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Abstract

The health system in developed countries is facing a problem of scalability in order to accommodate the
increased proportion of the elderly population. Scarce resources cannot be sustained unless innovative
technology is considered to provide health care in a more effective way. The Smart Home provides pre-
ventive and assistive technology to vulnerable sectors of the population. Much research and development
has been focused on the technological side (e.g., sensors and networks) but less effort has been invested
in the capability of the Smart Home to intelligently monitor situations of interest and act in the best in-
terest of the occupants. In this article we model a Smart Home scenario, using knowledge in the form of
Event-Condition-Action rules together with a new inference scheme which incorporates spatio-temporal
reasoning and uncertainty. A reasoning system called RIMER, has been extended to permit the monitoring
of situations according to the place where they occur and the specific order and duration of the activities.
The system allows for the specification of uncertainty both in terms of knowledge representation and
credibility of the conclusions that can be achieved in terms of the evidence available.

Keywords:Decision support, monitoring and diagnosis, ambient intelligence, Smart Home, uncertainty,
spatio-temporal reasoning.

1. Introduction

The relative increased proportion of the elderly pop-
ulation due to demographic progression combined
with advances in medical therapy means that peo-
ple can live longer and health care at home is now
a feasible and attractive area of application. There
is also a growing tendency to decentralize health
care, shifting from the hospital to the community

and hence home-centred health care has become an
important health management issue1,2. As a con-
sequence of the ageing process the propensity to
suffer chronic illnesses which demand close moni-
toring increases. Fortunately, advances in technol-
ogy and problem solving skills are making avail-
able new options for assistive health care. Current
research blends work in Ambient Intelligence with
tasks related to monitoring, problem identification
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and emergency intervention. ByAmbient Intelli-
gence(AmI) 3,4,5,6 here we mean “a digital environ-
ment that proactively, but sensibly, supports people
in their daily lives” 7. Other terms such as Ubiqui-
tous Computing8 or Smart Environments9 are used
with similar connotations.

A variety of environments can be used for the
deployment of ambient intelligence. Typical places
researchers are currently looking at include class-
rooms, cars, houses, offices, ambulances, hospitals,
and airports3,10. The most well-known realization
of the concept of Ambient Intelligence nowadays are
Smart Homes(SH). By Smart Home here we mean
“a house equipped with sensors and actuators which
can be coordinated by intelligent software to benefit
its inhabitants”11. A Smart Home can help peo-
ple at risk in their living place by preventing hazards
and by assisting them as much as possible when they
need health services12,13,14. For example, people
with dementia or Alzheimer’s disease can live an in-
dependent life for longer under the protection of a
SH 15. Technology has made significant advances
in developing sensors and networks that allow the
monitoring of the environment, and the provision of
alerts to users. However there has been insufficient
progress on data analysis and interpretation to take
full advantage of these technologies.

Intelligent monitoring is required to fully ex-
ploit the potential of this supported environment and
some relevant studies have been reported. Williams
et al.16 introduced intelligence into CarerNet, which
simulated a SH to provide a telecare solution for a
patient discharged from hospital. Sixsmith17 un-
dertook a three month patient trial which identified
unsafe conditions by detecting deviations from nor-
mal activity patterns. Twenty-two residents, aged
over 60 years, generated 61 alerts (46 of which were
false alarms, with 15 genuine alerts). Whilst no pri-
mary emergencies were encountered, the study de-
termined that the supported environment enhanced
feelings of safety and security, and stimulated inde-
pendence of the residents and their carers.

An appreciation ofspatio-temporalevents and
the lack ofcertainty in the temporal nature of these
events are key to successfully monitoring dynamic
activities within a SH. The importance of probabilis-

tic reasoning in the area of clinical decision sup-
port was recognized by Shortliffe and utilized in
the landmark rule based decision support system,
MYCIN 18. A theoretical treatment of constraints
in temporal reasoning was investigated by Dechter
et al. 19, who developed a formalism that enabled
representation of time constraints between activities.
In a more recent clinical application of intelligent
monitoring, Bellazzi et al.20 applied Bayesian es-
timation to investigate daily patterns of blood glu-
cose level time series, from a diabetic patient. The
problem was specified by stochastic equations, and
solved using a Markov chain technique. In the con-
text of the SH environment, Patterson et al.21 used
a Radio Frequency Identification (RFID) enabled
glove to monitor routine activities and study fine
grained temporal activity, yielding context-aware in-
formation. They utilized probabilistic models for
activity recognition, and investigated the impact of
increasing complexity. With their approach they
could reason about aggregated object instances and
abstract to their classes, to provide a description of
household activity.

In this article, we apply a methodology referred
to asRule-base Inference Methodology using the Ev-
idential Reasoning(RIMER) 22, extended within an
active database framework23 to investigate spatio-
temporal aspects of human activities monitoring.
Although there are many possible architectures with
which to implement intelligent SH systems, rule-
based systems offer a simple framework and are
amenable to verification and validation24,4. Uncer-
tainty is inevitable in a SH application due to the
vagueness intrinsic to human communication, in-
accuracy or incompleteness resulting from limited
knowledge and the imprecision of instruments. It is
therefore necessary to use a scheme for represent-
ing and processing vague, imprecise or incomplete
information in conjunction with precise data.

The concept of a belief rule-base and its asso-
ciated inference methodology were proposed in22

as a formalism based on the Evidential Reasoning
(ER) approach25,26,27. In a belief rule-base, each
possible consequent of a rule is associated with a
belief degree. Such a rule-base is capable of cap-
turing complicated and even continuous causal re-
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lationship between different factors while the tradi-
tional IF-THEN rules are its special cases28,29,30,31.

Combining spatio-temporal reasoning with un-
certainty reasoning captures essential concepts that
we believe can improve the ways in which SHs can
be designed. We address a case study in which the
occupant has become motionless (possibly due to a
fall or fainting) to test the knowledge representation
and inference logic. A thorough practical commu-
nity based assessment is beyond the scope of this
work and has not been undertaken.

