
Noname manuscript No.
(will be inserted by the editor)

Discovering Frequent User-Environment Interactions in
Intelligent Environments

Asier Aztiria · Juan Carlos Augusto ·
Rosa Basagoiti · Alberto Izaguirre ·
Diane J. Cook

Received: date / Accepted: date

Abstract Intelligent Environments are expected to act proactively, anticipating the

user’s needs and preferences. To do that, the environment must somehow obtain knowl-

edge of those need and preferences, but unlike current computing systems, in Intelligent

Environments the user ideally should be released from the burden of providing infor-

mation or programming any device as much as possible. Therefore, automated learning

of a user’s most common behaviors becomes an important step towards allowing an

environment to provide highly personalized services.

In this paper we present a system that takes information collected by sensors as a

starting point, and then discovers frequent relationships between actions carried out

by the user. The algorithm developed to discover such patterns is supported by a

language to represent those patterns and a system of interaction which provides the

user the option to fine tune their preferences in a natural way, just by speaking to the

system.

Keywords Ambient Intelligence · intelligent environments · pattern learning ·
machine learning techniques

1 Introduction

Ubiquitous Computing, a term introduced by Mark Weiser (Weiser, 1991), refers to a

paradigm in which a new type of relation between users and technology is established

Asier Aztiria
University of Mondragon. E-mail: aaztiria@eps.mondragon.edu

Juan Carlos Augusto
University of Ulster. E-mail: jc.augusto@ulster.ac.uk

Rosa Basagoiti
University of Mondragon. E-mail: rbasagoiti@eps.mondragon.edu

Alberto Izaguirre
University of Mondragon. E-mail: aizagirre@eps.mondragon.edu

Diane J. Cook
Washington State University. E-mail: cook@eecs.wsu.edu

2

such that technology is both widespread and transparent to the user. Now computing

devices of various types are all around us, embedded in different objects we interact

with and in that way they influence our lives. An important further development of

this concept has resulted in concepts such as Ambient Intelligence (AmI) (Aarts, 2004;

Ducatel et al, 2001; Cook et al, 2009; Nakashima et al, 2009) or Intelligent Environ-

ments (Callaghan et al, 2009). Other terms, such as Smart Environments (Cook and

Das, 2005) or Pervasive Computing (Friedemann and Mahmoud, 2002), are used with

similar connotations. All them refer to digital environments that proactively, but sen-

sibly, support people in their daily lives (Augusto, 2007). As mentioned by Augusto

(Augusto, 2009) ‘In order to be sensible, a system has to be intelligent. That is how

a trained assistant, e.g. a nurse, typically behaves. It will help when needed but will

restrain to intervene unless is necessary. Being sensible demands recognizing the user,

learning or knowing her/his preferences and the capability to exhibit empathy with the

user’s mood and current overall situation’. In Intelligent Environments learning means

that the environment must gain knowledge about the preferences, needs and habits of

the user in order be in a better position to assist the user adequately (Galushka et al,

2006).

Let us consider the following scenario, which exemplifies the common behavior of

a user. On weekdays Michael’s alarm clock goes off (‘Alarm on’) few minutes after

08:00AM. Approximately 10-15 minutes after getting up he usually steps into the bath-

room (‘Bathroom on’) and (2 seconds after) he turns on the lights of the bathroom

(‘BathLights on’) if the bathroom is dark (bathroom light level <10). On Tuesdays,

Thursdays and Fridays he usually takes a shower (‘Shower on’); Michael prefers the

temperature of the water to be around 24-26 degrees Celsius in the winter and around

21-23 degrees Celsius in the summer. When he finishes taking a shower and 10 seconds

after he turns on the fan of the bathroom (‘BathFan on’), only when the relative hu-

midity level is >75%. Before he leaves the bathroom (‘Bathroom off’)he turns off the

fan (‘BathFan off’) and the lights (‘BathLights off’).

1.1 Acting based on predefined patterns vs Acting based on learned patterns

For an environment to be perceived as acting intelligently it has to offer non-obtrusive

and personalized services which can effectively assist users in their daily lives. There

already exist sensing systems which can act using predefined patterns, for example,

turning on the lights when detecting someone’s presence in a room or systems that

turn on a fan in the bathroom when someone turns on the lights. Problem is that the

systems operate with manually (and rigidly) predefined patterns. Thus, a system that

turns on the lights of the bathroom when Michael goes into the bathroom may satisfy

his needs but a system that turns on the fan every time the lights are turned on would

not, because he only turns on the fan after taking a shower and only if the relative

humidity level is greater than 75%.

In order to provide personalized and adapted services, it is necessary to know

preferences and frequent habits of users. Knowing users’ frequent behaviours allows

the environment to act intelligently and proactively. In Michael’s case, it could mean

that the environment automatically turns on and off the lights and the fan, sets the

temperature of the water and so on. Unlike previous systems, automation of actions

and/or devices in intelligent environments is based on learned patterns, making sure

they adapt to users’ common behaviours. The knowledge extracted from these patterns

3

can also be used in order to understand his behaviour. For example, the analysis of

frequent interaction with objects and devices in the house can facilitate the detection

of unhealthy habits (e.g., the system detects that Michael does not brush his teeth in

the mornings). Making the environment more efficient in terms of saving energy (e.g.

by turning on the fan only when he takes a shower) or increasing safety (e.g. turning

off the water or issuing alarms when detecting that Michael left it on and he will not

return soon) are other dimensions of daily life that can be supported by the Intelligent

Environment thanks to the knowledge it has collected.

In order to achieve these objectives, we have developed software which allows an

Intelligent Environment to discover frequent behavioral patterns, and we have named

it Patterns of User Behaviour System (PUBS). The system is composed of several mod-

ules; at its core there is an algorithm, APUBS , that discover behavioral patterns. The

language LPUBS , included within PUBS, provides a standard framework to represent

patterns clearly; finally, PUBS includes an interaction system, IPUBS , which allows

the user to interact with PUBS in a natural way. The version of PUBS that we de-

scribe in this article is focused on discovering relationships between two simple actions;

in other words, it only discovers what we call “one-to-one relationships”. In Michael’s

example it would first discover that 10-15 minutes after he gets up he goes into the

bathroom and then, as another pattern, it would discover that he switches on the light

just after he goes into the bathroom. Besides discovering frequent relationships, PUBS

is able to identify the usual time relations between both actions (e.g. he goes into the

bathroom 10-15 minutes after getting up), as well as to define the conditions under

which a pattern appears (e.g. if the bathroom relative humidity level is >75%). The

essential components of the PUBS architecture are shown in Figure 1.

