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Abstract

Software systems have evolved from monolythic programs to systems constructed from
parallel, cooperative components, as can be currently found in object-oriented applications.
Although powerfull, these cooperative systems are also more difficult to verify.
We show it is possible to automatically translate a PARADIGM specification to a Propo-

sitional Linear Temporal Logic based program. This has several interesting consequences:
a) on one hand we allow a more declarative view of PARADIGM specifications, b) the re-
sulting translation is an executable specification and c) as we show in this work it can also
be useful on verifying correctness properties by automatic means. We think this will con-
tribute to enhance the understanding, usability and further development of PARADIGM,
and related methods like SOCCA, within both the Software Engineering and the Knowledge
Engineering communities.
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1 Introduction

PARADIGM [vSGO87] is a high-level modelling language which has been proposed for designing
parallel and cooperative systems. It is well known as being the sublanguage of SOCCA [EGS99]
used for modelling object communication, coordination and cooperation. Basically, PARADIGM
models a system as a set of parallel, communicating processes.

Propositional Linear Temporal Logic (PLTL) has been used in the specification of dynamic
systems and verification of their behaviour correctness ([MP89] and [Pnu99]). Different speci-
fication and verification systems have been proposed in the literature, notably STeP [BBC+99]
and SPIN [Hol97]. In the STeP framework SPL can be used to specify a system that is translated
to a Fair Transition System. Then, behaviour properties expressed by temporal logic formulas
can be verified using a deductive approach. In the SPIN framework a system is specified us-
ing the Promela language to represent a system conceived through a Global State Automata.
Then temporal logic formulas can again be verified but in this case using the model checking
technique. Other approaches to verification are based on more complex temporal assumptions
like branching time, e.g. Kronos [Yov97], here we focus on linear time leaving verification over
branching time and other issues for future exploration.

We show it is possible to automatically translate a PARADIGM specification to a PLTL-based
program, thus obtaining an executable model for the real system. This program will be com-
posed by a number of logic rules implying, at any time, the current state of process executions.
These rules can be entirely generated from the information provided in any PARADIGM model.

A number of benefits can be obtained from such a translation. Firstly, a temporal logic
framework supports definition and automatic verification of certain desirable properties about
the model. Properties are expressed as queries to a PLTL interpreter with the logic program as
a knowledge base. One such implementation of a deductive system we used for our proposal is
ETP, [CA99] that provides interpretation for a subset of PLTL covering more of the properties
discussed at the end of this article. Secondly, this program can also be used as a simulation tool:
process executions can be traced to any situation of interest. This feature can be useful in the
design stage of the software development: we can change the PARADIGM model, translate it
to a logic program, and study the process behaviors until functional system requierements have
been met. Finally, the logic approach offers a different, declarative way for studying PARADIGM
models. We think this new features will contribute to enhance the understanding, usability and
further development of PARADIGM, and related methods like SOCCA, within both the Soft-
ware Engineering and the Knowledge Engineering communities.

This paper is organized as follows. Section 2 explains the main concepts of PARADIGM models.
Section 3 explains the logic framework we use to specify the outcome of the translation process.
The translation process itself is conceptually explained in Section 4. In Section 5 we show an
algorithm which can be used to implement the translator. A complete example is developed in
section 6. Section 7 shows some examples of verification properties. Conclusions are given in
section 8.
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2 PARADIGM

PARADIGM models a dynamic system as a set of parallel processes. Processes are modelled as
state transition diagrams (std from now on), and they can be regarded as employees or man-
agers. Managers coordinate their employees by prescribing them a proper set subprocesses.

A subprocess is a temporal constraint placed on the employee behavior. It is modelled as an
std which inherits a subset of employee states and transitions, meaning that as long as this
subprocess is prescribed the employee can only achieve part of its complete behavior. Because
any employee can be controlled by several managers, its behavior at anytime results from the
composite behavior assigned by each of its currently prescribed subprocesses. For example, for
an employee could perform a given transition, this transition must be contained in all of its
currently prescribed subprocesses. For the sake of simplicity, we have assumed all processes of
the PARADIGM model are always active.