The article is structured as follows. Section 2
will provide a general description of SHs and the
specific features of a SH scenario that will be used in
the rest of the article. Section 3 will provide a back-
ground on what has been explored before in terms of
monitoring and diagnosis in a SH system. The com-
bination of space, time and uncertainty are explained
in section 4 and exemplified in a SH setting in sec-
tion 5. Conclusions and future work are outlined in
section 6.

2. Smart Homes

A Smart Home32,33,34,35,36,37,38 can be described as
a house that is supplemented with technology, for
example sensors and devices, in order to increase
the range of services provided to its occupants by
reacting in an intelligent way. The technology will
have two main components: a set of sensors and a
networking layer linking those sensors with com-
puting facilities. Common sensors monitor carbon
monoxide, smoke, heat, motion (as used for bur-
glary alarms) and window or door opening. Some
devices have been enriched with sensors to detect
usage15. For example a sensor can detect that a wa-
ter tap is open/closed or that a cooker is in use, or
a microwave can scan a bar code on food to auto-
mate the cooking process. A layout plan of a SH
enriched with sensors and devices is shown in Fig-
ure 1. This type of interface can be used to simulate
activity or to display real world data. The SH com-
prises the following rooms/environment: reception,
kitchen, toilet/bathroom, living room, bedroom, and
the outside.

Fig. 1. The layout of an example Smart Home

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 361-378

Published by Atlantis Press 
  Copyright: the authors 
                  363



J. Augusto, J. Liu, P. McCullagh, H. Wang and J. Yang

The network comprises a controller (computer)
and wired or wireless infrastructure. The controller
is normally located within the premises, but may be
connected remotely via the Internet. It communi-
cates with sensors so that for example, the cooker
can be turned off automatically. An obvious way to
turn off a device would be with a timer but this can
be a very rigid mechanism. A more useful and flex-
ible use of the device demands the intelligent anal-
ysis of several factors in order to decide if the turn-
ing off of a cooker is meaningful given a context.
Many different devices can be used in a house to
gain understanding of the activities of daily living
(ADL) or at least to have more information of the
context when particular situations of interest hap-
pen. This knowledge increases the possibilities of
assessing situations and taking decisions correctly.

In order to illustrate our methodology we restrict
ourselves to the use of basic sensors described in the
previous paragraph and focus on the potential uses
of this technology for health related monitoring. De-
tecting a transition in moving from room A to room
B is represented by an eventtdAB on. For example,
tdRK on will represent that the person is activating
an RFID sensor while passing through the door com-
municating the kitchen with the reception area. This
event alone is not enough to detect the direction the
occupant is moving to so disambiguation is needed
with the help of the movement sensors. The acti-
vation of movement sensors in the kitchen is repre-
sented byat kitchen on and the absence of acti-
vation byat kitchen off. A similar convention is
used with sensors at other rooms.

3. An Investigation into Rule-Based Design of
Smart Homes Systems

3.1. ECA rules

Dynamic systems like Smart Homes can be modeled
by considering the occurrence of meaningful events
and the contexts in which those events occur to de-
tect situations of interest, and enable decisions to be
taken. Active databases39 can be used to store infor-
mation gathered from a SH. A characteristic feature
of Active Databases is their use of Event-Condition-
Action (ECA) rules as a way to react to the incoming

information. ECA rules have a syntax of the follow-
ing format:
ON <Event>, IF <Condition>, DO <Action>

This means that whenever an occurrence of the event
described in the ON clause is detected, if the con-
dition described in the IF clause (usually imposing
constraints on different aspects of the events de-
scribed in the ON clause) is true, the action de-
scribed in the DO clause is obeyed by the system.
When the ON clause is satisfied the rule is said to be
‘triggered’ and if in addition to that the IF clause is
satisfied then the rule is ‘fired’.

ON movement sensors activated at kitchen

FollowedBy

RFID sensor in kitchen door activated

IF no_movement_detected for ten units of time

DO assume occupant safety compromised

AND

inform carers

For example, the above rule is triggered when
movement is detected in the kitchen, a spatial transi-
tion occurs and then no further movement in an ad-
joining room is detected. Under the conditions that
the assisted occupant is known to be at home (this
conclusion is the consequence of another rule or set
of rules which can have as a resulting action: ‘set
status variable occupantat home=true’) the action
recommended is to initiate an intervention, e.g. re-
quest a visit from carer.

3.1.1. Uncertainty in ECA rules

Despite the growing research interest in SHs, rela-
tively little work has been carried out in extending
them to encompass the management of uncertain in-
formation. It is also generally accepted that when-
ever real world information is to be represented in
a system, it will be of imperfect nature. Sources of
uncertainty in ECA rules include:

• Uncertain event. The occurrence of the event de-
scribed in the ON clause may be uncertain, e.g. “It
is most likely that the occupant has fallen” or “The
occupant is in the kitchen with 80% certainty”.

• Uncertain condition. Uncertain conditions might
include uncertain queries, e.g. “a sensor can be
considered activated with ‘high’ confidence”.
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• Uncertain relationship between the event/condition
and the actions. Uncertainty may be caused by
weak implication that may occur when an ex-
pert is unable to establish a precise correlation
between the event/condition and the action except
by using degrees of belief. One such situation may
lead to the specification of a rule expressing that if
some events are detected in a context suggesting a
monitored person is active and they are followed
(say 10 units of time later) by other events sug-
gesting sudden suspension of activities, then there
is a significant chance (80% as determined by an
expert) that the occupant may be in a compro-
mised situation (e.g., has fallen or fainted). The
antecedent event associated with the ON clause
refers to continuously monitored events in the
SH. In standard IF-THEN rules these events are
often merged with the IF condition, and this ter-
minology is adopted in the following examples.

IF at_kitchen_on with ‘high’ confidence

Followed_by

tdRK_on with ‘medium’ confidence

Followed_by

no_movement_detected for 10 units of time

THEN assume with 80% confidence

that occupant is compromised

Depending on incoming sensor-related events,
the system evaluates all the ECA-rules to identify
which event part matches the actual situation. These
selected rules may conflict with each other if the
event parts of more than one rule are matched si-
multaneously. Resolving the conflict is a crucial is-
sue in a rule-base inference formalism, especially
when uncertainty is involved. Within the RIMER
framework rule aggregation using an ER approach
resolves the conflict and provides the aggregated
conclusion. This will be explained in section 4.2.