Fig. 1 Architecture of PUBS

The remainder of the paper is organized as follows. Section 2 describes the special

features of Intelligent Environments to be considered when performing the learning

process. Section 3 reviews the different approaches employed by different groups. In

Section 4, we explain our approach (PUBS) for discovering frequent patterns, and

Section 5 shows the results of our validation experiments. Finally, in Section 6 we

provide some conclusions and plans for future work.

4

2 Intelligent Environments’ Special Features

As mentioned above, unlike current computing systems, where the user has to learn

how to use the technology, in Intelligent Environments the environment adapts its

behavior to the user. This swapping of roles entails that Intelligent Environments have

some special features that must be taken into account in the process of learning; we

list these in the following sections.

2.1 Importance of the user

Users are the focus of any development in Intelligent Environments, and the fact that

the environment is technologically rich must not translate into any extra effort on behalf

of the users to obtain the benefits of an Intelligent Environment (Dooley et al, 2006;

Muller, 2004). This implies that the data acquisition process and feedback obtaining

process have to be carried out as unobtrusively as possible (Rutishauser et al, 2005);

for example, by means of sensors installed in standard devices. The concept of an

ideal proactive environment suggests an environment where the interaction with the

user is carried out through standard devices such as switches or remote controls, but

when this is not possible, friendly multimodal interfaces are considered (Turunen et al,

2007; Partala et al, 2006; Coen, 1998). In that sense, being aware of our system’s need

to interact with the user, we have developed a Human-Computer Interaction system

(IPUBS) which facilitates interaction with the system without demanding that the user

learn how to use PDAs, a computer mouse or keyboard or how to navigate through a

complicated computer program.

2.2 Collected Data

The data collected from the sensors will influence the learning process globally; all

patterns will depend upon the data captured. Therefore, the data collected from sensors

demands a thorough analysis, covering many different factors that can influence the

learning process.

Transformation of the collected data

Collecting data correctly is an important task in order to be able to extract mean-

ingful information from that set of data.

The data will be collected in a continuous way from different information sources.

Integrating data from different sources usually presents many challenges, because dif-

ferent sources will use different styles of record keeping, and different devices may

also be of different types (e.g., digital vs analog). Moreover, as in other areas, noisy

data, with missing or inaccurate values, will be common, so finding out how to deal

appropriately with that is another obstacle.

It is also necessary to consider the meaning of the collected data. Sometimes the

raw data will not be meaningful enough, and so a combination of different sources

of raw data will be necessary in order to infer and recognize meaningful activities.

For example, in order to infer “Michael has gone into the bathroom” we will have to

combine the raw data of “There is a motion in the corridor”, “RFID in the bathroom

5

door detects that Michael is passing through the door” and “There is motion inside

the bathroom”.

Spatio-temporal aspects

As we have mentioned above, in Intelligent Environments the interaction between

the user and the environment must ideally be by means of standard devices. Thus,

electronic items such as lights, television, kettle, etc., as well as furniture (sofa, bed,

and so forth) are fitted with sensors. The location of those devices provide us valuable

spatial information as to where a user’s actions take place. Additionally, other sensors,

such as motion sensors, which can be distributed in all rooms, can also provide valuable

information that help us to identify broad regions (such as the kitchen) where the

activities take place.

It is important to understand that handling temporal information is one of the

most challenging aspects in Intelligent Environments. This is not only because the

user’s actions happen during a specific time, but because most often, the user’s actions

are themselves related in terms of time (for instance, Michael goes into the bathroom

10-15 minutes after he gets up).

Nature of the collected data

Finally, one of the most important factors to consider is the nature of the data

once it is collected and transformed. Different types of sensors provide information of

different types and that can be used for different purposes in the learning process.

Thus, our system considers three main different groups of sensors.

– (type O) Sensors installed in objects (devices, furniture, domestic appliances, etc).

These sensors provide direct information about the actions of the users. For ex-

ample, a sensor installed in the bedroom lamp may indicate when that lamp was

switched on and off.

– (type C) Context sensors. These sensors provide information about context, but

not about user actions directly. Temperature, light and smoke sensors are examples

of type C sensors.

– (type M) Motion sensors. These sensors can be used to infer where the user is (in

the bedroom, outside the house, or elsewhere).

It is worth mentioning that we are aware there are, additionally, other types of

sensors, such as those that indicate the health status of the user or alarm pendants;

these will be included in future versions of the system.

2.3 Representation of patterns

Learned patterns can be used for many different purposes. In that sense, different

Machine Learning techniques provide different types of outputs, of which some, such

as artificial neural networks, produce output that is almost impossible to translate into

humanly understandable language. If learned patterns are used in order to understand

behaviors of the user (to detect bad or unhealthy habits, for instance) or if it is necessary

for the system to explain its decisions to the user, it will be essential that the output

is comprehensible.

Comprehensible representations can be achieved in different ways. So far, the most

common approach relates the actions of the user (gathered by O-type sensors) with

6

the status of the environment (gathered by C-type sensors) (Gal et al, 2001) (Hagras

et al, 2004). We consider, as have other authors (Duman et al, 2008) (Jakkula et al,

2007), that detecting relationships between the user’s actions facilitates understanding

of the user’s behavior, using information about the environment to contextualize such

a relationship. Besides facilitating the understanding of the user’s behavior, finding

these relationships also allows us to use relative time references instead of absolute

times. Thus, in Michael’s case, we relate the action of “finishing to take a shower” with

the action of “turning on the fan”, and we define a time relation of “10 seconds” if and

when “the bathroom relative humidity level is >75%”.

3 Related Work

Learning is an essential feature in any Intelligent Environment. However, given the

diversity of elements that must converge in order to obtain the infrastructure needed

for an Intelligent Environment, learning has not received as much attention in the

literature as it may require. Some notable exceptions are mentioned below.

Mozer et al. (Mozer et al, 1995) and Chan et al. (Chan et al, 1995) were amongst

the first reports on applications for AmI environments in which user patterns were con-

sidered. In the case of Mozer et al., the aim of their system (installed in the Adaptive

House) was to design an adaptive control system that considers the lifestyle and energy

consumption of the inhabitants. For that, they used a feed-forward neural network to

develop an occupancy predictor and zone anticipator, which were used to predict where

the user would be in the coming seconds and control lighting based on those predic-

tions. Chan et al. developed a similar application in order to asses if a given situation

was normal or abnormal. Other authors have kept using ANNs in order to provide

personalized services. Thus, Campo et al. (Campo et al, 2006) developed a system that

calculated the probability of occupation for each area of the house and systematically

compared the probability with the current situation. A survey of those works can be

found in (Begg and Hassan, 2006). The use of ANNs has a limitation related to their

black box nature; therefore their internal structure is not comprehensible.