Traps model the points in execution where employees need coordination. They are defined as
being a subset of subprocess states. Once a employee enters the first state of those defining
a trap, the manager which prescribed the subprocess containing that trap is notified, and the
employee can only perform transitions that are inside the trap.

Manager states are assigned a set of subprocesses, one per employee. This set is currently
prescribed as long as the manager remains on that state, but it is possible for a subprocess to be
prescribed on several manager states. A manager cannot prescribe, at a given time, more than
one subprocess per employee. Manager transitions are assigned a set of traps, meaning these
traps must be entered for the transition could be performed. Employee executions cannot proceed
outside of traps until the manager prescribes the proper set of subprocesses, thus changing their
behavior restrictions, and in the other way managers cannot proceed until the proper employees
are inside their traps. An interesting example of a PARADIGM model is explained in [EGS99].

3 The Temporal Logic

This section is devoted to introduce the temporal language to be used later for the specification
of temporal properties. We just give a short introduction to the temporal logic layer of this
proposal. More details about the formal theory, its use to extend Prolog with temporal opera-
tors and the algorithm used to implement an interpreter for the resulting language, ETP, can
be found in [CA99].

Here we conceive the dynamic of the system specified with PARADIGM as a discrete sequence
of steps associated to a linear conception of time ordered under relation ≤. The system being
specified then will evolve along a sequence of states σ = s0, s1, . . . where s0 is the initial state.
The system can or cannot have a final state sf , allowing the consideration of reactive systems, a
class of systems PARADIGM is well equipped to deal with. Each state si is defined by a set of
atomic propositions, those who are true at that state. A set of properties θ is assumed to hold
at the initial state. After n steps a computation σ = s0, . . . , sn had gone through |σ| = n + 1,
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states. Time here is used to refer to the different stages the system goes through. We assume a
propositional language LP based on the traditional temporal operators ✸A (A is true in some
future state) and ✷A (A is always true from the next state on). For simplification we consider
in this article only the future fragment. Other well known operators like ⊕, U (until) and the
past fragment can be added to the proposal in the future with interesting benefits during the
verification stage. The set of well formed formulas of the temporal language can be defined
inductively as follows:

φ = p|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|✸φ|✷φ

where p is an atomic proposition. We define when a proposition φ is true in st where 0 ≤ t ≤ |σ|
in a process σ, (σ, t) |= φ, as follows:

(σ, t) |= p iff p ∈ st with p atomic
(where st |= p means “p is true at st”)

(σ, t) |= ¬φ1 iff (σ, t) �|= φ1

(σ, t) |= φ1 ∨ φ2 iff (σ, t) |= φ1 or (σ, t) |= φ2

(σ, t) |= φ1 ∧ φ2 iff (σ, t) |= φ1 and (σ, t) |= φ2

(σ, t) |= φ1 → φ2 iff (σ, t) �|= φ1 or (σ, t) |= φ2

(σ, t) |= ✸φ iff there exists s > t : (σ, s) |= φ
(σ, t) |= ✷φ iff for all s > t : (σ, s) |= φ

This language will give us a set of well formed formulas that is rich enough to encode in a
declarative way the PARADIGM specification. It also allow us to represent well known schema
formulas [MP92] that can be used to query the resulting temporal logic program in order to verify
correctness of behaviour. Some examples of this formulas are: ✷φ (safety) and others from the
“liveness family” like ✸φ (guarantee), ✷(φ1 → ✸φ2) (response/recurrence), ✸✷φ (persistence)
and ✷✸φ1 → ✷✸φ2 (progress). The framework assumes sets of propositions whose cardinality
is dependent on the sets of manager and employee processes, they should not be prohibitively
large sets as modularity will demand to keep manager and employee processes sets reasonably
small.

Finally, we give our temporal logic a persistence semantics. This means a proposition P is
considered true from the time it is asserted until the time it is denied, i.e. until the time
proposition ¬P is explicitely asserted. This help us to express time periods: if a given information
is modelled by proposition P , and it is considered valid from time t to time t + n, n ∈ N, then
this period can be expressed by asserting P at time t and ¬P at time t+ n+ 1. In our system,
P remains true during t, . . . , t + n.

