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Temporal Defeasible Reasoning
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Abstract. An argumentation system that allows temporal reasoning using the notions of
instant and interval is presented. Previous proposals just considered either instants or
intervals. A many-sorted logic is used to represent temporal knowledge at the monotonic
level. The logic considers how to formalize knowledge about explicit temporal references,
events, properties and actions. The argumentation system provides a non-monotonic layer
in which to reason about the justification of truths in the system. The proposal is illustrated
showing how to solve well-known problems of the literature.
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1. Introduction

Argumentation systems (Chesñevar et al., 1998) are a way to formalize and imple-
ment defeasible reasoning, characterizing the skill that allows us to reason about
a changing world where available information is incomplete or not very reliable.
When new information is available, new reasons to obtain further conclusions
or better reasons to sustain previous conclusions can be considered. But it could
happen that some conclusions lose support. Through this inference dynamic, ar-
gumentation systems provide the ability to change conclusions according to the
new information that comes to the system.

The conclusions obtained by the system are ‘justified’ through ‘arguments’
supporting their consideration. In addition, an argument could be seen as a
‘defeasible proof’ for a conclusion. The knowledge of new facts can lead one to
prefer a conclusion to a previous one, or to consider a previous inference no longer
correct. In particular, there could exist an argument for a conclusion C and a
‘counter-argument’, contradicting in some way the argument for C. An argument
is a justification for a conclusion C if it is better than any other counter-argument
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for C. To establish the preference of an argument over the others, the definition of
preference criteria is required. Although several preference methods are possible,
one that is widely used is ‘specificity’: more specific information, i.e., better
informed arguments, are preferred. It is important to highlight that argumentation
systems emphasize the role of inference justification and the dialectical process
related to reasoning activities. Argumentation systems proved to be very useful in
a variety of areas (Carbogim et al., 2000), such as legal systems and negotiation
in multi-agent frameworks, to name a few.

In our work the underlying argumentation system will be strongly related
to that offered in Simari and Loui (1992). In Augusto and Simari (1994) and
Augusto and Simari (1999) a temporal argumentation system, �(T), was defined
using an ontology based on instants. Independently, in Ferguson and Allen (1994)
and Ferguson (1995) an interval-based temporal argumentation system to reason
in a multi-agent scenario was proposed.

The main goal of this article could be summarized as to offer a temporal
argumentation system that improves previous proposals. We give an alternative
temporal logic (Section 2) allowing interval as well as instant-based temporal
references, which improves in several aspects the widely used Logic of Intervals
(Allen and Ferguson, 1994). For example, there is no clear indication in Allen’s
proposal about syntax, semantics and rules of inference. One aim of this article
is to offer an alternative monotonic logic for temporal reasoning providing such
improvements. To fulfill this goal we make explicit syntax, semantics and inference
rules of a many-sorted temporal logic based on previous work (Davidson, 1980;
Allen, 1984; Gallier, 1987; Galton, 1990). After the presentation of the temporal
logic we show how the notion of interval could be added to the instant-based
system �(T) (Section 3). The persistency notion to be used (Section 4) borrows
from previous proposals as those of (Haas, 1987) and (Schubert, 1994) but it is
adapted to the argumentation framework we present. Examples are given (Section
5) to illustrate the behavior of the system to show how �(�) naturally embeds
previous proposals made in Augusto and Simari (1994), Ferguson and Allen
(1994), Ferguson (1995), Augusto and Simari (1999) and Augusto (2000). More
details about our proposal can be found in Augusto (1998).

2. The Temporal Logic

In this section we will describe some basic features of the temporal language L�

that is used by the argumentation system �(�). Restrictions of space force us to
put aside some details. The reader will find in Augusto (1998, 2000) a more detailed
explanation of the temporal monotonic layer of the proposal as well as proofs that
L� subsumes the expressiveness of some well-known proposals of the literature
(Allen, 1984; Bochman, 1990a; Bochman, 1990b; Benthem, 1991; Vila, 1994).

�(�) allows the interaction between both classic and defeasible temporal
knowledge. Classic temporal knowledge will be specified through a many-sorted
temporal logic. Its temporal language, L�, permits reification over time, prop-
erties, events and actions. These have been considered in the literature of the
area as key concepts in modeling a rational agent living in a dynamic world.
Reification over more sorts of individuals is also allowed if the application de-
mands it. The reason for choosing reification is that it bring us some advantages
for knowledge representation and use. As Allen has pointed out (Allen, 1991),
we need reification to efficiently represent information when we deal with an
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incomplete knowledge base. Also it is useful to efficiently handle the problem of
distinguishing two individuals, e.g., if we need to know if two events are different
or not. More motivations to use a many-sorted framework are (a) to have a
clean way to specify each class of individuals under consideration, (b) to gain
some computational efficiency restricting the set of individuals to look for during
instantiations, and (c) that there are extensive studies of a many-sorted logic with
functions and equality, giving syntax, semantics, proof theory and metatheoretical
properties (Gallier, 1987).

We will take this previous work as a departing point. We shall concentrate
on the extension of such a general framework to make it suitable for reasoning
with temporal concepts connecting previous work in the literature to get a more
precisely defined proposal. We define the well-formed formulas of the language
L� using a BNF as follows.

Definition 1. Let si, sj , sm, sn be sort names, the set of well-formed formulas, wff, of

L� is defined as follows:

termsm ::= variablesm | constantsm | function namesm (term list)
term list ::= termsi | termsj , term list
atomic formula ::= predicate name(term list)
wff ::= atomic formula |(termsn

.
=sn termsn ) |(¬ wff) |

(wff → wff) | (wff ∧ wff) | (wff ∨ wff) |
((∃sn variablesn ) wff) | ((∀sn variablesn ) wff)

Notation: Symbols of each sort, as
.
=s and ∀s, are used only with symbols of the

same sort. When it is clear from the context, we will omit the subscript to specify
the intended sort. Also we take the convention of numbering just the axioms of
the theory. Nested negations are ruled out, i.e. all formulas of the form ¬¬F will
be considered as equivalent to F . We will use ∀si I1, I2... or ∃si I1, I2... instead of
∀si I1∀si I2... and ∃si I1∃si I2.... We will also use I1·>I2, I1<·I2<·I3, I1 � I2 � I3 instead
of I2<·I1, I1<·I2∧I2<·I3, I1 � I2∧I2 � I3 respectively. We will proceed analogously
when using ‘<’ and symbols of other sorts.

We now give the reader an informal introduction to the language in order to
provide a quick idea about what it looks like. All these notions will be explained
in detail in the following sections. Some examples of temporal constants are: a
date like 7-8-1991, symbols like Y1685 representing the year 1685 and numbers
like 3600 that can be used to denote the number of seconds in an hour. Some
examples of functions are leap year(A) mapping a year into the constants True
or False depending on A being a leap year or not and seconds year(A) giving
the number of seconds in a given year. Some examples of well-formed formulas
of L� are:

Occurs during(born(jsbach), Y1685)
Do during(write(jsbach, magnificat, mi bemol), Y1723)
∃T i1, i2Precedes(i1, i2)
∃Aa∃Ee∃Pp∃T i(Doat(a, i) ∧Occursat(e, i+ 1)→ Holdsat(p, i+ 2))
∀T i1, i2(¬Precedes(i1, i2) ∧ ¬Precedes(i2, i1)→ Simultaneous(i1, i2))
∃II (Occurs during(born(jsbach), I) ∧Occurs during(born(gfhaendel), I)

∧Holds(good baroque year, I))
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We will emphasize the use of formulas with temporal arguments but the language
also allows us to use atemporal predicates like Author(magnificat, jsbach) and
Choral piece(magnificat). In the following sections we give a short description
of some sorts considered in the underlying temporal theory. The sorts to be
described are: Ex for explicit time handling (Section 2.1), Ev for event-based time
references (Section 2.2), P for properties (Section 2.3), andA for actions (Section
2.4). The sort W has all remaining objects of the world under formalization.
Some of them can be axiomatized in a separate sort depending on the domain to
be modeled and the range of problems to be solved.

2.1. The Temporal Domain

One of the well-known logics for temporal reasoning is the one presented in
Allen (1984) where an interval-based ontology is adopted. The proposal banishes
instants because in Allen’s opinion they are of dubious existence and less practical
than intervals (Allen and Hayes, 1989). Later, reasons were found to consider
instants from the very beginning of the theory, e.g., in dealing with continuous
change (Galton, 1990) and in dealing with the problem of truth change (Vila,
1994). See also Bochman (1990a) and Benthem (1991) for other proposals allowing
both instants and intervals. The notion of instant also has practical advantages
and sometimes representing interval-based knowledge using instants is so hard as
it is in other cases to do it the other way around. Besides theoretical reasons there
are practical considerations for adopting both instants and intervals as the basic
temporal framework. In this work, instants will be identified with the smallest
temporal references allowed in the system which in other works is called chronos
or the granularity of the temporal system. Although sometimes ‘instants’ can be
considered as having duration, we are assuming here that they have different
properties from intervals and are treated in a different way. This is the reason
why we do not accept moments as in Allen and Hayes (1989). Here we consider
a theory where both are considered in the ontology but we explain how to start
from the notion of instant defining intervals from them because it shows how to
define the system in a modular way. This offers the possibility of starting from
a simpler, instant-based framework as was done in Augusto and Simari (1994)
and in a later stage to enlarge the system by adding the notion of interval as
proposed here.