The group that has been working on the MavHome and Casas projects is one of

the most active groups in this area. The first applications developed by this group were

focused on building universal models, represented by means of Markov models, in order

to predict either future locations or activities (Cook and Das, 2007). In this sense, they

made notable improvements by developing applications to discover daily and weekly

patterns (Heierman and Cook, 2002). Additionally, they constructed applications with

the ability to infer abstract tasks automatically, identifying corresponding activities

that were likely to be part of the same task (Rao and Cook, 2004). Jakkula and

Cook (Jakkula and Cook, 2007) extended this work to predict actions using temporal

relations, defined by means of Allen’s temporal logic relations (Allen, 1984). They have

also developed applications to recognize activities (Kim et al, 2010).

Researchers at Essexs iDorm lab have given prominence to the problem of learning

and are one of the most active groups in this area. Their initial efforts (Hagras et al,

2004) (Doctor et al, 2005) were focused on developing an application that generated a

set of fuzzy rules to represent users patterns. Recording the changes caused by the user

in the environment, they generated membership functions as well as fuzzy rules that

mapped data into fuzzy rules. Due to the excessive number of rules they generated,

they introduced an improvement (Duman et al, 2008) where they identified relevant

7

and important associations between given actions, so that irrelevant aspects of the

rules (and, by extension, some rules as well) were removed.

Other techniques have also been used. The group that works in the environment

named SmartOffice (Gal et al, 2001) developed an algorithm that discovered conditions

for situations in which examples indicate different reactions. Research conducted under

the MyCampus project filtered messages based on the preferences of the user (Sadeh

et al, 2005). Including a system, based on CBR, they significantly improved the quality

of filtering (i.e., user satisfaction increased from 50% to 80%).

a survey of all these works can be found in (Aztiria et al, 2010). We can state

that due to specific characteristics of Intelligent Environments, each problem calls for

the use of certain techniques, but as Muller pointed out (Muller, 2004), “the overall

dilemma remains: there does not seem to be a system that learns quickly, is highly

accurate, is nearly domain independent, does this from few examples with literally no

bias, and delivers a user model that is understandable and contains breaking news

about the user’s characteristics”.

4 Patterns of User Behaviour System (PUBS)

PUBS is a system that discovers a user’s common behaviors and habits from data

recorded by sensors. In that sense, it is worth mentioning that PUBS only discovers

one-to-one relationships, i.e. patterns where only two actions (no more) are involved,

thus ruling out larger sets of actions.

As Figure 1 shows, PUBS is made up of three main modules(LPUBS , APUBS

and IPUBS) which will be explained below using on of the patterns associated with

Michael’s scenario:

“Michael turns bathroom fan on 10 seconds after he finishes to take a shower If the

bathroom humidity level is >75%”

4.1 Representing patterns with LPUBS

Due to the complexity of Intelligent Environments, defining a language that allows us to

represent learned patterns in a clear and non-ambiguous way is difficult but necessary.

The language integrated within PUBS is based on ECA (Event-Condition-Action) rules

(Augusto and Nugent, 2004). Besides providing a standard way of representing pat-

terns, it makes sure those patterns are clearly specified and enables other technologies

to check their integrity (Augusto and McCullagh, 2007).

As ECA rules, LPUBS basically relates two situations (defined by ON and THEN

clauses) and the specific conditions (defined by an IF clause) under which that relation-

ship occurs. Finally, LPUBS allows us to define the time relation between both actions.

Considering the abovementioned pattern, using LPUBS it would be represented as:

(Pattern 1)

ON occurs (Shower, Off,t0)

IF context (Bathroom humidity level (>,75%))

THEN do (On, BathFan, t) when t=t0+10s

8

For the complete specification of LPUBS see the Appendix.

Event Definition

The part of the pattern defined by the ON clause defines the event that occurred

and triggered the relationship specified by the pattern. From this point on, the action

that triggers the pattern will be called associated sensor triggering (associatedSeT).

The components of the Event Definition are the associatedSeT (‘Shower’), the

nature of the action (‘off’) and the timestamp of such an action (‘t0’). As patterns

relate user behaviors, the ON event must be the effect of a user’s action. In that sense,

there are two possibilities.

– User acts upon objects fitted with O-type sensors.

(Event 1)

ON occurs (Shower, Off,t0)

– User’s presence or movement (detected by M-type sensors) triggers the pattern.

(Event 2)

ON occurs (Bathroom, On,t0)

Condition Definition

The IF clause defines the necessary conditions under which the action specified in

the THEN clause is the appropriate reaction to the event listed in the ON clause. Due

to the fact that is almost impossible that an Event-Action relation is true under any

condition, appropriate conditions are necessary in order to represent accurate patterns.

Below we provide some examples of conditions:

(Condition 1)

IF context (Living room temperature (<,20 C))

(Condition 2)

IF context (Time of day (>,20:30:00))

(Condition 3)

IF context (Day of week (=, Tuesday))

Conditions are defined by means of attribute-value pairs. Whereas ON and THEN

clauses define actions of the user, the conditions must specify the status of the en-

vironment at that moment, so that the information involved in that clause must be

related to the context. Thus, we have considered two different possibilities to define

the attribute.

– Information coming from C-type sensors (e.g. ‘humidity level’ (Pattern 1) or ‘tem-

perature’ (Condition 1))

– Calendar information (e.g. ‘time of day’ (Condition 2) or ‘day of week’ (Condi-

tion 3))

As to the possible values for such attributes, they depend on the nature of each

attribute. LPUBS allows us to define two types of values.

9

– Qualitative values (e.g. ‘Tuesday’ (Condition 3)).

– Quantitative values (e.g. 20 C (Condition 1) or 20:30:00 (Condition 2)).

Action Definition

Finally, the THEN clause defines the action that the user usually carries out given

the ON clause and given the IF conditions. It is made up of the triggered action,

called main sensor triggering (mainSeT), the nature of the action (on/off) and the

time relation between the Event and Action situations.

Such a time relation can be either quantitative (Action 1) or qualitative (Action 2),

the usefulness of each type of relation being different. Both define, although in different

ways, the behavior of the user, but whereas quantitative relations can be used to

automate mainSeT, qualitative relations cannot be used for this purpose, for in addition

to knowing that one action follows another one we need to know the specific time

relation between them.