The input for an antecedent attribute may not be
available or may be only partially known. In the in-
ference process, such incompleteness should be con-
sidered because it is related to the strength of a con-
clusion. This will be explained in section 5. Both
complete and incomplete inference can be accom-
modated in a unified manner within the proposed
RIMER framework.

3.2. Time dependent rules

Monitoring activities in a SH is a time dependent
activity in the sense that being able to represent and

reason about the order in which activities developed
and their duration is essential for a correct diagnosis
of the situations. Here we extend the RIMER frame-
work with a temporal dimension. In addition, the
system addresses specific areas of the house, rooms
and their connecting areas, by the way of events,
providing RIMER with spatio-temporal reasoning.
For example there are states of being in a room (stay-
ing in a region)and events of passing from one room
to another (a transition in between regions), (see40).

3.2.1. Time order

Instantaneous events are associated with points
in time. Here we assume a framework where
events can be associated with a linear, dis-
crete, totally-ordered, representation of time
. . . tn−2, tn−1, tn, tn+1, tn+2, . . . over this time struc-
ture order relations like ‘<’ (‘ earlier than’) and ‘=’
(‘simultaneous’) can be defined, in a similar way as
we do with other ordered structures likeintegers.
Hence, the two possible relative positions between
two time pointst1 andt2 are that either one is earlier
than the other or they are simultaneous. We will use
classical logic41 connectives:∧ (“and”), ∨ (“or”),
and ¬ (“not”) to describe different possible tem-
poral constraints over the temporal structure or the
event occurrences associated with elements of that
structure.

In our framework, a rule

IF (E1∧E2∧C3∧C4) THEN A

will be depicted slightly differently to represent that
the conjunction in the antecedent of the rule is also
including temporal order. For that purpose we in-
troduce two symbols̈∧ and ∧: whereA ∧̈ B can be
intuitively read as ‘A is trueand laterB is true’ and
A ∧: B can be intuitively read as ‘A is trueand si-
multaneouslyB is true’. They can be more formally
defined as follows:

A ∧̈ B if and only if
∃t1, t2 such that:
t1 < t2 and A is true att1 andB is true att2
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A ∧: B if and only if
∃t such that:
A is true att andB is true att

So, for example, lets say we use a predicate “oc-
curs(E)” to represent that eventE has been detected
and “true(C)” to represent that a conditionC is ful-
filled in the current state of the system:

IF (occurs(E1) ∧: true(C3))∧̈ (occurs(E2) ∧: true(C4))
THEN A

can be used to depict a scenario where it is mean-
ingful that eventE1 occurs when conditionC3 is true
and that is followed by the occurrence of eventE2

when conditionsC4 is true. Other notions of order
between events occurrences can be defined based on
the previous ones, for example:

B∧̈ A if and only if¬(A∧: B)∧¬(A∧̈ B)

as we are assuming a totally ordered linear temporal
structure.

This in turn has an effect on how rules are trig-
gered. We depict a situation where eventsE1, E2,
E3, andE4 have been recorded simultaneously with
timestamptn and eventsE12, and E13 have been
recorded simultaneously with timestamptm.

Now let’s assume we also have a rule with the
following antecedent

IF occurs(E3) ∧: occurs(E1) THEN . . .

This rule will be triggered by the events that oc-
curred at timetn, however a rule with the following
antecedent:

IF occurs(E3) ∧: occurs(E12) THEN . . .

cannot be triggered. The following rule with a
slightly different antecedent will be triggered by the
events recorded in the database in the order given
above:

IF occurs(E3) ∧̈ occurs(E12) THEN . . .

Other operators can be defined in terms of those,
for example ORnext can be defined as:

a ORnextb =de f

a OR b OR (a ANDlaterb) OR (b ANDlater a)

where OR is the classical logic disjunction.
Naturally in this framework the responsibility

lies in theKnowledge Engineerwho writes the rules
using the correct operators to depict the meaningful
situations that have to be captured. How events are
registered in a particular time depends on the tem-
poral granularity of the system. The usual computa-
tional trade offs apply here. The finer the granular-
ity, the richer the depiction of the world but the heav-
ier the computation. Whilst, the coarser the granu-
larity, the easier becomes computing, but subtleties
are lost. Here we assume that a sensor will keep its
value when excited until the next reading when it is
refreshed so there is no lost signal if the sensor is
excited at a time betweentn andtn+1.

Actions can also have time attached. The time of
the action is always the time when the rule advising
a particular course of action is fired. Actions can be
grouped in two main types:

1. recommendations to personnel: e.g.,“call/visit
the occupant” if he/she has been inactive for a
significant period of time during daytime, and

2. recording actions for the system itself: e.g.,
“assume occupant moved from reception to
Living room” after detecting a sequence: mo-
tion in Reception, followed by occupant iden-
tified by tag detector in Reception to Living
room door, followed by motion in the Living
room.

3.2.2. A richer temporal language

Powerful temporal concepts can be built out of the
language developed, which refer to time passing in
a more succinct way.

A notion that “n units of time have elapsed”
(with n∈ {1,2, . . .} and finite) can be defined as:

UnitsElapsed(n) =de f

eventoccurrence1∧̈ . . . ∧̈ event occurrencen

Timed event occurrences will be recorded each time
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sensors are read and equally, this process of read-
ing sensors at regular intervals will be attached to
a time stamp. Each sensor reading will produce
at least one event detection as a special case of
‘event occurrence’. This can be ‘noevent’, i.e.,
the detection that no event has occurred.

Other definitions can be provided based on the
previous concept:

U pperBoundUnitsElapsed(n) =de f

UnitsElapsed(1)∨ . . .∨UnitsElapsed(n)

to express that at mostn units of time have elapsed.

IsTrueAt(P,n) =de f UnitsElapsed(n) ∧: P

to express that conditionP is true when exactlyn
units of time elapsed.