We will provide here an axiomatization of the sort for explicit temporal
references, Ex. Two kinds of elements, which in turn define subsorts, are considered
in Ex. We start its definition considering one of these subsorts, which are defined
by ‘instants’. Later we shall consider the other subsort, defined by ‘intervals’. By
an instant we mean the shortest temporal measure with respect to the granularity
assumed on the system being modeled. An instant must not be considered here as
durationless; instead it is the name of the unit of measure assumed in the system
(which in some articles is called chronos). This is a point-based conception of
time over which we shall later construct an interval-based structure. The subsort
T is formalized in the structure INS : 〈T, <〉 where T is a set of points of
time termed ‘instants’ and <: T ×T is an order relation. We usually denote
members of T by i and its subscripts. The following axioms are valid in T
and characterize an irreflexive (11), transitive (2) (hence asymmetric), non-ending
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(3 and (4)) and discrete (5 and (6)) line (7) of time:

∀i1 ¬(i1 < i1) (1)

∀i1, i2, i3(i1 < i2 ∧ i2 < i3 → i1 < i3) (2)

∀i1 ∃i2(i2 < i1) (3)

∀i1 ∃i2(i1 < i2) (4)

∀i1, i2(i1 < i2 → ¬∃i3(i1 < i3 ∧ i3 < i2)) (5)

∀i1, i2(i2 < i1 → ¬∃i3(i2 < i3 ∧ i3 < i1)) (6)

∀i1, i2(i1 < i2 ∨ i2 < i1 ∨ i1
.
= i2) (7)

This excuses us from considering some characteristic problems of other structures
but absent in discrete frameworks such as the intermingling problem (Galton,
1996) and the specification of the moment of change in a property (Vila, 1994).
It is also important to notice we are not assuming the structure as isomorphic to
�, keeping a first-order axiomatization of the temporal structure. We now define
a notion of interval over INS as a subsort inside Ex, which will be represented
by means of I.

The usual method to build intervals in similar frameworks is to consider them
as a set of instants. Here we do not choose this method because of problems that
arise in considering the occurrence of events associated to intervals in relation
to its non-homogeneity property. That is to say, usually it is considered that
if an event occurs in an interval conceived as a set of instants it also occurs
in the set of instants that defines it. This conflicts with the non-homogeneity
hypothesis over events. Since we are assuming events as non-homogeneous it is
more adequate to associate an interval with a pair of instants considering it a
unit. Notwithstanding, the points delimiting the interval allow us to do a kind
of instant-based and constraint-based reasoning that has proved very useful in
temporal reasoning (Meiri, 1992).

Definition 2. We will call an interval each member of

I = {[i1, i2] ∈ T×T|i1 < i2}

We shall also consider the function int :T×T→ I where

int(i1, i2) =def [i1, i2] if i1 < i2

Notation: We shall change the usual parentheses associated with ordered pairs
to brackets to align them to the usual appearance in the temporal reasoning
literature. We shall also usually denote intervals by I and its subscripts.

As can be noticed, we are discarding ‘punctual intervals’, i.e., intervals of the
form [i, i]. This is because, being simultaneously an instant and an interval, both
their meaning and their set of properties would be ambiguous.

Definition 3. We will consider the total functions begin, end : I → T that give
us for each interval their beginning and ending points respectively:

begin([i1, i2]) =def i1 and end([i1, i2]) =def i2

Now we could consider a structure INT : 〈I, <·,�〉 where I is a set of intervals
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Table 1. Interval–interval relations.

Relation Conditions Relation Conditions

BEFORE(X,Y) MEETS(X,Y)

OVERLAP(X,Y) DURING(X,Y)

STARTS(X,Y) FINISHES(X,Y)

EQUAL(X,Y)

Table 2. Point–interval relations.

Relation Conditions Relation Conditions

Precedes(i,I)
◦

Follows(i,I)
◦

Start(i,I)
◦

Ends(i,I)
◦

Divides(i,I)
◦

and �, <· ⊆ I × I are the relations ‘previous to’ and ‘subinterval’, defined as
follows:

I<·I ′ =def {I, I ′|I = [i1, i2], I ′ = [i′1, i′2] and i2 < i′1}

I � I ′ =def {I, I ′|I = [i1, i2], I ′ = [i′1, i′2], i′1 � i1 and i2 � i′2}

Also we will use the following definition:

I1 ·=· I2 =def begin(I1)
.
= begin(I2) ∧ end(I1)

.
= end(I2)

Because of the temporal entities introduced, we can now define a set of well-
known relations in the literature as those between intervals defined by Hamblin
(1972) and later adopted by Allen (1984) and those between points and intervals
(Meiri, 1992). That is to say, interval relations (see Table 1) BEFORE, MEETS,
OVERLAPS, BEGINS, DURING, FINISHES, EQUALS, their inverses and the
following relations between points and intervals (see Table 2): precedes, start,
divides, ends, follows, can be defined in T.

As Allen and Hayes (1985) have shown, all these interval relations can be
defined from MEETS. However, we will define them all to show how direct it is
in our framework and to allow future citations of each relation:
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MEETS (I1, I2) =def end(I1)
.
= begin(I2)

BEFORE(I1, I2) =def end(I1) < begin(I2)

OVERLAPS(I1, I2) =def begin(I1) < begin(I2) < end(I1) < end(I2)

BEGINS(I1, I2) =def begin(I1)
.
= begin(I2) ∧ end(I1) < end(I2)

DURING(I1, I2) =def begin(I2) < begin(I1) ∧ end(I1) < end(I2)

FINISHES(I1, I2) =def begin(I2) < begin(I1) ∧ end(I1)
.
= end(I2)

EQUALS(I1, I2) =def I1 ·=· I2
Precedes(i, I) =def i < begin(I)

Start(i, I) =def i
.
= begin(I)

Divides(i, I) =def begin(I) < i < end(I)

Ends(i, I) =def i
.
= end(I)

Follows(i, I) =def end(I) < i

Our <·, and ·=· are Allen’s BEFORE and EQUAL, while our � is split into
BEGINS, FINISHES, DURING and EQUALS. We could also obtain similar
theorems to Axiom 7 stating that each pair of intervals is in one of the 13
mutually exclusive relations proposed by Allen. Analogously, each point–interval
pair is in exactly one of the mutually exclusive relations between points and
intervals. We skip the proofs for the sake of brevity.

We can identify some general properties (Benthem, 1991) about the structure
T. It satisfies Symmetry, i.e., seeing to the future and the past is not different,
Connection, i.e., all pairs of points are related, and Homogeneity, i.e., all points are
of the same quality. One needs to look at the structure as a whole to justify these
properties. For example, symmetry can be verified through axioms for the struc-
ture INS that provides equal characterization in both directions of the temporal
line. All instants are obviously connected through the comparison relation, <.
The structure is also homogeneous because there is no such distinguished points
like ‘a first moment’, ‘a last moment’ or the concept of ‘now’. Consequently, it
can also be seen that Connection, Symmetry and Homogeneity are valid for the
structure I.

It is important to highlight that we left open the possibility of taking advantage
of previous research where algorithms were proposed to solve constraint problems
(Meiri, 1992) involving instants and intervals in every possible combination. These
algorithms will give us more efficiency in the temporal constraint solver than when
we are forced to do constraint reasoning in a purely interval-based framework
(Vilain et al., 1989).

2.2. Events

Our proposal also considers a way to reason about change without explicit time.
For this purpose we use a framework similar to that adopted for the sort Ex, this
time splitting Ev into two subsorts N and D for non-durative (punctual) and
durative events respectively.

An event structure PUN : (N, <E ) is considered whereN is a set of punctual
events and <E ⊆ N×N is a binary order relation. We assume the same temporal
structure from the event-based perspective. The goal is to enhance interaction
and cooperation between sorts Ev and Ex, which are used as complementary and
cooperative temporal perspectives. This interaction is achieved through axioms
to be given at the end of this section. The following axioms hold in the structure
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PUN, defining a linear, non-ending and discrete structure of instantaneous events:

∀e¬(e <E e) (8)

∀e, e′, e′′(e <E e′ ∧ e′ <E e′′ → e <E e
′′) (9)

∀e∃e′(e′ <E e) (10)

∀e∃e′(e <E e′) (11)

We consider a relation of punctual simultaneity represented by Sp ⊆N×N where

e1Spe2 =def ¬(e1 <E e2 ∨ e2 <E e1)

As linearity does not follow from the previous axioms then we state the following:

∀e, e′, e′′(eSpe′ ∧ e′Spe′′ → eSpe
′′) (12)

It can be proved (Augusto, 1998) that Sp defines an equivalence relation overN.
Analogously to the sort T we will assume:

∀e1, e2(e1 <E e2 → ¬∃e3(e1 <E e3 ∧ e3 <E e2)) (13)

∀e1, e2(e2 <E e1 → ¬∃e3(e2 <E e3 ∧ e3 <E e1)) (14)

∀e1, e2(e1 <E e2 ∨ e2 <E e1 ∨ e1Spe2) (15)

The event structure DUR : (D, BE , EE ) comprises a set D of durative events
over which two functions are defined, BE , EE : D →N, by means of which we
could obtain punctual events associated with the beginning and end of a durative
event. Other useful relations such as durative simultaneity, overlapping events and
abutting are easily obtained.

Using the recently defined notion of event we could define the temporal
notions associated with explicit time references.

Definition 4. Let PUN : (N, <E ) be a structure of punctual events. As the
simultaneity relation defines an equivalence relation over N, we can identify an
‘instant’ with each simultaneity class so defined overN. Also we will consider a
function e instant : N → T that returns a name of an instant associated with
the simultaneity class to which a given punctual event belongs.

Durative events can be defined as those represented by a chain of events. The
sort Ev is defined as a sort of mirror image of Ex as much as possible. Naturally
they offer different means to represent knowledge but both are intended to reflect
the same conception of time. This allows to define functions to transfer temporal
knowledge between the sorts when possible (Augusto, 1998; Augusto, 2000); for
example, a set of functions giving the explicit beginning or ending time associated
with a durative event. This could be used with a set of connecting axioms allowing
to transfer knowledge from one sort to another and together they provide new
means to reason about change. This gives us a way to draw conclusions and
reasoning strategies that could not be obtained if we consider each sort as an
isolated source of information.

