the set of patterns discovered and its efficiency. Still,
as with any advanced system of this type we know several
features can be improved or extended.

In future works, it is also necessary to consider other
types of information such as health and emotional status of
the user, agenda information etc. Besides, the current Action
Map Approach should be adapted in order to consider other
types of Time Relations (e.g. ranges), online adaptation of the
patterns or multiuser environments. Finally, LFPUBS can be
used for new applications, for example analyzing deviations
from frequent behaviours in order to detect initial stages of
some diseases (e.g. Alzheimer’s disease).
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