(Action 1)

THEN do (On, BathFan, t) when t=t0+10s

(Action 2)

THEN do (On, BathFan, t)
when t is after t0

4.2 Learning patterns with APUBS

As core of PUBS, in accordance with LPUBS , we have developed the APUBS algo-

rithm to discover patterns in data collected by sensors. The steps of the algorithm are

summarized in the following algorithm:

APUBS Algorithm (for learning patterns)

for each sensor of type O (consider it as mainSeT)

Identify the associatedSeT of type O or M (See below)

for each associatedSeT

Identify possible time relations (See below)

if there exists a time relation then make it more accurate using temporal

and context information (type C) (See below)

Emphasizing O-type sensors as mainSeT follows from the fact that those sensors

provide us direct information about users’ actions, so that discovering patterns about

them we will discover patterns about users’ actions.

Let us consider that a part of Michael’s morning activities and context data col-

lected by sensors for several days are:

10

Data Collected from Sensors

(time;type of sensor;sensor;status;value)

Day 1; (20-10-2009) Day 2; (22-10-2009)

08:24:02;bHumidity;on;68 08:32:41;bTemp;on;26

08:24:53;Shower;off;– 08:33:29;bHumidity;on;80

08:24:55;bHumidity;on;76 08:34:08;Shower;off;–

08:25:05;BathFan;on;– 08:34:17;BathFan;on;–

Day 3; (23-10-2009) Day 4; (27-10-2009)

08:19:47;bTemp;on;26 08:38:08;bHumidity;on;70

08:22:21;Shower;off;– 08:40:58;bHumidity;on;78

08:22:26;bHumidity;on;72 08:41:03;Shower;off;–

08:29:38;BathLights;off;– 08:41:13;BathFan;on;–

Day 5; (29-10-2009) Day 6; (30-10-2009)

08:20:20;bHumidity;on;70 08:28:27;bTemp;on;23

08:21:09;Shower;off;– 08:29:02;bHumidity;on;77

08:22:36;bTemp;on;24 08:29:11;Shower;off;–

08:23:12;BathLights;off;– 08:29:20;BathFan;on;–

where Shower, BathFan and BathLights are O-type sensors, whereas bHumidity and

bTemp are C-type sensors.

Identifying associated sensor triggering

The aim of this first step is to get a list of possible related sensors (associated), in

order to minimize the complexity of the learning process. For the purpose of discovering

possible associatedSeT, we search for previous events from other sensors that happened

before each event of mainSeT. If APUBS discovers that before instances of mainSeT,

frequently there is an occurrence of an event at another sensor, then the latter will

be considered as associatedSeT. Finding an associatedSeT does not mean definitively

that there will be a pattern that describes a relation associatedSeT - mainSeT, but

indicates there could potentially be one.

A list of possible associatedSeT ’s is obtained through a similar approach to the

Apriori method for mining association rules (Agrawal and Srikant, 1995), with only

two differences:

– Limit possible associations with the object we are analyzing (mainSeT).

– The result does not consider a pair (mainSeT, associatedSeT) as a pattern, but

only as sensors that can be potentially related in a meaningful way.

An Apriori algorithm modified by adding the aforementioned constraints has been

used in this step. As in every association mining process, minimum coverage, support

and window size values must be provided. Considering Michael’s example, for the

mainSeT ‘BathFan on’ there will be at least one relationship with ‘Shower off’, which

will be considered as associatedSeT.

Identifying time relations

Once we know what other actions could be related to mainSeT ’s, the next step is to

discover if there are possible meaningful time relations between them. To this end, for

each associatedSeT we collect the time distances between occurrences of mainSeT and

11

previous appearances of associatedSeT. Considering Pattern 1 and the data collected,

the time distances between mainSeT ‘BathFan on’ and associatedSeT ‘Shower off’ are

depicted by Figure 2.

Fig. 2 Time Distances between both actions

Taking as starting point these time distances {{e1,12s} {e2,9s} {e3,-} {e4,10s}
{e5,1257s} {e6,9s}}, the next step is to create groups, taking into account the similar-

ities among them and checking to see if there is any time distance that groups enough

instances to consider it as interesting. The technique for creating groups could be as

complex as we can imagine. In this case the technique we have used is based on joining

values that are within a range established by (1):

[min,max] = x± (x ∗ tolerance) where x =

∑n
i=1 ai

n
(1)

with: tolerance = tolerated deviation from x (%); ai = time distance of an element;

and n = number of elements

Let us consider the time distances depicted in Figure 2 and a tolerance of 50%.

Grouping those values creates two groups; the first group with mean value ‘10s’, which

covers 4 instances (e1,e2,e4,e6) and the second group with mean value ‘1257s’ and 1

instance (e5). The group(s) that covers more instances than the minimum level required

(defined manually, e.g. 25%) is considered as a pattern where the Event and Action

are known. Considering the two groups generated in our example, only the first group

(with a confidence level of 4/6) will be considered as a pattern, generating a pattern

like:

ON occurs (Shower, Off,t0)

IF [...]

THEN do (On, Bathroom Fan, t) when t=t0+10s

Identifying appropriate conditions

In the previous step we generated patterns relating two situations (represented by

ON and THEN clauses), but it is almost impossible to define patterns associated to

a specific object based on only one relation. For instance, in our example the defined

pattern has a 4/6 confidence level, so that it misclassifies 2/6 instances. Finding out

(if possible) under what conditions a pattern will appear or not will be the last step in

order to obtain accurate patterns. As has been mentioned before, calendar and context

information given by C-type sensors will be used to define these possible conditions.

For the purpose of discovering these conditions, two tables, covered and non-covered

tables, are generated. In the covered table there will be instances classified correctly

by the pattern together with the calendar and context information collected when they

12

happened, whereas the same information regarding instances where the patterns fails

is registered in the non-covered table (See Figure 3).

Fig. 3 Covered and Non-Covered tables

Using the information they contain, dividing both tables allows us to know when

the pattern properly defines the relationship between mainSeT and associatedSeT.

Considering our example, the easiest way to separate covered and non-covered tables

(as the example contains few instances, it can be separated in many different ways)

seems to be by using the sensor bHumidity which indicates the humidity level in the

bathroom when the action happens.