We now make explicit the aforementioned axioms connecting the sorts Ev and
Ex. Let Occursat(e, i) and Occurson(e, I) denote the occurrence of an event e in the
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moment i or interval I respectively. They are related in the following sense:

Occurson(e, I) =def ∀T i (In(i, I)→ ¬Occursat(e, i))

where In(i, I) =def Start(i, I) ∨ Divides(i, I) ∨ Ends(i, I). This axiom reflects event
non-homogeneity, i.e. the occurrence of an event in an interval implies it does
not occur inside the interval. For example, if the event of a pencil being passed
from one hand to another occurs in an interval [a, b], it cannot be said to occur
in [c, d] such that a < b � c � d or a � b � c < d. The event takes the whole
interval.

The following axioms provide a means to transfer knowledge between the two
ways of representing temporal order:

∀N e1, e2 ∀T i1, i2 (Occursat(e1, i1)

∧Occursat(e2, i2) ∧ e1 <E e2 → i1 < i2) (16)

∀N e1, e2 ∀T i1, i2 (Occursat(e1, i1)

∧Occursat(e2, i2) ∧ i1 < i2 → e1 <E e2) (17)

Theorems with similar appearance and purpose can be extracted from previous
axioms using a notion of temporal order suitable for durative events (Augusto,
1998, 2000). Finally, we consider ‘weak negation’ over durative events in the
following sense:

¬Occurson(e, I) =def ∃T i (In(i, I) ∧ ¬Occursat(e, i))

2.3. Properties

For the representation of properties we will consider predicates like those in-
troduced by Galton (1990) who states: Holdsat(p, i), Holdsat ⊆ P × T, and
Holdson(p, I), Holdson ⊆ P ×I, denoting that p is a property that is true in the
moment i or interval I respectively. For example, we will use something like A(x)
to assert that x possesses the property A. Holdson and Holdsat are related in the
following way:

Holdson(p, I) =def ∀T i (In(i, I)→ Holdsat(p, i))

From the previous definition we get the following theorems about homogeneity
of properties over an interval. This means that if a property holds in an interval
then it also holds in any of its subintervals. For example, if a door was green
during a week it was also green each day of that week.

∀T i ∀I I (Holdson(p, I) ∧ In(i, I)→ Holdsat(p, i)

∀I I, I′ (Holdson(p, I) ∧ I′ � I)→ Holdson(p, I
′))

We consider ‘weak negation’ of properties over intervals that can be obtained
directly from the negation of the previous definition:

¬Holdson(p, I) =def ∃T i (In(i, I) ∧ ¬Holdsat(p, i))

In what follows we will use a relation Changes(e, p) : Ev×P denoting that e is an
event which, every time it occurs, causes a change of the property p. The following
axiom states that whenever a property changes its truth value it is because an
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event occurred:

∀Pp ∀Ti((Holdsat(p, i) ∧ ¬Holdsat(p, i+ 1)) ∨
(¬Holdsat(p, i) ∧Holdsat(p, i+ 1))→

∃Ev e (Changes(e, p) ∧
[∃Ti′(Occursat(e, i

′) ∧ i′ < i+ 1)

∨∃II(Occurson(e, I) ∧ begin(I) < i+ 1)]) (18)

2.4. Actions

In some contexts it is difficult to differentiate one action from the event that
it causes, e.g., John’s flipping a switch. The reader could consider whether it
was really necessary to have another sort for action since its consideration leads
sometimes to possibly artificial differentiations between them. In this article we
will follow the hypothesis that this feature is convenient to the option of not
being allowed to distinguish them when it is needed. We will consider that every
action is performed by an agent:

∀A a ∃W g Agent(a, g) (19)

Agents are assumed to be individuals in sortW. This is left unspecified, allowing
different personalities to be encoded. As with previous sorts we consider predicates
Doat, denoting instantaneous actions like snapping the fingers or blinking the eyes,
and Doon for durative actions, as raising the arm. More axioms including actions
but in relation to events and causality are considered in the next section.

2.5. Causality

This section is devoted to a short introduction to some of the assumptions in the
monotonic layer concerning the relation between causality and temporality. We
focus in some basic axioms imposing general constraints on predicates related
to causality. They must be supplemented with other axioms bringing knowledge
about particularities of causality between specific events and actions. The reader
could find a more detailed explanation in Augusto (1998).

We will consider first action causality and as a first hypothesis we will suppose
that an event cannot be previous to the action that produces it. We consider then
two situations. One option is that the beginning points could be simultaneous, like
perceiving the color of an object when we look at it or producing sounds while
drawing a stick over the strings of an instrument. Also they could be overlapping
as when somebody pushes an object during a period until it collides with another
object. Another example is a law that is promulgated on a certain date but whose
effects could begin later.

We will also assume that an event produced by an action can finish before
the end of the action that produces it. One scenario in which this could happen
is when an action produces an instantaneous event. For example, my action of
spreading water of a glass causes the event of starting to spread the water or the
event of the first contact of water with the floor. The effect of an action can also
cease before it is expected, e.g., when somebody passes a bow across the strings
of an instrument and after some time the sound ceases because a string breaks.
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Let us suppose we use the predicate Acause as a relation Acause ⊆ A× Ev
denoting that an action causes an event occurrence. We could summarize the
previous ideas through the following axioms stating that each event caused by an
agent occurs through the performance of previous or contemporary actions:

∀N e ∀T ie ∃A a (Occursat(e, ie) ∧ Acause(a, e)→
[∃T ia (Doat(a, ia) ∧ ia � ie) ∨
∃I Ia (Doon(a, Ia) ∧ begin(Ia) � ie)]) (20)

∀D e ∀I Ie ∃A a (Occurson(e, Ie) ∧ Acause(a, e)→
[∃T ia (Doat(a, ia) ∧ ia � begin(Ie)) ∨
∃I Ia (Doon(a, Ia) ∧ (begin(Ia) � begin(Ie)))]) (21)

As with action causation we introduce a predicate, Ecause ⊆ Ev × Ev , denoting
that there exists a correlation between two event occurrences. Actually, this
is a simplification of the problem because it may be argued that this can be
considered as a relation Ecause ⊆ P × Ev × Ev . The reason that could be given
is that properties are needed to allow the causing event to occur. Similar, but
weaker, arguments could be given to include the properties that change as part
of the effect. We opted to simplify this point assuming that there are rules in the
knowledge base to link properties with events in an appropriate way to specify
the dependence of events with its associated properties. Similarly to Acause we
consider the following axioms on event causation stating that events can be the
cause of other previous or contemporary events:

∀N e ∀T i ∃Ev e
′ (Occursat(e, i) ∧ Ecause(e′, e)→

[∃T i′ (Occursat(e
′, i′) ∧ i′ � i) ∨

∃I I′ (Occurson(e
′, I′) ∧ begin(I′) � i)]) (22)

∀D e ∀I I ∃Ev e
′ (Occurson(e, I) ∧ Ecause(e′, e)→
[∃Ti′(Occursat(e

′, i′) ∧ i′ � begin(I)) ∨
∃II′ (Occurson(e′, I′) ∧ begin(I′) � begin(I))]) (23)

2.6. Inference Rules

We give in this section a set of inference rules borrowed from Gallier’s proposal
for a many-sorted logic (Gallier, 1987). This is a Gentzen system for many-sorted
logics with equality. In doing so we will use the following notion of sequent.

Definition 5. A sequent is a pair (Γ,∆) of finite (possibly empty) sequences
Γ = 〈A1, . . . , Am〉,∆ = 〈B1, . . . , Bm〉 of propositions. We will write them as Γ � ∆
for clarity.
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Let ∆,Γ,Θ denote arbitrary sequences of formulas and A,B denote formulas,
then the rules of the sequent calculus are the following:

Γ,A,B,∆�Θ
Γ,A∧B,∆�Θ(∧ − L)

Γ�∆,A,Θ Γ�∆,B,Θ
Γ�∆,A∧B,Θ (∧ − R)

Γ,A,∆�Θ Γ,B,∆�Θ
Γ,A∨B,∆�Θ (∨ − L) Γ�∆,A,B,Θ

Γ�∆,A∨B,Θ(∨ − R)

Γ,∆�A,Θ B,Γ,∆�Θ
Γ,A→B,∆�Θ (→ −L) A,Γ�B,∆,Θ

Γ�∆,A→B,Θ(→ −R)

Γ,∆�A,Θ
Γ,¬A,∆�Θ(¬− L)

A,Γ�∆,Θ
Γ�∆,¬A,Θ(¬− R)

In the quantifier rules below, x is any variable of sort s and y is any variable of
sort s free for x in A and not free in A, unless y = x. The term t is any term of
sort s free for x in A. Of course, in each substitution [t/x] of a variable x by a
term t, the sort of the term must be the same as the sort of the variable.