IsTrueBe f ore(P,n) =de f

U pperBoundUnitsElapsed(n) ∧: P

to express that conditionP is true at a time when less
than or exactlyn units of time have elapsed. Notice
we cannot introduce concepts like “sometimes in the
future” or “ always in the future” as they will imply

translation into unbounded IF-THEN rules (we do
not know exactly how far in the future the event
occurs) but naturally we can use bounded temporal
operators42 based on an interval[a,b] (with a < b
and botha andb finite):

SometimeWithinFutInt[a,b](P) =de f

UnitsElapsed(a)∧̈ (U pperBoundUnitsElapsed(b) ∧: P)

AlwaysWithinFutInt[a,b](P) =de f

¬SometimeWithinFutInt[a,b](¬P)

Similar (mirroring) definitions can be provided
for the past fragment, for example to define:
IsTrueA f ter(P,n), SometimeWithinPastInt[a,b](P),
andAlwaysWithinPastInt[a,b](P).

4. RIMER as a system to design Smart Homes

There are two essential components in a rule-based
SH system: aknowledge baseand aninference en-
gine. They are combined to infer useful conclusions
from rules established by experts, e.g. from the car-
ing personnel and facts obtained from sensors and
other sources (e.g., databases).

Fig. 2. General Architecture
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The general architecture of the system is illus-
trated in Figure 2. The knowledge base is de-
fined and generated by the experts using a relational
database. Some human or social aspects of the situ-
ation cannot be sensed or inferred by sensors or de-
vices and in those cases expert judgment is needed
to provide an approximation of the real situation
with some degree of confidence. The rules-matching
component then searches through a combination of
facts to find those combinations that satisfy the an-
tecedent of rules and select rules that should be fired.
Time-related ordering is used to decide which of the
rules, out of all that apply, have the highest priority
and should be fired first and which of the rules can-
not be used. The activation weight determination is
used to calculate the matching degree of the facts to
the IF part of the rules. These selected rules may
conflict with each other if the IF parts of more than
one rule are matched simultaneously. Then the rule
combination scheme based on the ER algorithm is
applied to get the final aggregated assessment which
solves the rule conflicts. The database will be up-
dated based on the new assessment and be fed into
the rule-base and the new situation.

In the above sections, we have presented a gen-
eral SH environment and explained how diagnosis
in such cases is based on spatio-temporal consid-
erations. Here we expand those considerations in
relation to vagueness, imprecision and incomplete-
ness of the information available. The design and
implementation of rule-based SH systems for sup-
porting decision making will be presented by using
the RIMER framework which is based on Dempster-
Shafer’s theory of evidence43, decision theory44,45

and fuzzy set theory46,47,48,49. Yang et al.22 pro-
posed a new methodology for building a hybrid
rule-base system using a belief structure and for in-
ference in the rule-based system using the ER ap-
proach50,51,25,26,27.

4.1. Belief Rule-Base

A basic rule-baseis composed of a collection of “IF-
THEN” rules. To take into account a degree of belief
in a consequent, attribute weights and a rule weight,
a simple “IF-THEN” rule is extended to a so-called
belief rulewith all possible consequents associated

with belief degrees. A belief rule,Rk, is defined as
follows:

Rk : IF (X1 is Ak
1) AND . . . AND (XTk is ATk

k )

THEN {(C1,β1,k), . . . ,(CN,βN,k)} (1)

with rule weight θk and attribute weights
δ1k,δ2k, . . . ,δTk,k where k ∈ {1, . . . ,L}. βi,k(i ∈
{1, . . . ,N}), such that∑N

i=1 βi,k 6 1, is the belief de-
gree to whichCi is believed to be the consequent
if in the kth rule the input satisfies the antecedent
referential value vectorAk = {Ak

1,A
k
2, . . . ,A

k
Tk
}. L is

the number of all belief rules used in the rule-base.
If ∑N

i=1 βi,k = 1 , the kth belief rule is said to
be complete; otherwise, it isincomplete. Note that
1−∑N

i=1βi,k denotes the ignorance. And∑N
i=1 βi,k 6

0 denotes total ignorance about the output given in
the kth rule. It is further assumed thatT is the to-
tal number of antecedent attributes used in the rule
base.

Take for example the following belief rule, where
values “High confidence”, “Medium confidence”,
“Low confidence” and “None” are abbreviated as
(H), (M), (L) and (N) respectively. The logical sym-
bol ∧̈ is replaced byANDlater which the ASCII
version used in the implementation.
Rk: IF at_kitchen_on with (H) ANDlater

tdRK_on with (L) ANDlater

no_movement_detected with (H)

THEN estimated confidence that

the occupant is compromised is

{(H, 0); (M, 0.4); (L, 0.6), (N, 0)}

Here {(H,0),(M,0.4),(L,0.6),(N,0)} is a be-
lief distribution representation of the person’s com-
promised health status (e.g. has fallen or fainted),
indicating that we are 40% sure (the level of confi-
dence) that the occupant has fainted is medium, and
60% sure that the occupant has fainted is low. In this
belief rule, the total degree of belief is 0.4+0.6=1, so
the assessment is complete.

Remark 1: Note that in a rule-base, areferen-
tial value setcan be a set of meaningful and dis-
tinctive evaluation levels for describing an attribute
(here an event or a condition), e.g., it can be sub-
jective linguistic terms. The referential value set for
‘at kitchen on’ is given byA1 = {H,M,L,N}. In a
general rule-base, the attributes involved in each rule
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can be different in type, so their referential value sets
may be also different in type.

Remark 2: Let X = (X1,X2, . . . ,XTk),
Ak = (Ak

1,A
k
2, . . . ,A

k
Tk

), C = (C1,C2, . . . ,CN),
β k = (β1,k,β2,k, . . . ,βN,k), andδ = (δ1,δ2, . . . ,δTk).

X is referred to as an input vector to thekth rule,
Ak a packet antecedent,Ak

i (i = 1,2, ,Tk) the ith refer-
ential values of the packet antecedentAk, C the con-
sequent vector,β k the vector of the belief degrees,
and δ the attribute weights of all theT antecedent
attributes in the rule base. Suppose allL rules are
independent of each other, which means that the an-
tecedent referential value vectors{A1, . . . ,AL} are
independent of each other.

In a traditional rule, the consequent is either
100% true or 100% false. Such a rule base has
limited capacity in representing knowledge in a real
world. A belief rule like the one given represents
functional mappings between antecedents and con-
sequents possibly with uncertainty. It provides a
more informative and realistic scheme than a sim-
ple IF-THEN rule base when we need to consider
uncertainty in knowledge representation.