Adding these conditions does not increase the number of instances the pattern

includes (it still includes the same number of instances, 4/6), but we make it more

accurate, making sure that it does not include instances that do not exhibit that

pattern. Thus, in this step we will define the IF clause of the pattern, obtaining a

pattern such as:

ON occurs (Shower, Off,t0)

IF context (Bathroom humidity level (>,75%))

THEN do (On, Bathroom Fan, t) when t=t0+10s

The task of separating both tables has been considered as a classification problem,

using the JRip algorithm (Witten and Frank, 2005). Even so, a modification has to

be made due to the fact that JRip provides rules only with the unique objective of

separating the two classes (covered and non-covered), whereas in our case it is desirable

to obtain rules about the covered class. In this way, we always get a set of conditions

that indicates when a pattern defines the relation well, instead of a mix of conditions

that indicates when the pattern is well-defined and when it is not.

4.3 Interacting with IPUBS

Once patterns in the user’s common behavior have been learned, they can be used for

different purposes. Patterns represent frequent user-environment interactions, so that

13

one exciting application is the automation of devices (e.g. turning on the bathroom

fan as Pattern 1 shows), allowing an environment to act proactively for the benefit of

its users. An ideal proactive environment would be an environment where interaction

with the user (both data acquisition and obtaining feedback) is carried out through the

normal operation of standard devices such as switches or remote controls, thus trying

to avoid any “ad hoc” set up.

But apart from automating devices, the patterns discovered can be used for other

purposes, such as understanding user behavior or detecting hazardous or abnormal

situations. Let us consider a house where an occupant is affected by the onset of

Alzheimer’s and their actions are being monitored to better understand changes in

behavior that can be harmful to that person. This system also requires a friendly and

easy way of interacting with it (Aghajan et al, 2009), so that the patterns learned can

be efficiently used and personalized to specific cases.

We have developed a simple HCI system based on speech, which, based on the

LPUBS representation, allows users to fine tune the patterns discovered by APUBS .

As explained in Section 4.1, all patterns are represented based on LPUBS . This makes

the use of patterns easier, because every part of the pattern is well-defined. Our system

can interact with the user by voice to gather feedback about the patterns that have

been learned and to provide the user an opportunity to further refine them. Next we

illustrate the different functionalities of the interaction module (IPUBS).

First of all, the system welcomes the user and then asks the user if he/she wants

to interact with IPUBS . If the user confirms the desire to interact with IPUBS then

the system asks the user to choose a mainSeT (including the possibility of listening to

all patterns of all sensors):

System: Hello, welcome to the interaction system. Patterns have been discovered

by the algorithm. Do you want to listen to them? (yes/no)

User: Yes

System: Please choose a main sensor. These are the possible main sensors: Bath-

room Light, Bathroom Fan or All

User: Bathroom Fan

Once a mainSeT is chosen, IPUBS lists patterns related to that mainSeT. Every

pattern is mentioned in order to obtain the user’s feedback about it. The following

steps are carried out for each pattern. Let us consider Pattern 1, shown in Section 4.1,

as one of the patterns of the Bathroom Light.

System: Pattern 1

System: Occurs Shower is off and If Bathroom Humidity Level is greater than 75%

Then turn on the Bathroom Fan 10 seconds after

System: Do you want to accept, refine or delete it?

User: Accept

By means of IPUBS the user can accept, refine or delete a pattern. Accepting

a pattern means user accepts a pattern as useful and therefore the environment will

use it to act proactively in the future. If the user chooses to delete a pattern, it is

removed from the set of patterns so that the environment will not use it. Finally, the

user can choose to refine a pattern if he/she considers it is a useful pattern but some

aspect needs tuning. In deleting or accepting operations, the action to be carried out

14

by IPUBS is simple, removing or not removing the pattern from the set of patterns;

but in refining patterns, IPUBS guides the user through the different aspects of the

pattern that the user may like to change.

So far the interaction system has been conceived to obtain feedback from the user

about the patterns it has learned, but it is worth mentioning that the system can

be evolved in many different ways to suit the needs of different users in different

environments.

Technical aspects

IPUBS has been developed using a speech synthesizer and a speech recognizer.

In order to facilitate integration with APUBS (developed in Java), we have chosen a

synthesizer and recognizer written entirely in Java. We chose FreeTTS 1.2 1 for the

speech synthesizer and Sphinx-4 2 as the speech recognizer.

Both FreeTTS and Sphinx make interaction with the user easier by providing easy-

to-use tools. Complications arise mainly due to the changing nature of Intelligent En-

vironments. For example, IPUBS cannot know beforehand what devices are in the

environment; thus, grammars for the recognizer must be created and loaded dynami-

cally to integrate the interaction module into a specific environment.

5 Validation of PUBS

In order to validate the system we applied it to artificial data generated at the Univer-

sity of Ulster and then to two different real datasets collected from Washington State

University’s (WSU’s) Smart Apartment and MavPad.

5.1 Validating PUBS with the WSU Smart Apartment dataset

The data collected in the WSU smart apartment (Cook and Schmitter-Edgecombe,

2008) represents participants performing five Activities of Daily Living (ADLs) in the

apartment: making a phone call, washing hands, cooking, taking medicine/eating the

food and cleaning (See Table I for actions involved in each activity).

In all, the sensors installed in WSU smart apartment are:

– 14 sensors on objects such as phone, medicine container or cabinet.

– 27 motion sensors.

As the set of actions involved in these 5 ADLs and the order of such actions were

known in advance, we knew what patterns should be discovered by PUBS. Thus, the

validation of PUBS using this dataset was especially critical for the first step of APUBS

(“Identifying associated sensor triggering”) because we knew what relationships were

hidden in this dataset.

As expected, it discovered the 17 relationships hidden in the dataset. In order to

avoid misunderstandings, it is worth mentioning that some relationships defined in

Table I are repeated in different activities, e.g., Water (ON) –> Water (OFF). Besides

these relationships it discovered 6 irrelevant relationships, so that it discovered 23

patterns in all. Following some of the patterns that have been found are shown:

1 http://freetts.sourceforge.net/docs/index.php
2 http://cmusphinx.sourceforge.net/sphinx4/

15

Table 1 Actions involved in each ADL.