Γ,A[t/x],∀si xA,∆�Θ
Γ,∀si xA,∆�Θ

(∀ − L) Γ�∆,A[y/x],Θ
Γ�∆,∀si xA,Θ

(∀ − R)

Γ,A[y/x],∆�Θ
Γ,∃si xA,∆�Θ

(∃ − L) Γ�∆,A[t/x],∃si xA,Θ
Γ�∆,∃si xA,Θ

(∃ − R)

In both ∀ − R and ∃ − L rules, the variable y does not occur free in the lower
sequent. For equality, let ∆,Γ,Θ denote arbitrary sequences of formulas (possibly
empty) and let t, . . . , t1, . . . , tn, t

′
1, . . . , t

′
n denote arbitrary terms. For every sort si

and for every term t of sort si we have

Γ, t
.
=si t � ∆
Γ � ∆

For each function symbol f of arity (s1, . . . , sn, s) and any terms t1, . . . , tn, t
′
1, . . . , t

′
n

such that ti are of sort si:

Γ, (t1
.
=s1 t

′
1) ∧ . . . ∧ (tn

.
=sn t

′
n)→ (f(t1, . . . , tn)

.
=s f(t

′
1, . . . , t

′
n)) � ∆

Γ � ∆
For each predicate symbol P (including

.
=si ) of arity (s1, . . . , sn) and any terms

t1, . . . , tn, t
′
1, . . . , t

′
n such that ti are of sort si:

Γ, ((t1
.
=s1 t

′
1) ∧ . . . ∧ (tn

.
=sn t

′
n)→ P (t1, . . . , tn))→ P (t′1, . . . , t

′
n) � ∆

Γ � ∆
Gallier (1987) gives a detailed exposition of the metatheoretical properties and the
proof procedure associated with a many-sorted logic with these rules of inference.

It can be observed that the previous rules of inference give us a way to infer
when two individual references could be considered as referring to the same
object. This provides the same general theory of equality for all sorts. However,
it is interesting to consider particularities associated with the individuation of
members of each sort. This is of particular interest in artificial intelligence
applications where knowledge about the world is supposed to be usually poor
and we need to find other means to get implicit knowledge from previous
explicit knowledge. The reader will find in Augusto (1998, 2000) some more
specific proposals to individuate objects depending on the sort to which they are
supposed to belong.



Temporal Defeasible Reasoning 299

2.7. Semantics

We have considered a many-sorted algebra-based semantics (Gallier, 1987) for
L� as follows. The different sorts are carriers and each sort sk has its own
function mapping terms, possibly from different sorts, to terms in the sort sk , i.e.,
f : si × . . .× sj → sk . A special Boolean sort is considered, B, with the constants
true and false as elements. Boolean classical operators like ∧,∨,→ are regarded
as functions of type f : B × B → B and ¬ as f : B → B. Each predicate
P (t1s1, . . . , tnsn) has associated a function mapping terms t1s1, . . . , tnsn from sorts
s1, . . . , sn to B. In particular, we could interpret the symbol .= in this way.

LetM be the many-sorted algebra associated toL� as explained above. Each
sub-carrier of M is called Ms for each s a sort in L�. We could consider a set
V = ∪svs formed with each set vs of variables from the sort s. An assignment
v : V →M can be defined using assignments vs : Vs →Ms for each sort. We will
use M |= A[v] to mean that the assignment v satisfies the formula A in M. An
interpretation function for terms, t, can be defined recursively in the usual way.
If A and B are formulas of L�, t1 and t2 are terms in L� then

M |= (t1
.
= t2)[v] iff t(t1) = t(t2)

M |= (¬A)[v] iff not M |= A[v]

M |= (A ∧ B)[v] iff M |= A[v] and M |= B[v]

M |= (A ∨ B)[v] iff M |= A[v] or M |= B[v]

M |= (A→ B)[v] iff not M |= A[v] or M |= B[v]

M |= (∀sxiA)[v] iff M |= (A[a/xi])[v] for every a ∈Ms

M |= (∃sxiA)[v] iff M |= (A[a/xi])[v] for some a ∈Ms

Definition 6. We can say that M satisfies A with v if and only if M |= A[v]. A
formula is satisfiable in M if and only if there is some assignment v such that
M |= A[v]. A is satisfiable if and only if there is some M such that A is satisfiable.

Definition 7. A formula is valid in M, M |= A, if and only if M |= A[v] for all v.
In such case, M is called a model of A. A formula is valid, |= A, if it is valid in
each structure M.

These definitions can be extended in the usual way to consider satisfiability,
validity and models of a set of formulas. Then, given a set Γ of formulas and a
formula B we will say that B is a logical consequence of Γ, Γ |= B, if and only if
for every structure M associated to a language L� and for every assignment v:
if M |= A[v] for every formula A ∈ Γ then M |= B[v].

3. The Extended Argumentation System

In this section a formal system for temporal defeasible reasoning called �(�)
will be defined. It is intended as the representation of an intelligent agent A�

capable of carrying on such activities as non-monotonic and temporal reasoning.
It represents an update of the one offered through Augusto and Simari (1994,
1999), allowing us to use the notion of interval as another way of referencing
time. In this proposal explicit temporal references in each term of the language
can be made by way of either instants or intervals. In the first case it will be a
point in the temporal line and in the latter case an ordered pair defined by two
points as in [i1, i2].
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3.1. The Knowledge Base

The temporal knowledge base is organized as presented in Simari and Loui
(1992) for the atemporal case. We will consider a temporal context as a finite
set K� of well-formed and consistent formulas of L�. K� contains the non-
defeasible knowledge of A�. K� is formed by two sets, one set of facts K�

G

(general knowledge) and one set of rules K�
P (particular knowledge), where

K�
P ∪ K�

G =K� andK�
P ∩ K�

G = ∅.K�
P represents the safe knowledge of

the world like the existence of individuals or well-known properties of objects at
a given time, e.g. a triangle has three sides. K�

G represents general laws such as
mathematical properties or the axioms defining the ontology.

Example 1. Let us suppose that capital letters represent predicate names, the first
non-capital letters of the alphabet are constants, last non-capital letters of the
alphabet are variables, and i is a variable for instants. Then the following is an
example of the safe part of a knowledge base:

K� = {A(a, 2), B(a, b, 2), E(a, e, 2)}︸ ︷︷ ︸
K�

P

∪ {¬C(x, i)→ ¬D(x, [i+ 1, i+ 3])}︸ ︷︷ ︸
K�

G

Definition 8. ∆� is a finite set of temporal defeasible rules representing knowledge
that A� is prepared to take unless it possesses counter-evidence. Rules in ∆�

have the form α >−− β , where α and β are sets of literals of L�. ∆
�↓
will denote

the set of basic instances of members of ∆�.

Example 2. We can consider the following set of temporal defeasible rules:

∆� = { A(x, i) ∧ B(x, y, i) ∧ E(x, z, i)>−−¬C(x, i+ 1),
A(x, i) ∧ B(x, y, i)>−−C(x, i+ 1),
C(x, i+ 1)>−−D(x, [i+ 2, i+ 6]) }

3.2. Temporal Arguments

Arguments in �(�) are built using facts of K�
P and rules of K�

G and ∆
�↓
.

Sometimes it is useful to think of K�
P as being organized into subsets called

snapshots, for each instant i mentioned in it. K� and ∆� form the knowledge
base.

Definition 9. The pair (K�,∆�) will be called the temporal defeasible structure,
where K� is a temporal context and ∆� is a finite set of temporal defeasible
rules.

Definition 10. Let Γ� = {A1, A2, . . . An}, where each Ai is an element of K� or

∆
�↓
. We will consider the meta-meta-relation ‘|∼ ’, temporal defeasible consequence,

between Γ� and a literal A. We will say that Γ� |∼ A if and only if there exists
B1, . . . , Bn such that A = Bn and for every i, Bi ∈ Γ� or Bi is a direct consequence

of preceding elements in the sequence using rules of temporal inference. ∆
�↓
is

considered as a set of material implications.

We assume a set of Gentzen-style sequent rules (Gallier, 1987) but as the reader
can appreciate the system was defined in such a way that they could be changed.
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We are now going to present one of the key notions in this kind of system: that
of a temporal argument.

Definition 11. Given a defeasible temporal structure (K�,∆�), a subset A of ∆
�↓
is

a temporal argument for a temporal literal h 〈A, h〉, if and only if : 1)K� ∪ A |∼ h,
2) K� ∪ A &|∼ ⊥ and 3) there is no A′ ⊂ A such that K� ∪ A′ |∼ h.

This defines an argument as the minimal set of defeasible rules consistent with
the safe knowledge allowing to infer the supported thesis. A related notion that
will be useful later is that of a sub-argument.

Example 3. We can consider the following arguments A1 and A2 defined from
(K�,∆�) as they appear in our previous examples:

A1 = 〈{A(x, i) ∧ B(x, y, i) ∧ E(x, z, i)>−−¬C(x, i+ 1)},¬C(x, i+ 1)〉

A2 = 〈{A(x, i) ∧ B(x, y, i)>−−C(x, i+ 1), C(x, i+ 1)>−− D(x, [i+ 2, i+ 6])},
D(x, [i+ 2, i+ 6])〉

Definition 12. Let 〈A, h〉 be a temporal argument for h, and 〈S, j〉 a temporal
argument for j, such that S ⊆ A. We will say that 〈S, j〉 is a temporal sub-
argument of 〈A, h〉, and we will denote it through 〈S, j〉 ⊆ 〈A, h〉.

Example 4. A′2 = 〈{A(x, i) ∧ B(x, y, i)>−−C(x, i+ 1)}, C(x, i+ 1)〉 ⊆ A2.

Definition 13. Let (K�,∆�) be a temporal defeasible structure of A�.

�AStruc(∆
�↓
) will be the set of temporal arguments that can be constructed

from (K�,∆
�↓
).

Example 5. Let us note as A↓ a grounded argument A, then

�AStruc(∆
�↓
) = {A↓1, A

↓
2}:

A
↓
1 = 〈{A(a, 2) ∧ B(a, b, 2) ∧ E(a, e, 2)>−−¬C(a, 3)},¬C(a, 3)〉

A
↓
2 = 〈{A(a, 2) ∧ B(a, b, 2)>−−C(a, 3), C(a, 3)>−−D(a, [4, 8])}, D(a, [4, 8])〉

Next we consider temporal references that will guide the argumentation process.