4.2. Inference using the evidential reasoning
(ER) approach

Given an input to the system,UEC = (Ui |i =
1, . . . ,T), how can the rule base be used to infer and
generate an output?T is the total number of an-
tecedent attributes in the rule base,Ui(i = 1, . . . ,T)
is the ith antecedent attribute, which can be one of
the following types:continuous, discrete, symbolic
andordered symbolic. Before the start of an infer-
ence process, the matching degree of an input to
each referential value in the antecedents of a rule
needs to be determined so that an activation weight
for each rule can be generated. This is equivalent to
transforming an input into a distribution of referen-
tial values by using belief degrees. The antecedent
attributes involved in a rule for a SH system could
be quantitative or qualitative, so that the input for
each antecedent attribute may be different both in
type and in scale. To facilitate data collection, it
is desirable to acquire assessment information in a
manner appropriate to a particular attribute.

Using the notations provided above, the activa-
tion weight of thekth rule,wk, is calculated as22:

wk =
θk×∏Tk

i=1(αi,k)
δ i

∑L
j=1θ j ×∏Tk

l=1(αl , j )δ l
(2)

where:

δ i =
δi

maxi=1,...,Tk{δi}
so0 6 δ i 6 1

Here αi,k(i = 1, . . . ,Tk), called theindividual match-
ing degree, is the degree of belief to which
the input for the ith antecedent attribute be-
longs to its referential valueAk

i in the kth

rule, αi,k > 0 and ∑Tk
i=1 αi,k 6 1. The set

αk = ∏Tk
i=1(αi,k)

δ i , is called thecombined match-
ing degree. Note that 06 wk 6 1(k = 1, . . . ,L) and
∑L

i=1 wi = 1. Also note thatwk = 0 if the kth rule is
not activated.

Having determined the activation weight of each
rule in the rule base, the ER approach25,26) can be
directly applied to combine the rules and generate
final conclusions. Suppose the outcome of the com-
bination yields the following

O(U) = {(Cj ,β j)| j = 1, . . . ,N} (3)

The outcome expressed by equation ( 3) reads that
if the input is given byUEC = (Ui |i = 1, . . . ,T) then
the consequent is “C1 to a degree ofβ1”, “C2 to a
degree ofβ2”, . . . , and “CN to a degree ofβN”. Us-
ing the analytical format of the ER algorithm22 the
combined belief degree inCj can be generated as
follows:

β j =
µ × [M1−M2]

1−µ × [∏L
k=1(1−wk)]

(4)

with
M1 = ∏L

k=1(wkβ j,k +1−wk∑N
j=1β j,k)

M2 = ∏L
k=1(1−wk ∑N

j=1β j,k)

µ = [
N

∑
j=1

M1− (N−1)M2]−1

where j = 1, . . . ,N andwk is calculated by equation
( 2).

This permits the computation of the belief degree
distribution.
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4.3. Implementation Steps

Considering both the time dependent rules and the
rule with belief structures, the rule-based inference
can be implemented in the following steps:

Step 1: Establish the belief rule expression matrix
for a belief rule-base;

Step 2: Trigger rules based on the occurrence or-
dering of each event in the IF part (for time
dependent rules):

1. Check the antecedent attributes/events
involved in the rule-base (by index) and
their occurrence orderings, represented
by a matrix via index, i.e.,[Oi j ], i =
1, . . . ,Tj and j = 1, . . . ,K; where Tj is
the number of attributes/events in the IF
part of thejth rule;K is the number of all
the rules in the rule base. For example,
Oi j = 2 means that theith event occurs
in the 2nd place in the IF part of thejth

rule.
2. Check the observed antecedent at-

tributes (by index) and their occurrence

orderings, represented by a vector[am].
am = 2 means that themth event occurs
in the 2nd place in the IF part.

3. If the input ordering of the data coming
from the SH matches the IF part order-
ing in the jth rule, then thejth rule is
activated.

Step 3: Transform the various types of input infor-
mation into a distribution with the degree of
belief using the technique in Section 4.2. Each
belief is the individual matching degree of the
input to the linguistic value.

Step 4: Calculate rule activation weight. The acti-
vation weightswk (k = 1, . . . ,L) are generated
by using equation ( 2).

Step 5: Combine activated rules using the ER26

by using equation ( 4). The ER approach is
implemented in the IDS software52, through
which the activated rules can be combined to
yield the final outcome.

Real System

Belief Rule Base 

),,( , ikki

Input (U) )(P

Simulated output (O)

Observed output (O )

Fig. 3. Illustration of Optimal LearningProcess

4.4. Optimal method for training belief rule
bases in RIMER

Although it is possible to establish a belief rule base
by extracting knowledge from experts, the perfor-
mance of the system can be improved if the rules are
fine tuned through learning from available historical
data.

The adjustable parameters of a rule base are be-
lief degrees(β1,k,β2,k, . . . ,βN,k), rule weightsθk for
k= 1, . . . ,L and attribute weights(δ1,δ2, . . . ,δTk)

22.
Figure 3 sketches the process of training a be-

lief rule base, whereU is a given input,O the cor-
responding observed output, either measured using
instruments or assessed by experts,O the simulated
output generated by the belief rule based system,
ξ (P) the difference betweenO and O, and

P= (βi,k,θk,δ j ; i = 1, . . . ,N;k= 1, . . . ,L; j = 1, . . . ,T)
(5)

are the adjustable parameters. The objective of
the training is to minimize the differenceξ (P) by
adjusting the parametersP. This objective is diffi-
cult to achieve manually even by experts, however
there are computer algorithms available to solve the
problem. Yanget al. 53 and Liuet al. 54 discuss in
more detail how the problems can be constructed for
different types of output and algorithms applied to
solve them. By using the optimal learning methods
for training the belief rules, the belief rule based sys-
tem can learn from SH data the relationship between
event/condition and the possible action. It has also
been demonstrated53 that learning could start with
a random rule base and therefore prior-knowledge
does not have to be provided.