Activity Involved Actions

Making a
phone call

Phone Book (ON) –>Phone (ON) –>Phone (OFF)

Washing hands Water (ON) –>Water (OFF)

Cooking

Cabinet (ON) –>Raisins (ON) –>Oatmeal (ON)
–>Measuring spoon (ON) –>Bowl (ON) –>Sugar (ON)

–>Cabinet (OFF) –>Water (ON) –>Water (OFF) –>Pot (ON)
–>Burner (ON) –>Burner (OFF)

Taking
medicine and

Eating

Cabinet (ON) –>Medicine (ON) –>Cabinet (OFF)
–>Water (ON) –>Water (OFF) –>Cabinet (ON)

–>Medicine (OFF) –>Cabinet (OFF)

Cleaning Water (ON) –>Water (OFF)

(Pattern 0)
ON occurs (Phone Book, On,t0)
IF (by default = true)
THEN do (On, Phone, t) when t is after t0

...

(Pattern 2)
ON occurs (Phone, On,t0)
IF (by default = true)
THEN do (Off, Phone, t) when t=t0+50s

...

(Pattern 9)
ON occurs (Cabinet, On,t0)
IF (by default = true)
THEN do (On, Medicine, t) when t=t0+3s

(Pattern 10)
ON occurs (Medicine, On,t0)
IF (by default = true)
THEN do (Off, Cabinet, t) when t=t0+2s

(Pattern 11)
ON occurs (Cabinet, Off,t0)
IF (by default = true)
THEN do (On, Water, t) when t=t0+16s

(Pattern 12)
ON occurs (Water, On,t0)
IF (by default = true)
THEN do (Off, Water, t) when t is after t0

16

(Pattern 13)
ON occurs (Water, Off,t0)
IF (by default = true)
THEN do (On, Cabinet, t) when t is after t0

(Pattern 14)
ON occurs (Cabinet, On,t0)
IF (by default = true)
THEN do (Off, Medicine, t) when t=t0+2s

(Pattern 15)
ON occurs (Medicine, Off,t0)
IF (by default = true)
THEN do (Off, Cabinet, t) when t=t0+3s

...

(Pattern 20)
ON occurs (Raising, On,t0)
IF (by default = true)
THEN do (On, Oatmeal, t) when t=t0+3s

...

Most of the patterns were logical relationships that we were expecting, such as

“after speaking on the phone he hangs up the phone” (See Pattern 2). Apart from

those trivial relationships some other interesting relationships were also discovered,

for example the set of patterns (See Pattern 9-15) that shows how Michael takes his

medicine or the pattern (See Pattern 20) that indicates in what order he took the

necessary ingredients for cooking.

Although the main objective of this experiment was to validate the first step of

APUBS and make sure that it discovers the relationships that are hidden in a dataset, it

brought up new knowledge about those relationships that we were not considered. This

new knowledge was mainly related to time relations. As expected, it discovered that

after speaking on the phone the occupant will hang up the phone, but the algorithm

also discovered the time relation between both actions, so that we know how long he

usually speaks by phone - in our case, for example, there was a group with the average

value of 50 seconds. In that sense, it was possible to define a reliable time relation in

11 out of 17 valid relationships.

There were no context sensors; hence it was not possible to discover conditions for

the patterns obtained. In this case, we have considered “true” as default value.

5.2 Validating PUBS with MavPad dataset

MavPad is a smart apartment created within the MavHome project (Youngblood et al,

2005) that consists of a living/dining room, a kitchen, a bathroom and a bedroom, all

fitted with sensors. The sensors installed in MavPad are:

– 26 sensors on objects such as lamps, lights or outlets.

– 53 context sensors such as light, temperature or humidity.

– 37 motion sensors distributed in all the rooms.

17

Table 2 Number of total and accurate patterns obtained in different trials.

Confidence Level

25% 50% 75% 100%

Trial 1

Total Patterns 16 5 1 0

Accurate Patterns 12 3 1 0

Ratio of Accuracy
(%)

75% 60% 100% —

Trial 2

Total Patterns 40 18 5 0

Accurate Patterns 33 14 3 0

Ratio of Accuracy
(%)

82.5% 78% 60% —

Trial 3

Total Patterns 20 10 6 0

Accurate Patterns 15 4 2 0

Ratio of Accuracy
(%)

75% 40% 33% —

The dataset used to validate PUBS was collected in three different time periods:

Trial 1 (spanning 15 days), Trial 2 (spanning almost 2 months) and Trial 3 (span-

ning 3 months). Unlike the WSU smart apartment, the patterns hidden in the MavPad

dataset were not known in advance, so that we decide to carry out different experiments

considering different minimum confidence levels (25%, 50%, 75% and 100%). Table II

summarizes the number of patterns discovered in each trial. As well as the number of

discovered patterns, it shows the number of accurate patterns (in this case informa-

tion was available about the context, so that it was possible to discover conditions of

occurrence).

It is also interesting to analyse the nature, in terms of frequency, of the patterns.

Because the data collected in each trial is totally independent of the data collected in

other trials, the number of patterns discovered in each trial is totally independent. In

Trial 1, 5 out of 16 (31% ratio) discovered with Confidence Level 25% appear when

Confidence Level is 50%. Out of those 5 patterns, only 1 pattern (20% ratio) remained

as frequent with a Confidence Level of 75%. Table III summarizes the percentage of

total and accurate patterns that remain to be frequent with different Confidence Levels.

Following, some accurate patterns, discovered in different trials, are shown. Condi-

tions are related to either calendar information (see Pattern 1 or Pattern 3) or C-type

sensors (see Pattern 2), the later as defined in Section IV.

(Pattern 1 --> Trial 1, Confidence level: 25%)
ON occurs (Room Light, Off,t0)
IF context ((time (> , 1:06:44)) &

(time (<,2:46:32)))
THEN do (On, Luxo lamp, t) when t=t0+0s

18

Table 3 Frequency of different patterns.

% of patterns remain
from 25% to 50%
Confidence Level

% of patterns remain
from 50% to 75%
Confidence Level

Trial 1

Total Patterns 31% 20%

Accurate Patterns 25% 33%

Trial 2

Total Patterns 45% 27%

Accurate Patterns 42% 21%

Trial 3

Total Patterns 50% 60%

Accurate Patterns 27% 50%

(Pattern 2 --> Trial 2, Confidence level: 50%)
ON occurs (Room Light, On,t0)
IF context ((time (> , 19:19:49)) &

(Bedroom light level (>,52)) &
(Bedroom light level (<,143)))

THEN do (Off, Luxo lamp, t) when t=t0+30s

(Pattern 3 --> Trial 3, Confidence level: 75%)
ON occurs (Ceiling light, On,t0)
IF context ((time (> , 22:10:27)))
THEN do (Off, Ceiling light, t)

when t=t0+115s

5.3 Discussion of the results

Interesting conclusions can be extracted from these results. Analysing the results ob-

tained with MavPad dataset, first illustrates what we all intuitively expect: it is almost

impossible in any realistic daily life scenario to define patterns associated with a specific

object based on only one relation (in fact, there is no pattern with a 100% confidence

level). We simply do not do activities with such a monotonous regularity hence defining

in which specific circumstances (conditions) these patterns apply, is crucially impor-

tant. Moreover, the figures show that in most of the patterns (87 out of 121) it was

possible to define conditions of occurrence in order to obtain patterns with relatively

high levels of confidence. The system can be run with different levels of confidence to

find a useful pattern with a reasonable level of confidence.