Definition 14. Let ϕ = [¬]P (α, i) or ϕ = [¬]P (α, I) be a temporal literal, i.e. one
with a temporal reference, and Φ a set of temporal literals. The temporal reference
of ϕ, ρ(ϕ), is the set of instants mentioned in it. That is to say, ρ : Φ → 2|T| is
defined as follows:

ρ(ϕ) =

{
{i} if ϕ = [¬]P (α, i)
{i′ ∈ T|I = [i1, i2] ∈ I, i1 � i′ � i2, } if ϕ = [¬]P (α, I)

We extend this function to a set of temporal literals L: the common temporal
reference of L, ρ(L), is the intersection of the temporal references of all ϕ ∈ L,
i.e.,

⋂
ϕ∈L ρ(ϕ).

Observation: Let h1 and h2 be two literals and ρ(h1) ∩ ρ(h2) = r, then r = ∅ or
r ⊆ T or r = {r1, . . . , rn} such that r1 < . . . < rn and [r1, rn] ⊆ I.

Definition 15. Given two temporal arguments 〈A1, h1〉 and 〈A2, h2〉, A1 for h1 and
A2 for h2 are in disagreement at least about an instant i, 〈A1, h1〉 89�〈A2, h2〉, if and
only if ρ({h1, h2}) &= ∅ and K� ∪ {h1, h2} � ⊥.
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A common temporal reference is required between the temporal references of
the arguments involved in the conflict. There are several ways to fulfill this
requirement. It could happen when both arguments sustain a contradictory thesis
like P (A(c1, . . . , cn), r1) and ¬P (A(c1, . . . , cn), r2) where (a) r1 and r2 are the same
instant, (b) r1 is an interval [i1, i2] and r2 is an instant i such that i1 � i � i2, or (c)
r1 and r2 are intervals [i1, i2] and [i3, i4] respectively with some part in common,
i.e. {i1, . . . , i2} ∩ {i3, . . . , i4} &= ∅.

Definition 16. A temporal argument 〈A1, h1〉 counter-argues another temporal
argument 〈A2, h2〉 in a basic literal h, if and only if there exists a sub-argument
〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 and 〈A, h〉 are in disagreement (in at least an
instant i).

In the argumentation process we can naturally get contradictory arguments, and
it then becomes necessary to have a mechanism to decide which is preferable.

Definition 17. Let ) be a partial order defined over elements of �AStruc(∆
�↓
).

We will say that a temporal argument 〈A1, h1〉 defeats another 〈A2, h2〉, 〈A1, h1〉
*

tdef
〈A2, h2〉 , if and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such as

〈A1, h1〉 counter-argues 〈A2, h2〉 in h and 〈A1, h1〉 ) 〈A, h〉.

This is another key aspect of every argumentation system since it allows to have
an explicit preference criterion among arguments. In consequence, it guides the
process of inference allowing, every time that it is possible, to select the most
reasonable conclusions in some sense.

Historically, the comparison criterion that has been most widely used for
such purposes is that of specificity (Poole, 1985). Intuitively, we can understand
specificity as a way of preferring the best-informed arguments. Next, we propose
an adaptation to our temporal environment of this criterion by means of the
following definition.

Definition 18. Let D� = {a ∈ Lit(K� ∪ ∆� ) : K� ∪ ∆
�↓ |∼ a} where

Lit(K� ∪ ∆� ) is the set of grounded literals built from atoms and predicates of

KT and ∆T. Given 〈A1, h1〉, 〈A2, h2〉∈ �AStruc(∆
�↓
), we will say that A1 for h1 is

strictly more specific than A2 for h2 in an instant i, denoted 〈A1, h1〉 )tspec
〈A2, h2〉,

if and only if:

1. ρ({h1 , h2 }) ⊇ {i}
2. for every S ⊆ D� if K�

G ∪ S ∪ A1|∼ h1
and K�

G ∪ S &|∼ h1 (S non-trivially activates 〈A1, h1〉)
then: K�

G ∪ S ∪ A2|∼ h2 (S activates 〈A2, h2〉)
3. there exists S ⊆ D� such that: K�

G ∪ S ∪ A2|∼ h2
and K�

G ∪ S &|∼ h2 (S non-trivially activates 〈A2, h2〉)
and K�

G ∪ S ∪ A1 &|∼ h1 (S does not activate 〈A1, h1〉)

Example 6. If we consider the following sub-argument of A↓2:

A
′↓
2 = 〈{A(a, 2) ∧ B(a, b, 2)>−−C(a, 3)}, C(a, 3)〉

and argument A↓1 then ρ({¬C(a, 3), C(a, 3)}) = {3} and A↓189�A
′↓
2 in 3. It can be

seen that A↓1)tspec
A
′↓
2 , so A

↓
1*tdef

A
′↓
2 and as a consequence A

↓
1*tdef

A
↓
2.
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Since the specificity criterion is based on the structure of the arguments it has
the advantage of being independent from the application domain. Although we
have adapted this criterion for our temporal environment, we have separated it
from the system because sometimes it could be desired to replace it or combine
it with another criterion. For example, since information in our knowledge base
is associated to time, we could desire to have it in mind when deciding about
the quality of two arguments. It is also possible to use domain-dependent criteria
or a combination of strategies to decide which argument is better. Now we will
proceed to define when an argument is considered a justification of a thesis
through the notion of ‘supporting’ and ‘interfering’ arguments (Pollock, 1987).

Definition 19. The temporal arguments are active in two modalities, supporting
or interfering arguments (S-arguments and I-arguments respectively):

1. every argument is an S-argument and I-argument (of level 0);

2. an argument 〈A1, h1〉 is an S-argument (of level (n+1)) if and only if there is
not an I-argument of level n 〈A2, h2〉 such that for an h, 〈A2, h2〉 counter-argue
〈A1, h1〉 in h;

3. an argument 〈A1, h1〉 is an I-argument (of level (n+1)) if and only if there is
not an I-argument of level n 〈A2, h2〉 such that 〈A2, h2〉 defeats 〈A1, h1〉.

Finally we define when a thesis can be said to be justified by an argument:

Definition 20. We will say that a temporal argument 〈A, h〉 justifies h if and only
if there exists m such that, for every n � m, 〈A, h〉 is an S-argument of level n for h.

Example 7. A↓1 is a justification for ¬C(a, 3) and this prevents D(a, [4, 8]) from
being inferred. It also allows A↓1 to be, indirectly, a justification for ¬D(a, [4, 6]).
The interval [4, 6] is the common temporal reference obtained as: ρ({D(a, [4, 8]),
¬D(a, [4, 6])}) = {4, 5, 6}. It must be observed that rules in K�

G are not included
in arguments.

This means that a thesis will be said to be justified by an argument when the
argument supporting the conclusion is better, under the preference criteria, than
its counter-arguments. In the following section we consider some computational
aspects of the interaction between the argumentation and temporal layers.

4. Persistency

We consider some axioms to represent the assumption that properties tend to
keep their truth values throughout time. The idea is quite similar to explanation
closure axioms as proposed in Schubert (1990). This strategy is similar to frame
axioms but with nicer properties regarding computability (see Schubert, 1990,
for an analysis of its advantages). Other contemporary research in this topic the
reader will find of interest is Sandewall (1994) and Shanahan (1997). These are
semantic-based approaches based on minimization of models, while explanation
closure technique is mainly a syntactic one.

The closure axioms technique specifies for each property which events could
change it. Only if we have reason to conclude that some of those events with the
capability to change the property have occurred does it make sense to assume
the property has changed.
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Similarly, we consider axioms saying when change has occurred and defeasible
rules making explicit that we assume a property has not changed if we are unable
to find a justification for the thesis that it has changed. Since we can code
this kind of rule in the argumentation system then we have a finite and very
low number of them. Also our approach leads to a more direct and natural
way to use persistency as a difference from the approach given in Allen and
Ferguson (1994), where persistency is proved by using contrapositive in a ‘proof
by contradiction’ strategy. We will use in this section predicates Change+ −

at (p, i))
and Change+ −

in (p, I)) to indicate that a proposition p changes its truth value from
being true to false at an instant i or in an interval I respectively. The following
axioms allow the detection of these situations:

∀P p ∀Ti(Holdsat(p, i− 1) ∧ ¬Holdsat(p, i)→ Change+ −
at (p, i)) (24)

∀P p ∀II, I′(MEETS(I, I′)
∧Holdson(p, I) ∧ ¬Holdson(p, I′)→ Change+ −

in (p, I′) (25)

We can also consider analogous axioms for Change− +
at and Change− +

in for
properties changing from being false to being true. The general form of axioms
to prove persistency can be briefly described as: ‘if a property p is true (false)
and we cannot justify reasons to believe it has changed then we can assume it
will remain true for some time’. We will use not A(x1, . . . , xn) to represent the
impossibility to justify A(x1, . . . , xn). not is a meta-symbol that can only be applied
to positive literals. The reader can find a formalization for not in Garcı́a and
Simari (1999).

We do not ask for specific rules stating when a property changes its value but
instead we assume a set of rules as in the closure axiom technique stating which
properties change as a consequence of other events and actions:

∀Pp∀Ti(Holdsat(p, i) ∧ notChange+−at (p, i+ 1)>−−Holdsat(p, i+ 1)) (26)

∀Pp∀II, I′(Holdson(p, I)
∧MEETS(I, I′) ∧ notChange+−in (p, I

′))>−−Holdson(p, I′) (27)

Using these axioms we can get the following results giving a formalization for
the assumption that we can suppose that ‘a property does not change unless we
have some reason to believe it did’.

Lemma 1.