5. Case study

5.1. Problem description

Consider a scenario where there is a potential hazard
related to the SH occupant and different procedures
can be put in place to prevent the hazard or to re-
act if there is an indication that the occupant may
be at risk. Absence of motion for a period which is
considered unusually prolonged combined with the
occupant’s location and the time of the day can be
considered an indication that the occupant may be
at risk. It is in the interest of the occupant that the
system reacts preemptively, e.g., initiate direct con-
tact with the occupant for confirmation. If contact
is made, consider situation to be normal, otherwise
trigger a pre-established emergency procedure.

However, there could be ambiguous scenarios,
e.g., when the occupant is standing under doors for
a prolonged period of time, which results in absence
of motion in the rooms. If the occupant remains mo-
tionless under a door connecting two rooms: is it
likely that the person has fallen, fainted, is resting or
is talking to someone else in another room?

First we give a general schema without consid-
ering uncertainty representation and then we show
how this information can be dealt with by following
the RIMER approach.

We will assume that the occupant has
‘fainted’,and no motion sensors have been activated
for a considerable length of time. Below we exem-
plify with the door connecting the reception area
with the Living room. Similar groups of schema
rules should be in the Knowledge Base with respect
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to the other doors. Using the operator “ANDlater”
introduced in Section 3, which checks the order of
arrival of the knowledge atoms to the Knowledge
base, an IF-THEN rule can be given as follows:
IF at_kitchen_on ANDlater

tdRK_on ANDlater

no_movement_detected

THEN assume the occupant has fainted

The above mentioned IF-THEN rule is the rule
without considering the uncertainties involved. The
following sub-sections will extend this rule in such
a way that the belief rule can cover different levels
of uncertainty.

5.2. Referential Grades of the Antecedents and
Actions

The number of referential grades used for each an-
tecedent decides the size of the rule base. If the num-
ber is too large, there will be too many rules, and the
inference process will be more demanding. If it is
too small, the grades may not be able to cover the
value range of an antecedent attribute. This is es-
pecially true for a conventional rule base. Normally
3 to 9 referential grades are used. The number of
referential grades for a consequent attribute is also
comparable to those of the antecedent attributes. Be-
cause of the presence of uncertainty in the system,
the observation or confidence for each input state
may be uncertain. This example uses the input states
(“at kitchen on”, “tdRK on” and no motion sensors
activated for a considerable length of time) to pre-
dict if a occupant has fainted. The necessary com-
binations of states “atkitchen on” and “tdRK on”
are based on the monitoring from the equipment and
the opinion given by experts. This judgment is in-
evitably associated with uncertainties due to inabil-
ity to provide precision all the time about the sen-
sors, or the lack of information, or the vagueness
and ambiguity in the meaning of some attributes and
their assessment. So the input states could be di-
rectly associated to a distribution using their referen-
tial linguistic grades with the degrees of belief based
on subjective judgments. For illustration purposes,
each of these input states and the output state (con-
fidence to which the person may have a health prob-
lem, e.g., had fainted) are defined as having values

of High (H), Medium (M), Low (L) or None (N).
That is, the grades for “atkitchen on” are:

Ak
1 ∈ {H,M,L,N}, k∈ {1, . . . ,L}

similarly we also use those grades for “tdRKon”
(Ak

2) and for “no movement” (Ak
3). Each state is

assessed into a belief distribution representation of
these four values. For example if the assessment of
“at kitchen on” is

{(H,β1),(M,β2),(L,β3),(N,β4)}

implies the possibility of “atkitchen on” be-
ing triggered and also the confidence level of
“at kitchen on” if it occurs, whereβi(i = 1, . . .4,)
represents the degree of confidence in a particular
belief.

If a “NOT” connective is used in the rule it has
the semantics of “failing to detect”. This can be used
in two ways, a) the corresponding sensor was not
activated (for example, no movement was produced
in the kitchen so that sensor will stay off) and b)
even when there was an activation, the context ad-
vised not to consider it as such (for example, a sen-
sor signal is dismissed because other aspects of the
scenario lead to the belief that it is malfunctioning).
This can be also rephrased by stating that the event is
assessed as “None” with belief degree 1. For exam-
ple, for “None”, if the occupant is believed to be at
home with confidence graded “None”, then it means
the occupant is absent from home.

For the consequent attribute, four cases are con-
sidered, i.e., High (H) possibility that the occupant
has fainted; Medium (M) possibility that the occu-
pant has fainted; Low (L) possibility that the occu-
pant has fainted and, in the most positive scenario,
None (N) meaning that nothing significant has hap-
pened. So this example uses the input states to pre-
dict “if a occupant has fainted” in terms of qualita-
tive linguistic terms.

5.3. Defining the Rule Base

Space constraints do not allow us to give a full ac-
count of all the rules of all knowledge bases, instead
we focus on how to attach the representation of un-
certainty to a rule related to the detection of our ref-
erence scenario. Using the linguistic grades, one of
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the conventional rules for predicting “if a occupant
has fainted” is given:
IF at_kitchen_on with (H) ANDlater

tdRK_on with (H) ANDlater

at_reception_off with (H)

THEN assume with confidence (H)

the occupant has fainted

The rule has only one consequent with a belief
degree being always exactly one. Such conventional
IF-THEN rules cannot capture the continuous re-
lationships between the antecedent and the conse-
quents. Therefore, the expert system may not be
able to accurately reflect the real context, in this case
what happens in the SH. We can extend the rules
using the belief structure to provide better flexibil-
ity and versatility which are needed to model hu-
man reasoning more adequately. The definitions of
the extended rules using linguistic terms with the
consequents having the dedicated degrees of belief
are given in Table 1. Note that in the table we uti-
lize at receptionoff with high confidence to imply
“no movementdetected” in the observed time pe-
riod. There are sixteen rules according to the num-
ber of linguistic terms in the input states. The de-
grees of belief in the consequents were assigned
by the researchers as a result of the observation of
the given expert judgments. In a more systematic

scheme, the belief degrees could be trained using ex-
pert judgments as test data and may also be updated
once new evidence becomes available. The rule base
can be applied to both discrete and continuous rea-
soning processes.

The rule given in this section is represented by
the 2nd row of the table.