Other conclusion that can be extracted in relation to the confidence level of pat-

terns, is that in most trials less than the half of the patterns discovered with Confidence

Level of 25% are considered frequent with a Confidence Level of 50% and that percent-

age drecreases when the Confidence Level increases up to 75%. Trial 3 is the exception

of such a trend because 60% and 50% of total and accurate patterns discovered with

Confidence Level of 50% remain as frequent with Confidence Level of 75%.

19

The results obtained in the validation process show the possibility of discover-

ing comprehensible patterns that represent user’s frequent behaviours. Thus, unlike

approaches (Begg and Hassan, 2006) that use black box nature techniques (e.g., Arti-

ficial Neural Networks), patterns discovered by our algorithm allow us to understand

such behaviours as well as to allow the automation of the house.

The patterns obtained when applying the algorithm to the WSU Smart Apartment

dataset show users’ behaviours are better described relating users’ actions among them

instead of relating users’ actions to global situations (Hagras et al, 2004) (Doctor et al,

2005). In Michael’s case, it is able to detect that the action of turning on the fan of

the bathroom is typically associated with the end of the action of taking a shower.

As pointed out in Section III, approaches relating users’ actions have already been

developed (Jakkula and Cook, 2007). In addition, they relate those actions in terms

of time using Allen’s temporal logic relations (qualitative relationships). Unlike this

approach, PUBS first tries to discover quantitative relationships in order to better

define such relationships. Thus, in Michael’s case the system knows that he usually

turns on the fan 10 seconds after he finishes the action of taking a shower. For example,

in the WSU dataset it was possible to define reliable time relations in 11 out of 17

patterns.

Classification techniques had already been used to discover conditions (Gal et al,

2001) for situations in which there were different reactions. Trials carried out using the

MavPad dataset allowed us to define conditions in 87 out of 121 patterns, showing this

approach is suitable to define accurate relationships.

The patterns obtained in both cases prove that it is possible to include all these

steps in an algorithm (PUBS) in order to discover complete and comprehensible pat-

terns that describe users’ frequent behaviours.

6 Conclusions and Future Work

Intelligent Environments need to know the common behaviors and preferences of their

users in order to meaningfully assist them. We have developed a system called PUBS

which aims precisely at supporting an Intelligent Environment in the important task of

understanding what the frequent behaviors of the occupant are in a given environment.

This supports decision-making that can help the user, and it is also flexible enough to

track the different behaviors we humans exhibit at different times.

PUBS was developed taking into account all of the specific characteristics of Intel-

ligent Environments. Thus, both the acquisition process and the feedback process are

carried out as unobtrusively as possible. In that sense, PUBS integrates an interaction

system (IPUBS) based on speech which facilitates interaction with the user.

The experiments carried out to validate PUBS have shown the capacity of PUBS to

discover relationships, time relations and the conditions of such relationships. These ex-

periments (especially the one carried out using the WSU dataset) allowed us to realize

that common behaviors of the user would be better represented by means of sequences

of actions instead of one-to-one relationships. Such representation facilitates under-

standing behaviors, and they may be used for other purposes, such as the automation

of actions. Thus, our current work is focused on discovering complete, frequent se-

quences of actions and the associated temporal and environmental conditions attached

to each part of each sequence. Besides, once frequent behaviours are known, they can

20

be used to identify deviations which can help us to detect diseases such as depression

or Alzheimer’s in their early stages.

Acknowledgements Craig Wootton and Michael McTear provided initial guidance on avail-
able technologies for voice processing. This work was partially supported by Basque Govern-
ment grant PC2008-28B.

References

Aarts E (2004) Ambient intelligence: A multimedia perspective. IEEE Multimedia pp

12–19

Aghajan H, Delgado RLC, JCAugusto (2009) Human-Centric Interfaces for Ambient

Intelligence. Academis Press - Elsevier

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Pro. 11th International

Conference on Data Engineering, pp 3–14

Allen J (1984) Towards a general theory of action and time. In: Artificial Intelligence,

vol 23, pp 123–154

Augusto JC (2007) Ambient Intelligence: the Confluence of Ubiquitous/Pervasive Com-

puting and Artificial Intelligence, Springer London, pp 213–234. Intelligent Comput-

ing Everywhere

Augusto JC (2009) Past, present and future of ambient intelligence and smart en-

vironments. In: 1st International Conference on Agents and Artificial Intelligence

(ICAART)

Augusto JC, McCullagh P (2007) Ambient intelligence: Concepts and applications. In:

Computer Science and Information Systems, ComSIS Consortium, vol 4, pp 1–28

Augusto JC, Nugent CD (2004) The use of temporal reasoning and management of

complex events in smart homes. In: Proccedings of European Conference on AI

(ECAI 2004), IO Press, pp 778–782

Aztiria A, Izaguirre A, Augusto J (2010) Learning patterns in ambient intelligence

environments: A survey. Artificial Intelligence Review 34:1–31

Begg R, Hassan R (2006) Artificial neural networks in smart homes, Springer-Verlag, pp

146–164. Designing Smart Homes. The Role of Artificial Intelligence, ed. Augusto,J.

C. and Nugent,C. D.

Callaghan V, Kameas A, Reyes D (eds) (2009) Proceedings of the 5th International

Conference on Intelligent Environments. IOSPress

Campo E, Bonhomme S, Chan M, Esteve D (2006) Learning life habits and practices:

an issue to the smart home. In: International Conference on Smart Homes and health

Telematic, pp 355–358

Chan M, Hariton C, Ringeard P, Campo E (1995) Smart house automation system

for the elderly and the disabled. In: Proceedings of the 1995 IEEE International

Conference on Systems, Man and Cybernetics, pp 1586–1589

Coen MH (1998) Design principles for intelligent environments. In: Proceedings of the

1998 15th National Conference on Artificial Intelligence, AAAI, AAAI Press, pp

547–554

Cook D, Schmitter-Edgecombe M (2008) Activity profiling using pervasive sensing in

smart homes. IEEE Transactions on Information Technology for Biomedicine

Cook D, Augusto J, Jakkula V (2009) Ambient intelligence: Technologies, applications,

and opportunities. Pervasive and Mobile Computing 5(4):277–298

21

Cook DJ, Das SK (2005) Smart Environments: Technology, Protocols and Applications.