(a) ∀P p ∀I I(notChange+−in (p, I)→

(∀T i(begin(I) � i � end(I)→ notChange+−at (p, i))))

(b) ∀P p ∀I I, I′ (notChange+−in (p, I) ∧ notChange+−in (p, I
′) ∧MEETS(I, I′))→

notChange+−in (p, [begin(I), end(I
′)]))

Proof. The first implication follows from the definitions of interval and not while
the second follows from the definitions of MEETS and not. �
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Theorem 1.
∀P p ∀T i, i′ (Holdsat(p, i) ∧ notChange+−in (p, [i+ 1, i

′])>−−Holdsat(p, i′))

∀Pp∀II, I′(Holdson(p, I) ∧ end(I) � begin(I′) ∧ notChange+−in (p, [end(I) + 1, end(I
′)])

>−−Holdson(p, I′)
Proof. The first result follows from axiom 26 and lemma 1 (a) while the later
follows from axiom 27 and lemma 1 (b). �

We will also use another preference criterion related to persistency giving priority
to knowledge-based arguments instead of those belief-based arguments like those
based on persistency.

Definition 21. Let 〈A1, h1〉,〈A2, h2〉∈ TAStruc(∆
T↓
), we say that A1 for h1 is preferred

under persistency to A2 for h2, noted 〈A1, h1〉 )tpers
〈A2, h2〉, if and only if 〈A2, h2〉

use persistency and 〈A1, h1〉 does not.
In the next sections we assume the following precedence order (Prakken, 1993)
between the preference criterion: , = {)

tspec
,)

tpers
},)

tspec
>, )tpers

. This means we
always try to apply specificity first. When the arguments are incomparable under
specificity or they are equi-specific we apply the persistency criteria.

5. Some Examples

We illustrate the behavior of the system showing how to formalize some well-
known problems of the literature. The first couple of problems where proposed
in Sandewall (1994), while the others where considered in Ferguson (1995) in
relation to the TRAINS project. We will use interval-based temporal references
to make the comparison between our solutions for these problems and those
proposed in Ferguson (1995) easier.

We will also show arguments in their tree-form (Garcı́a et al., 1993). In the
tree-form of an argument for h such as 〈{p1, . . . , pn}, h〉 the root will be h and
its sons will be p1, . . . , pn. Each pi in turn could be a fact or a conclusion of
another argument. In the former case it will become a leaf in the tree. In the
second case it will be the root of another tree. The notation we shall use in
the trees is a bit different to that used in the arguments. This slight difference
helps to keep trees smaller. For example, A@i means P (A, i) and A@I means
P (A, I) where P could be understood from the meaning of A or a previous
formal description of the argument represented in the tree. Also we use TC as
a way to shorten Temporal Constraints. These constraints are those mentioned
in a previous formal description of the argument being represented. We use the
notation and conventions defined in L� to represent temporal concepts in the
argumentation level.

5.1. Hidden Turkey Shoot Problem

This is a variation proposed in Sandewall (1994) of the widely known Yale shoot-
ing problem. The scenario considers a turkey that will be shot and the possibility
that if it is able to hear the gun being loaded then it can hide and save its life.
Otherwise, shooting the gun will cause its death.
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A:

alive@I0 TC not
Change(alive,[end(I0), end(I4)])

✥✥✥✥✥✥✥✥✥
✏✏✏✏✏
❛❛❛❛

alive@I4

Fig. 1. Argument tree for alive@I4.

MEETS(I0, I1) ∧ MEETS(I1, I2) ∧ MEETS(I2, I3) ∧ MEETS(I3, I4)
Holdson(alive, I0) ∧ ¬Holdson(loaded, I0) ∧ ¬Holdson(hidden, I0)
Doon(loading, I1) ∧Doon(shooting, I3)
(HT1) ∀II (Doon(loading, I)>−−Occurson(load, I))
(HT2) ∀II (Doon(shooting, I) ∧Holdson(loaded, I)>−−Occurson(shoot, I))
(HT3) ∀II, I′(Occurson(load, I)>−−Holdson(loaded, I′) ∧ MEETS(I, I′))
(HT4) ∀II, I′(Occurson(load, I) ∧ ¬Holdson(deaf, I)>−−Occurson(hide, I))
(HT5) ∀II, I′(Occurson(hide, I)>−−Holdson(hidden, I′) ∧ MEETS(I, I′))

(HT6) ∀II, I′(Occurson(shoot, I) ∧Holdson(loaded, I)>−−
¬Holdson(loaded, I′) ∧ MEETS(I, I′))

(HT7) ∀II, I′(Occurson(shoot, I) ∧Holdson(alive, I) ∧ ¬Holdson(hidden, I)

>−−¬Holdson(alive, I′) ∧MEETS(I, I′))

(HT8) ∀Aa∀II, I1, I3(Doon(a, I)↔

((a = loading ∧ I = I1) ∨ (a = shooting ∧ I = I3)))

If we assume ¬Holdson(deaf, I1) then an argument can be built to support that
Holdson(alive, I4) based on the tendency to persist of the property ‘alive’. From
Doon(loading, I1) and (HT1) we obtain Occurson(load, I1). By the hypothesis and
(HT4) we get Occurson(hide, I1). Using (HT5) we can get Holdson(hidden, I2).
Using the persistency Theorem 1, we have Holdson(hidden, I3). As there is no
way to show ¬Holdson(alive, I4), by the persistency Theorem 1, Holdson(alive, I4)
follows from Holdson(alive, I0). The above-described reasoning is summarized in
the following argument:

A = 〈{Holdson(alive, I0) ∧ (end(I0) � begin(I4))∧
notChange+−in (alive, [end(I0), end(I4)])>−− Holdson(alive, I4)},

Holdson(alive, I4)〉

which is represented in the tree of Fig. 1.
If we instead assume Holdson(deaf, I1), by persistency axiom 27, we get

¬Holdson(hidden, I3) and as a consequence ¬Holdson(alive, I4). By using
Doon(loading, I1), (HT1) and (HT3) we get Holdson(loaded, I2) as before and by
persistency, through Axiom 27, we can get that Holdson(loaded, I3). This fact to-
gether with Doon(shooting, I3) can be used with (HT2) to infer Occurson(shoot, I3).
By (HT7) we obtain ¬Holdson(alive, I4). Argument B can be defined in a modular
way to represent the previous rationale in support of ¬Holdson(alive, I4):

B1 = 〈{Doon(loading, I1)>−− Occurson(load, I1),
Occurson(load, I1)>−− Holdson(loaded, I2)},

Holdson(loaded, I2)〉
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B:

(treeforB4,
similar to
tree for A))

alive@I3 TC

shooting@I3 (B2)

✪✪
❍❍❍❍

shoot@I3 (C)

✘✘✘✘✘✘✘
✧✧✧
❍❍❍❍
❤❤❤❤❤❤❤❤❤❤

¬alive@I4

Fig. 2. Argument tree for ¬alive@I4.

B2:

loading@I1

load@I1

loaded@I2 TC not
Change(loaded,[end(I2),end(I3)])

✭✭✭✭✭✭✭✭✭✭
✏✏✏✏✏
❛❛❛❛❛

loaded@I3

C:

¬hidden@I0 TC not
Change(hidden, I1)

✘✘✘✘✘✘✘ ✪✪







¬hidden@I1 TC not
Change(hidden,[end(I1),end(I3)])

✭✭✭✭✭✭✭✭✭✭ ❡❡
❤❤❤❤❤❤❤❤❤❤

¬hidden@I3

Fig. 3. Argument trees for loaded@I3 and ¬hidden@I3.

B2 = 〈{Holdson(loaded, I2)∧
MEETS(I2, I3) ∧ notChange+−in (loaded, I3)>−− Holdson(loaded, I3)},

Holdson(loaded, I3)〉
B3 = 〈{Doon(shooting, I3) ∧Holdson(loaded, I3)>−− Occurson(shoot, I3)},

Occurson(shoot, I3)〉
B4 = 〈{Holdson(alive, I0) ∧ (end(I0) � begin(I3))∧

notChange+−in (alive, [end(I0), end(I3)])>−− Holdson(alive, I3)},
Holdson(alive, I3)〉

D = 〈{¬Holdson(hidden, I0)∧
MEETS(I0, I1) ∧ notChange−+in (hidden, I1)>−− ¬Holdson(hidden, I1)},

¬Holdson(hidden, I1)〉
C = 〈{¬Holdson(hidden, I1) ∧ (end(I1) � begin(I3))∧

notChange−+in (hidden, [end(I1), end(I3)])>−− ¬Holdson(hidden, I3)},
¬Holdson(hidden, I3)〉

B = 〈{Holdson(alive, I3) ∧Occurson(shoot, I3)∧
MEETS(I3, I4) ∧ ¬Holdson(hidden, I3)}>−− ¬Holdson(alive, I4)},

¬Holdson(alive, I4)〉

These arguments are shown as trees in Figs 2 and 3.
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E:

loading@I1

load@I1 ¬deaf@I1

✧✧✧
❍❍❍❍

hidden@I1 TC not
Change(hidden,[end(I1),end(I3)])

✥✥✥✥✥✥✥✥✥
✱
✱


hidden@I3

Fig. 4. Argument tree for hidden@I3.

If Holdson(deaf, I1) then B89�A, B)tspec
A and B*

tdef
A. But, if ¬Holdson(deaf, I1)

we have:

F = 〈{Doon(loading, I1)>−−Occurson(load, I1),
Occurson(load, I1) ∧ ¬Holdson(deaf, I1)>−− Holdson(hidden, I1)},

Holdson(hidden, I1)〉

E = 〈{Holdson(hidden, I1) ∧ (end(I1) � begin(I3))∧
notChange+−in (hidden, [end(I1), end(I3)])>−− Holdson(hidden, I3)},

Holdson(hidden, I3)〉

then F89�D. The argument E is represented in the tree of Fig. 4.
We cannot use specificity with F and D because they are incomparable

under this criterion so the persistency-based criterion is applied and we prefer
arguments not using this notion as the only reason to support its conclusion. The
task to compare arguments using the notion of persistency could be simplified
considering that

∀P p (Holdson(p, I1) ∧ (end(I1) � begin(In)) ∧ notChange+−in (p, [end(I1), end(In)])

>−−Holdson(p, In))
could be rewritten as:

∀Pp(Holdson(p, I1) ∧Holdson(p, I2) ∧ . . . ∧Holdson(p, In)>−−Holdson(p, In))
Under this criterion F is preferred so F)

tpers
D and F*

tdef
D. As a conclusion

we have that E89�C , E)tpers
C and E*

tdef
C . As a result, when ¬Holdson(deaf, I1)

is assumed E acts as an undercutting defeater (Prakken, 1993) of B so A is the
preferred argument.