IF at_kitchen_on with (H) ANDlater

tdRK_on with (M) ANDlater

at_reception_off with (H)

THEN the estimation that

the occupant has fainted is

{(H, 0.7); (M, 0.3); (L, 0); (N, 0)}

Here (H, 0.7); (M, 0.3); (L, 0); (N, 0) means the
system has a degree of confidence of 70% that “the
occupant has fainted” occurred with high possibility,
and of 30% that “the occupant has fainted” occurred
with medium possibility. The example aims to de-
termine a confidence degree to which theexpertbe-
lieves that the occupant may have a health problem
so that the emergency procedure can be applied. For
example, if the final output for “if a occupant has
fainted” is with low or zero confidence, then no fur-
ther actions are needed. If the final output for “if a
occupant has fainted” is with medium or high confi-
dence, the possible further actions can be applied.

Table 1. Rule-base table

Rule Antecedents Consequent

at kitchen
on tdRK

at reception
off Belief distribution

1 H H H {(H, 0.9), (M, 0.1), (L, 0), (N, 0)}
2 H M H {(H, 0.7), (M, 0.3), (L, 0), (N, 0)}
3 H L H {(H, 0), (M, 0.4), (L, 0.6), (N, 0)}
4 H N H {(H, 0), (M, 0), (L, 1), (N, 0)}
5 M H H {(H, 0.7), (M, 0.3), (L, 0), (N, 0)}
6 M M H {(H, 0.3), (M, 0.7), (L, 0), (N, 0)}
7 M L H {(H, 0), (M, 0.3), (L, 0.7), (N, 0)}
8 M N H {(H, 0), (M, 0), (L, 1), (N, 0)}
9 L H H {(H, 0), (M, 0.4), (L, 0.6), (N, 0)}
10 L M H {(H, 0), (M, 0.3), (L, 0.7), (N, 0)}
11 L L H {(H, 0), (M, 0), (L, 0), (N, 1)}
12 L N H {(H, 0), (M, 0), (L, 0), (N, 1)}
13 N H H {(H, 0), (M, 0), (L, 0), (N, 1)}
14 N M H {(H, 0), (M, 0), (L, 0), (N, 1)}
15 N L H {(H, 0), (M, 0), (L, 0), (N, 1)}
16 N N H {(H, 0), (M, 0), (L, 0), (N, 1)}
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5.4. Belief rule inference using the evidential
reasoning (ER) approach

Using the rule-base in Table 1 and the RIMER infer-
ence scheme, the consequent estimate is generated.
Following we explore some possible combinations
of values to see how the system reacts.

Case 1: The input for “atkitchen on” is given by
the expert with a belief distribution, for ex-
ample: {(H, 0.9); (M, 0.1); (L, 0); (N, 0)}
which means that the experts are 90% sure
that “at kitchen on” occurred with high con-
fidence, 10% that “atkitchen on” occurred
with medium confidence. The input for
“tdRK on” is given by the expert with a belief
distribution, for example:{(H, 0.9); (M, 0.1);
(L, 0); (N, 0)} Moreover, there is no motion
sensors activated for a considerable length of
time, represented as:{(H, 1); (M, 0); (L, 0);
(N, 0)} i.e., 100% sure that nothing happened.
In summary, it is represented as:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ....

The output is implemented as in the following
steps:

Step 1: Transform the input. Here the input
is given as a distribution using linguistic
terms with the degrees of belief based on
subjective judgments. Each belief is the
individual matching degree of the input
to the linguistic value. For example, the

matching degree of the input to the lin-
guistic value “High” of “at kitchen on”
is 0.9, and 0.8 for “Medium”, etc.

Step 2: Calculate rule activation weight.
The activation weightswk for all the six-
teen rulesRk(k = 1, . . . ,16) are gener-
ated by using equation ( 2) in Section 4.1
by w1 = 0.81,w2 = 0.09,w3 = 0,w4 =
0,w5 = 0.09,w6 = 0.01,w7 = 0,w8 =
0,w9 = 0,w10 = 0,w11 = 0,w12 =
0,w13 = 0,w14 = 0,w15 = 0,w16 =
0, respectively. For example,α1 =

∏T1
i=1(α1,i)

δ i = 0.9×0.9×1 = 0.81, see
explanation for equation (2). HereT1 is
the number of antecedent attribute in the
ist rule andT1 = 3. Following the same
steps,αi can be obtained, and then us-
ing equation (2),ωi(i = 1, . . . ,16) can be
obtained. Note that the attribute weights
and the rule weights are assumed to be
one.

Step 3: Combine activated rules. The ER ap-
proach26 is employed to combine the
activated rules. Using the IDS software,
the activated rules can be combined to
yield the following outcome (see Case 1
in Figure 4):

O(U(1)) = {(Cj ,β j), j = 1, . . . ,4} =

{(H, 0.8969); (M, 0.1031); (L, 0); (N, 0)}
(6)

whereβ j is given by equation ( 4), and
(C1, C2, C3, C4)= (H, M, L, N).

which means that we are 89.69% sure that
the occupant has fainted with high confidence,
10.31% sure that the occupant has fainted
with medium confidence, 0% sure that noth-
ing happens for the occupant.
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Fig. 4. Belief distribution for Case1: atkitchenon (H),
tdRK (H), at receptionoff (H); Case2: atkitchen on (H),
tdRk (M), at receptionoff (H); Case3: atkitchen (H),
tdRK (L), at receptionoff (H); Case4: atkitchen on(L),
tdRk (L), at receptionoff (H)

Case 2: Suppose that the input information is give
as follows:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0.2); (M, 0.8); (L, 0), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the
system output is (see Case 2 in Figure 4):
O(U(2)) = {(Cj ,β j), j = 1, . . . ,4} =
{(H, 0.7276); (M, 0.2724); (L, 0); (N, 0)}

Case 3: Suppose that the input information is give
as follows:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0); (M, 0.2); (L, 0.8), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the
system output is (see Case 3 in Figure 4):
O(U(3)) = {(Cj ,β j), j = 1, . . . ,4} =
{(H, 0.0517); (M, 0.4022); (L, 0.5461); (N, 0)}
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Case 4: Suppose that the input information is given
as follows:

IF at_kitchen_on with

{(H, 0.1); (M, 0.1); (L, 0.8), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0); (M, 0.2); (L, 0.8), (N, 0)}

confidence ANDlater

no_movement_detected with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the
system output is (see Case 4 in Figure 4):
O(U(4)) = {(Cj ,β j), j = 1, . . . ,4} =
{(H, 0.0076); (M, 0.0543); (L, 0.9381); (N, 0)}

We may notice that firstly, if the activation
weight of a rule is equal to 0 (e.g.,w3 = 0), then
the weight and the belief degree of this rule will
have no influence on the final output; If the acti-
vation weight of a rule is not equal to 0, then the
weight and the belief degrees of this rule will affect
the final output. The degree to which the final out-
put can be affected is determined by the magnitude
of the activation weight and the belief degrees. The
logic behind the approach is that if the consequent
in the kth rule includesCi and thekth rule is acti-
vated, then the overall output must beCi to a certain
degree. As shown from the examples, the degree is
measured by both the degree to which thekth rule
is important to the overall output and the degree to
which the antecedents of thekth rule are activated
by the actual input. The distribution assessment pro-
vides a panoramic view about the output status, from
which one can see the variation between the orig-
inal output and the revised output on each linguis-
tic term. From the above examples we may notice
that if vague information coexists with ignorance or
incompleteness caused due to the evidence not be-
ing strong enough to make simple true or false judg-
ments but with degrees of belief, the RIMER system
can provide a flexible and effective way to represent
and deal with such uncertain assessment information
to arrive at rational conclusions.

Fig. 5. Belief distribution for atkitchen on (H), tdRk (H),
at receptionoff (incomplete)

5.5. Inference based on incomplete input
information

Assume one of the main events in the antecedent
of our IF-THEN rule is not known. For example,
we know “atkitchen on” with high confidence and
“tdRK on” with relatively high confidence, but we
only have partial evidence that after some time units
the person is not moving, i.e., we are not 100% sure,
lets say the belief distribution is (H, 0.7); (M, 0); (L,
0), (N, 0). This could be due a sensor fault, expert’s
inability to provide precise judgments, or informa-
tion not being transmitted properly over the network
from the SH to the computing centre. We can still
infer the result based on the rule-base. To illustrate
how incomplete input can be dealt with in the infer-
ence methodology, in the above case study we use
the following input information:

IF at_kitchen_on with

{(H, 0.8); (M, 0.2); (L, 0), (N, 0)} confidence

ANDlater

tdRK_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)} confidence

ANDlater

at_reception_off with

{(H, 0.7); (M, 0); (L, 0), (N, 0)} confidence

THEN ...

Notice that the experts are only 70% certain that
there is no movement detected (atreceptionoff). In
other words, the degree of ignorance is 0.3. Due to
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the assumed incomplete input for, we need to up-
date the belief degree of the relevant rules to reflect
the incompleteness. If we apply our methodology as
in the previous section then the conclusion from the
system will be: (high, 0.5946); (medium, 0.1319);
(low, 0.0055); (nothing, 0); (unknown, 0.2680)
where “Unknown” in the above result means that the
output is also incomplete due to the incomplete input
(see Figure 5). Hence, both complete and incom-
plete inference can be accommodated in a unified
manner within the proposed RIMER framework.

6. Conclusions

Smart Homes are considered as one way to decen-
tralize the delivery of health care to the population.
Although there are many possible applications, cur-
rent SH settings are devoted to their use as a protec-
tive environment for vulnerable people where their
daily activities can be monitored in order to pre-
vent hazards, profile behavior to facilitate diagnostic
tasks or to react to a problem.

Although the hardware and communication lay-
ers of these systems are available and have been con-
sidered at length in the literature, the software side
of these systems have not made similar advances.
This article shows how the combination of spatio-
temporal and uncertainty reasoning (using the ER
approach) can improve the ways in which SHs can
be designed. We emphasized the importance of em-
bedding into the system spatio-temporal knowledge
in order to assess how the diagnosis of a situation is
dependent on where it is occurring and on the order
and duration of the events that lead to that situation.
We have introduced the temporal operators “AND-
later” and “ANDsim”, upon which a richer temporal
language can be constructed. In the current imple-
mentation the operators are parsed before run time
and IF-THEN rules produced with antecedents using
>, = and Boolean operators. Future work will be
oriented towards including the more complex tem-
poral operators in the final language interpreted by
the inference engine. This enriches the way a deci-
sion support system can help to diagnose if the situa-
tion deserves intervention. Equally important is the
ability to cope with uncertainty due to the lack of

complete information or the unreliability of some of
the technical components involved (e.g., networks
and sensors). The resulting system can represent
knowledge about the activities in a SH. The knowl-
edge can then be used to detect a problem, which
is occurring or is likely to occur, to infer about the
nature of the problem and to advise with interven-
tion procedures through which the problem can be
resolved in order to ameliorate the situation. This
intervention can be achieved by controllable devices
in the house or manually by carers (e.g., nurses, se-
curity personnel, relatives).

So far SHs systems design has neglected these
issues and the focus of the literature has been much
more on the possible benefits of the associated tech-
nology than on how to achieve them. Here we pro-
vide a solid foundation for the development of these
kind of systems. Much remains to be done, particu-
larly regarding verification of the reasoning process
in a practical setting where the occupant is under-
taking normal ADL. However the case studies de-
veloped can bring to the attention of the future de-
velopers the importance of these concepts and the
need to provide systems with solid theoretical foun-
dations.

In a belief rule based system, while human ex-
pert knowledge is used to construct a roughly cor-
rect belief rule base (a potential weakness), learn-
ing can help to fine tune system performance if the
system input-output data are available. We believe
that reasoning with fine-tuned logical rules is more
acceptable to human users than the recommenda-
tions given by a black box system (e.g. neural net-
work), because such reasoning is comprehensible,
provides explanations, and can be verified automat-
ically and validated by human inspection. It also in-
creases confidence in the system, and may help to
discover important relationships and combinations
of features53.

In conclusion, combining spatio-temporal rea-
soning with uncertainty reasoning captures essential
concepts that we believe should be considered when
designing a SH system. Equally these characteris-
tics are important to other applications of Ambient
Intelligence, whether the environment under consid-
eration is a hospital, a manufacturing unit or a street.
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