Wiley-Interscience

Cook DJ, Das SK (2007) How smart are our environments? an updated look at the

state of the art. In: Pervasive and Mobile Computing, Elsevier Science, vol 3, pp

53–73

Doctor F, Hagras H, Callaghan V (2005) A fuzzy embedded agent-based approach

for realizing ambient intelligence in intelligent inhabited environments. In: IEEE

Transactions on systems, man and cybernetics, vol 35, pp 55–65

Dooley J, Callaghan V, Hagras H, Bull P, Rohlfing D (2006) Ambient intelligence -

knowledge representation, processing and distribution in intelligent inhabited envi-

ronments. In: 2nd IET International Conference on Intelligent Environments, IE 06,

pp 51–59

Ducatel K, Bogdanowicz M, Scapolo F, Leijten J, Burgelman JC (2001) Scenarios

for ambient intelligence in 2010. Tech. rep., URL http://cordis.europa.eu/ist/istag-

reports.htm

Duman H, Hagras H, Callaghan V (2008) Intelligent association exploration and ex-

ploitation of fuzzy agents in ambient intelligent environments. Journal of Uncertain

Systems 2(2):133–143

Friedemann M, Mahmoud N (2002) Pervasive Computing, First International Confer-

ence. Springer-Verlag

Gal CL, Martin J, Lux A, Crowley JL (2001) Smartoffice: Design of an intelligent

environment. IEEE Intelligent Systems 16(4):60–66

Galushka M, Patterson D, Rooney N (2006) Temporal data mining for smart homes,

Springer-Verlag, pp 85–108. Designing Smart Homes. The Role of Artificial Intelli-

gence, ed. Augusto,J. C. and Nugent,C. D.

Hagras H, Callaghan V, Colley M, Clarke G, Pounds-Cornish A, Duman H (2004) Cre-

ating an ambient-intelligence environment using embedded agents. IEEE Intelligent

Systems 19(6):12–20

Heierman EO, Cook DJ (2002) Improving home automation by discovering regularly

occurring device usage patterns. In: Third IEEE International Conference on Data

Mining, pp 537–540

Jakkula VR, Cook DJ (2007) Using temporal relations in smart environment data for

activity prediction. In: Proceedings of the 24th International Conference on Machine

Learning

Jakkula VR, Crandall AS, Cook DJ (2007) Knowledge discovery in entity based smart

environment resident data using temporal relation based data mining. In: 7th IEEE

International Conference on DataMining, pp 625–630

Kim E, Helal S, , Cook D (2010) Human activity recognition and pattern discovery.

IEEE Pervasive Computing 9:48–53

Mozer MC, Dodier RH, Anderson M, Vidmar L, Cruickshank RF, Miller D (1995)

The neural network house: an overview, Erlbaum, pp 371–380. Current trends in

connectionism

Muller ME (2004) Can user models be learned at all? inherent problems in machine

learning for user modelling. In: Knowledge Engineering Review, Cambridge Univer-

sity Press, vol 19, pp 61–88

Nakashima H, Aghajan H, JCAugusto (2009) Handbook on Ambient Intelligence and

Smart Environments. Springer Verlag

Partala T, Surakka V, Vanhala T (2006) Real-time estimation of emotional experiences

from facial expressions. Interacting with Computers 18(2):208–226

22

Rao SP, Cook DJ (2004) Predicting inhabitant action using action and task models with

application to smart homes. International Journal on Artificial Intelligence Tools

(Architectures, Languages, Algorithms) 13(1):81–99

Rutishauser U, Joller J, Douglas R (2005) Control and learning of ambience by an

intelligent building. In: IEEE on Systems, man and cybernetics: a special issue on

ambient intelligence, IEEE Systems, Man, and Cybernetics Society, pp 121–132

Sadeh NM, Gandom FL, Kwon OB (2005) Ambient intelligence: The mycampus expe-

rience. Tech. Rep. CMU-ISRI-05-123, ISRI

Turunen M, Hakulinen J, Kainulainen A, Melto A, Hurtig T (2007) Design of a rich

multimodal interface for mobile spoken route guidance. In: Proceedings of Inter-

speech 2007 - Eurospeech

Weiser M (1991) The computer for the 21st century. Scientific American 265(3):94–104

Witten IH, Frank E (2005) Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd ed. Elsevier

Youngblood GM, Cook DJ, Holder LB (2005) Managing adaptive versatile environ-

ments. In: IEEE International Conference on Pervasive Computing and Communi-

cations

A Language Specification

Pattern::= ON (Event_Definition)
IF (Condition_Definition)
THEN (Action_Definition)

Event_Definition::= Primitive_Event | Composite_Event
Primitive_Event::= User_Presence|User_Action

User_Presence::= user_is_at(Location)
Location::= home|bedroom|living room|...

User_Action::= occurs(Device, Device_Action, time)
Device::= device_1|device_2|...|device_n
Device_Action::= on|off

Composite_Event::= Primitive_Event &...& Primitive_Event

Condition Definition::= Primitive_Condition|Composite_Condition
Primitive_Condition::= Context_Condition

Context_Condition::= context(Attribute,Quantitative_Condition|
Qualitative_Condition)

Attribute::= Calendar|Sensor
Calendar::= time of day|day of week|...
Sensor::= sensor_1|sensor_2|...| sensor_n

Quantitative_Condition::= (Symbol,Quantitative_Value)
Symbol::= =|<|>|=>|=<
Quantitative_Value::= real_number

Qualitative_Condition::= qualitative_value
Composite_Condition::= Primitive_Condition &...& Primitive_Condition

Action Definition::= Primitive_Action|Composite_Action
Primitive Action::= do(Device_Action, Device,time) when Relation

Device_Action::= on|off
Device::= device_1|device_2|...|device_n
Relation::= Qualitative_Relation|Quantitative_Relation

Quantitative_Relation::= (Symbol,Quantitative_Value)
Symbol::= =|<|>|=>|=<
Quantitative_Value::= real_number

23

Qualitative_Relation::= Qualitative_Value
Qualitative_Value::= after|while|...|equal

Composite_Action::= Primitive_Action &...& Primitive_Action