5.2. Russian Turkey Shoot Problem

This scenario (Sandewall, 1994) introduces the notion of uncertainty on events.
Uncertainty is provided by spinning the chamber of the gun. As a result of this
action the bullet may or may not be ready for firing, leading to two very different
results. To make the comparison between Ferguson and Allen’s proposal and
this one easier, the presentation of the problem employed in Allen and Ferguson
(1994) will be adopted:

MEETS(I0, I1) ∧ MEETS(I1, I2) ∧ MEETS(I2, I3) ∧ MEETS(I3, I4)
Holdson(alive, I0) ∧ ¬Holdson(loaded, I0)
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Doon(loading, I1) ∧Doon(spinning, I2) ∧Doon(shooting, I3)
(R1) ∀II (Doon(loading, I)>−−Occurson(load, I))
(R2) ∀II (Doon(shooting, I) ∧Holdson(loaded, I)>−−Occurson(shoot, I))
(R3) ∀II (Doon(spin, I)>−−Occurson(spin, I))
(R4) ∀II, I′(Occurson(load, I)>−−Holdson(loaded, I′) ∧ MEETS(I, I′))

(R5) ∀II, I′(Occurson(shoot, I) ∧Holdson(loaded, I)>−−
¬Holdson(loaded, I′) ∧ MEETS(I, I′))

(R6) ∀II, I′(Occurson(shoot, I) ∧Holdson(alive, I)>−−
¬Holdson(alive, I′) ∧ MEETS(I, I′))

(R7) ∀II, I′ (Occurson(spin, I)>−−
((Change+−in (loaded, I

′) ∨Holdson(loaded, I′)) ∧ MEETS(I, I′))

(R8) ∀II, I′ (Holdson(loaded, I) ∧ Change+−in (loaded, I)>−−
¬Holdson(loaded, I′) ∧ MEETS(I, I′))

(R9) ∀Aa∀II, I1, I2, I3(Doon(a, I)↔
((a = loading ∧ I = I1) ∨ (a = spinning ∧ I = I2) ∨ (a = shooting ∧ I = I3)))

As with the previous example the argument A can be built based on the persistency
of the property ‘alive’. We omit the tree for this argument as it is the same as
that of Fig. 1.

A = 〈{Holdson(alive, I0) ∧ (end(I0) � begin(I4))∧
notChange+−in (alive, [end(I0), end(I4)])>−− Holdson(alive, I4)},

Holdson(alive, I4)〉
But there are also two ways to support the conclusion that things happened in
the other way around. One way arises by considering that the gun remains loaded
after I1 because of the persistency axiom. The shoot can be done in I3 getting
¬Holdson(alive, I4) using (R2) and (R6). Using this knowledge we can build the
following arguments:

B1 = 〈{Doon(loading, I1)>−− Occurson(load, I1),
Occurson(load, I1)>−− Holdson(loaded, I2)},

Holdson(loaded, I2)〉

B2 = 〈{Holdson(loaded, I2) ∧ (end(I0) � begin(I3))∧
notChange+−in (loaded, [end(I0), end(I3)])>−− Holdson(loaded, I3)},

Holdson(loaded, I3)〉

B3 = 〈{Doon(shooting, I3) ∧Holdson(loaded, I3)>−− Occurson(shoot, I3)},
Occurson(shoot, I3)〉

B4 = 〈{Holdson(alive, I0) ∧ (end(I0) � begin(I3))∧
notChange+−in (alive, [end(I0), end(I3)])>−− Holdson(alive, I3)},

Holdson(alive, I3)〉
We can then use B1, B2, B3 and B4 to build

B = 〈{Holdson(alive, I3)∧
Occurson(shoot, I3) ∧ MEETS(I3, I4)>−− ¬Holdson(alive, I4)},

¬Holdson(alive, I4)〉
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(subtree of B4,
similar to
tree for A
with I3

instead I4)

alive@I3 TC

shooting@I3 (B2)

✪✪
❍❍❍❍

shoot@I3

✘✘✘✘✘✘✘ ✁✁







¬alive@I4

B2:

loading@I1

load@I1

loaded@I2 TC not
Change(loaded, [end(I2), end(I3)])

✭✭✭✭✭✭✭✭✭✭
✏✏✏✏✏
❛❛❛❛❛

loaded@I3

Fig. 5. Tree of the argument for ¬alive@I4 (first case).

(subtree of B4,
similar to
tree for A

with I3 instead I4)

alive@I3 TC

shooting@I3

spinning@I1

spin@I1

loaded@I3

✟✟✟✟
❍❍❍❍

shoot@I3

✥✥✥✥✥✥✥✥
✱
✱


¬alive@I4

Fig. 6. Tree of the argument for ¬alive@I4 (second case).

such that B89�A, B)tspec
A and B*

tdef
A. Arguments B1 and B2 can be replaced

if we use the conclusion Holdson(loaded, I
′) ∧MEETS(I, I′) of (R7) to get the

argument

C = 〈{Doon(spinning, I2)>−− Occurson(spin, I2),
Occurson(spin, I2)>−− Holdson(loaded, I3)},

Holdson(loaded, I3)〉

Arguments C,B3 and B4 also allow to support B as above such that B89�A,
B)

tspec
A and B*

tdef
A. Arguments B1, B2, B3, B4 and B are shown as a tree in

Fig. 5. The line of reasoning sustained by arguments C,B3, B4 and B is shown in
Fig. 6.

There are then two ways to conclude ¬Holdson(alive, I4) which in turn corre-
sponds to each possible way of loading the gun, i.e., by putting in a bullet or by
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D:

loading@I1

load@I1

loaded@I2

spinning@I1

spin@I1

Change+−in (loaded, I3)

✟✟✟✟
❍❍❍❍

¬loaded@I3

Fig. 7. Tree of the argument for ¬loaded@I3.

spinning the chamber. Both ways represent more specific knowledge than that
used to build argument A. If we instead consider

Occurson(spin, I)>−−Change+−in (loaded, I′) ∧MEETS(I, I′)

spinning the chamber of the gun stops the persistence of ‘loaded’ and the shooting
cannot be done.

The argument in this case is as follows (see Fig. 7 for a tree-like representation):

D2 = 〈{Doon(spinning, I2)>−− Occurson(spin, I2),
Occurson(spin, I2)>−− Change+−in (loaded, I3)},

Change+−in (loaded, I3)〉
D = 〈{Holdson(loaded, I2)∧ Change+−in (loaded, I3)>−−¬Holdson(loaded, I3)},

¬Holdson(loaded, I3)〉

Then notChange+−in (loaded, I3) can no longer be justified because there is an
argument for Change+−in (loaded, I3) through D. This forbids the construction of
argument B reinstating argument A. As expected, the result of the spinning
decides the conclusion.

5.3. Mutually Exclusive Actions

This scenario was proposed in Allen and Ferguson (1994) and deals with ac-
tions that cannot be performed together. We simplified the problem assuming
this does not change the essential issues addressed. The scenario involves two
engines, n1 and n2, moving between two cities. Engine n1 needs to move from
Dansville to Corning while n2 tries to move in the opposite direction. Just one
engine is allowed on each track so the problem arises when an engine needs
to use the track while another is still using it. The variable n will represent an
engine while ci, for i = 1, 2, will be used to refer to cities. Doon(move(n, c1, c2, x)
represents the action of moving with engine n from city c1 to city c2 by track x.
Occurson(movebetween(n, c1, c2, x) represents the resulting event.

I ��I′ =def BEFORE(I, I
′) ∨ MEETS(I, I′) ∨ BEFORE(I′, I) ∨ MEETS(I′, I)

MEETS(I0, I1) ∧MEETS(I1, I2)
Engine(n1) ∧ Engine(n2)
Holdson(at(n1, dansville), I0) ∧ Holdson(at(n2, corning), I0)
Do(move(n1, dansville, corning, track1), I1)
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Do(move(n2, corning, dansville, track2), I1)
(ME1) ∀Wn, c1, c2, x∀II(Do(move(n, c1, c2, x), I)>−− Holdson(on(n, x), I))

(ME2) ∀Wn, c1, c2, x∀II(Doon(move(n, c1, c2, x), I) ∧Holdson(at(n, c1), I)∧
Holdson(trackclearfor(n, x), I)>−−Occurson(movebetween(n, c1, c2, x), I))

(ME3) ∀Wn, c1, c2, x∀II, I′(Occurson(movebetween(n, c1, c2, x), I))
>−− Holdson(at(n, c2), I

′) ∧ MEETS(I, I′))

(ME4) ∀Wn, x, y∀II, I′(Holdson(on(n, x), I)∧Holdson(on(n, y), I′)∧ x &= y >−− I��I′

(ME5) ∀Wn, x∀II, I′(Holdson(trackclearfor(n, x), I)
↔ ∀n′, I′(I′ � I ∧ Engine(n′)→ ¬Holdson(on(n′, x), I′) ∨ n′ = n))

(ME6) ∀WnEngine(n)↔ (n = n1) ∨ (n = n2)

(ME7) ∀Aa∀II(Doon(a, I) ↔
((a = move(n1, dansville, corning, track1) ∧ I = I1)∨
(a = move(n2, corning, dansville, track2) ∧ I = I1)))

If an engine has a clear track it then arrives at its destination.

A1 = 〈{ Holdson(at(n1, dansville), I0) ∧MEETS(I0, I1)∧
notChange+−in (at(n1, dansville), I1)>−− Holdson(at(n1, dansville), I1)},

Holdson(at(n1, dansville), I1)〉
A2 = 〈{¬Holdson(on(n2, track1), I1)>−− Holdson(trackclearfor(n1, track1), I1)},

Holdson(trackclearfor(n1, track1), I1)〉
A3 =〈{Doon(move(n1, dansville, corning, track1), I1)∧

Holdson(at(n1, dansville), I1) ∧Holdson(trackclearfor(n1, track1), I1)>−−
Occurson(movebetween(n1, dansville, corning, track1), I1)},
Occurson(movebetween(n1, dansville, corning, track1), I1)〉

A = 〈{Occurson(movebetween(n1, dansville, corning, track1), I1)>−−

Holdson(at(n1, corning), I2)},
Holdson(at(n1, corning), I2)〉

The corresponding arguments are represented in the tree of Fig. 8. Because of
space restrictions we shall shorten move between to ‘mb’, track clear for as ‘tcf’,
while constants dansville and corning will be represented by d and c respectively.

If an engine is using one track, e.g. track 1, it is no longer available for other
engines and then the engine going from Dansville to Corning cannot use it.

An argument for Holdson(on(n2, track1), I1) is a rebutting defeater (Prakken,
1993) for A2 and an undercutting defeater (Prakken, 1993) for A:

B = 〈{Doon(move(n2, corning, dansville, track1), I1)∧
Holdson(trackclearfor(n2, track1), I1)>−− Holdson(on(n2, track1), I1)},

Holdson(on(n2, track1), I1)〉
If we consider the trivial argument A′2 = 〈{},¬Holdson(on(n2, track1), I1)〉 we have
B89�A

′
2 and B)tspec

A′2 as a particular case of specificity and then B*tdef
A′2. The

corresponding tree-like argument is shown in Fig. 9.
Thus, as expected, one engine in a track forbids the other from using it.
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move(n1, d, c, track1)@I1 (A1)

¬on(n2, track1)@I1

tcf(n1, track1)@I1

✘✘✘✘✘✘✘ ❏❏


mb(n1, d, c, track1)@I1

at(n1, c)@I2

A1:

at(n1, d)@I0 TC not
Change(at(n1, d), I1)

✘✘✘✘✘✘✘
✱
✱







at(n1, d)@I1

Fig. 8. Argument tree for at(n1, c)@I2.

move(n2, c, d, track1)@I1 tcf(n2, track1)@I1

✏✏✏✏✏


on(n2, track1)@I1

Fig. 9. Argument tree for on(n2, track1)@I1.

5.4. Synergistic Effects

This problem deals with the possibility and necessity of combining effects of
actions to achieve a unique goal. The scenario described in Allen and Ferguson
(1994) includes the attempt to decouple a car by activating the decoupler while
the engine is moving forward. Again, we assume the same temporal hypothesis
and notation conventions as in the previous example.

MEETS(I0, I1) ∧MEETS(I1, I2)
Holdson(coupled(n1, car1), I0)
Doon(setthrottle(n1), I1)
Doon(activating(n1), I2)
(SE1) ∀Wn∀II, I′(Doon(setthrottle(n), I)>−−Occurson(move(n), I′)) ∧MEETS(I, I′)
(SE2) ∀Wn∀II(Doon(activating(n), I)>−−Occurson(activate(n), I))

(SE3) ∀Wn, c∀II′, I′′, I(Holdson(coupled(n, c), I) ∧Occurson(move(n), I′) ∧
Occurson(activate(n), I

′′) ∧ ¬(I′ ��I′′) ∧MEETS(I, conj(I′, I′′)

>−−Occurson(uncouple(n, c), conj(I′, I′′)))

where conj(I′, I′′) is the common subinterval between intervals I′ and I′′.
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coupled(n1, car1)@I0 TC not
Change(coupled(n1, car1), [end(I0), end(I2)]

✭✭✭✭✭✭✭✭✭✭✭
✏✏✏✏✏


coupled(n1, car1)@I2

Fig. 10. Argument tree for coupled(n1, car1)@I2

(SE4)
∀n, c∀II(Occurson(uncouple(n, c), I)>−−¬Holdson(coupled(n, c), I′) ∧MEETS(I, I′)

(SE5) ∀Aa∀II(Doon(a, I)↔

((a = Doon(setthrottle(n1), I) ∧ I = I1) ∨ (a = Doon(activating(n1), I)) ∧ I = I2)))

We have an argument to support Holdson(coupled(n1, car1), I3) by persistency
using Theorem 1 as follows:

A = 〈{Holdson(coupled(n1, car1), I0) ∧ (end(I0) � begin(I3))∧
notChange+−in (coupled(n1, car1), [end(I0), end(I3)])>−−

Holdson(coupled(n1, car1), I3)},
Holdson(coupled(n1, car1), I3)〉

This argument is represented in the tree of Fig. 10.
If setting the throttle occurs later, for instance Do(setthrottle(n1), I2), it is no

longer possible to use (SE4) and the coupling persists. But, if the moving event
occurs during I2 the decoupling can be done:

B1 = 〈{Doon(setthrottle(n), I1)>−−Occurson(move(n), I2))},
Occurson(move(n), I2)〉

From Do(activating(n1), I2) and (SE2) we can obtain Occurs(activate(n1), I2):

B2 = 〈{Doon(activating(n), I2)>−− Occurson(activate(n), I2))},
Occurson(activate(n), I2)〉

By persistency it could be assumed Holds(coupled(n1, car1), I2):

B3 = 〈{ Holdson(coupled(n1, car1), I0) ∧MEETS(I0, I1)∧
notChange+−in (coupled(n1, car1), I1)>−− Holdson(coupled(n1, car1), I1)},

Holdson(coupled(n1, car1), I1)〉

By using arguments B1, B2, B3 and SE3 we could support
Occurs(uncouple(n1, car1), I2):

B4 = 〈{Holdson(coupled(n1, car1), I1)∧
Occurson(move(n1), I2)∧
Occurson(activate(n1), I2)∧
¬(I2 ��I2) ∧MEETS(I1, I2)>−− Occurson(uncouple(n1, car1), I2)},

Occurson(uncouple(n1, car1), I2)〉

Finally, by SE4 we can build the following argument:

B = 〈{Occurson(uncouple(n1, car1), I2)>−− ¬Holdson(coupled(n1, car1), I3)},
¬Holdson(coupled(n1, car1), I3)〉
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Fig. 11. Argument tree for ¬coupled(n1, car1)@I2.

This argument is shown in the tree of Fig. 11.
It can be concluded that B89�A, B)tspec

A and B*
tdef
A. Then B allows to

justify ¬Holds(coupled(n1, car1), I3).

6. Conclusions

An extension of the argumentation system offered in Augusto and Simari (1994,
1999) was presented. The new proposal formalizes defeasible temporal reasoning
allowing both instants and intervals as temporal references. Previous work on this
line could be used just with one of this kind of reference. Using both instants and
intervals, we avoid problems addressed elsewhere (Galton, 1990) to other purely
interval-based proposals (Allen, 1984; Ferguson and Allen, 1994; Ferguson, 1995).

The many-sorted logic has clearly specified syntax, semantics and inference
rules. Further details of these temporal and monotonic layers of the proposal can
be seen in (Augusto, 1998) or (Augusto, 2000), where some temporal concepts
are developed more deeply. In particular, Augusto (2000) includes a comparison
between the temporal logic we used as a basement in this proposal and other
works in the literature which consider instants and intervals.

We provided explicit time-based temporal reasoning but also event-driven
reasoning in an integrated framework. Also, as argued in Augusto (2000), the
combination of instants and intervals is twofold: theoretical and practical. From
a theoretical perspective it allows a solution to problems of continuous change
(Galton, 1990) and the dividing instant problem (Vila, 1994). On the other side,
the solution to some problems can be based on a combination of instants and
intervals avoiding complexity issues through polynomial-time algorithms (Ladkin
and Maddux, 1988; Meiri, 1992) instead of exponential-time algorithms forced
by using a purely interval-based proposal (Allen, 1981; Vilain and Kautz, 1986).

Other important issues on the temporal reasoning perspective like persistency
and causality were considered. We do not consider these as our last word on
the subject but it is useful to show how the basic temporal theory could be
extended in some key directions. The system’s behavior was illustrated by means
of well-known problems of the literature.
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This system has not been implemented yet but there are good starting points,
like an implementation for a non-temporal argumentation system (Garcı́a, 1997)
and typed logic-programming style languages that can be useful to build a
prototype. Algorithms for a proof procedure of a many-sorted first-order logic
with equality like that used here in L� can be obtained in Gallier (1987). This
is also the recommended source for the reader interested in the meta-theoretical
properties of many-sorted logics like those used in this work.

The argumentation system itself has been extensively studied and several
developments are being conducted taking that proposal as a basis (Chesñevar
et al., 1998). A substantial study has been made considering the wide range of
applications that this kind of system has (Carbogim et al., 2000), but most efforts
have been addressed to non-temporal systems. As a result, their capabilities for
solving problems in dynamic domains is very limited in the best case. Two pro-
posals have been under development during recent years to mitigate this absence
with different goals in mind. In Ferguson (1995) an argumentation framework
is considered to formalize dialogue conventions. Conversely, in Augusto (1998)
research has been conducted on a more theoretical basis, getting a more in-detail
formulation for both the temporal and the argumentation layers of the proposal.
We think this formulation improves the understanding of this kind of system
both from the theoretical and programmer’s perspective.
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