4 The translation process, conceptually

The goal of the translation process is to produce a PLTL-based program, P, which simulates the
behavior of the processes included in the PARADIGM specification. This work focuses on the
elements of a PARADIGM specification that are translated, and the logic rules that result as
an outcome. Although we will not give too specific details about how the translation is actually
performed (section 5), the main steps of the translation procedure are explained and exemplified.
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The evolution of process executions can be expressed as a sequence of time periods: a) the time
processes remain on each state, b) the time subprocesses remain prescribed to each employee
and c) the time employees remain inside their traps. This knowledge will be expressed by a
set of propositions: a) proposition ST , where ST denotes a state of a given process P , will be
true anytime P remains on ST , b) proposition SP , where SP denotes a subprocess of a given
employee E, will be true anytime SP remains prescribed to E and c) proposition TP , where
TP denotes a trap of a given employee E, will be true anytime E remains inside TP . We will
assume all propositions denoting states, subprocesses and traps are unique.

Program P will be constructed as a collection of rules implying the validity periods for proposi-
tions ST , SP and TP . Rules will assert or deny the truth of these propositions at a given time,
depending on the set of preconditions that are true at that time. These assertions and denials,
together with the persistence semantics of our logic framework, are enough to model the time
periods where propositions are true. These rules will be introduced in section 4.1, 4.2, 4.3, 4.4
and 4.5.

It is worth mentioning that state changes can take any amount of time to be performed. This
include the time processes remain on their states and the time transitions take to be performed.
As this information is not provided by PARADIGM models, we have respected its ordering se-
mantics: we only reflect the order in which states can be visited, not the time it takes. Thus,
state changes will be expressed by rules with schema ✷(Pre → ✸Pos) where Pre is a set of
preconditions which must hold for the change could be performed, and Pos is a set of postcondi-
tions holding after the change. Note the use of ✸, expressing that the change eventually occurs,
but we cannot be sure when it does.

Translation steps will be better explained through an example we have adapted from [EGS99].
In [EGS99] the ATM system is modelled in SOCCA. Strictly speaking, only Figs. 3 to 20 describe
the PARADIGM model because it is just one of the four perspectives which are used in SOCCA
for modelling a system. Nevertheless, we have decided to show other perspectives for making
the example more readable.
The data perspective describes the static nature of a system as a collection of related classes
(SOCCA is object-oriented). Fig. 1 shows two classes, ATM and BankComputer with a set of meth-
ods defining their interfaces. Also, a “use” relationship is shown describing which methods of
BankComputer are called by ATM in order to perform its services. In particular, verifyAccount()
and processTransaction() will be respectively called by checkPIN() and getMoney() as part
of their function.
The behavior perspective describes, by means of state transition diagrams, the visible (external)
behavior of the objects of a class in terms of the allowed sequence of method calling. Fig. 2
shows the behavior perspective for ATM and Bankcomputer. There we can see, for example, that
getMoney() is never called before checkPIN().
The communication perspective is specified in PARADIGM. All methods are assigned an em-
ployee process, and all classes are asigned a manager process. Each manager related to a given
class C controls all employees related to methods of C plus all employees related to methods of
other classes which call methods of C. For instance, process checkPIN (Fig. 3) is responsible for
checking user’s magnetic card with the personal identification number, but for doing this it needs
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Figure 1: Data perspective

to call process verifyAccount (Fig. 9). Both processes are employees of manager BankComputer
(Fig. 13), which coordinates the calling-called relationship by prescribing each employee a differ-
ent set of subprocesses as needed. Figs. 5 and 10 show the subprocesses that can be prescribed
by BankComputer to checkPIN and verifyAccount, respectively. checkPIN is also employee of
manager ATM (Fig. 20), which coordinates the operation of the ATM device. Fig. 4 shows which
subprocesses ATM may prescribe to checkPIN. Traps are shown as shaded boxes.

Because this section is devoted to explain the concepts behind the translation procedure,
it will be enough to comment only part of the PARADIGM model, thereby postponing the
translation of the complete example to section 6.
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class ATM

class BankComputer

Figure 2: Behavior perspective

Figure 3: Employee process checkPIN
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checkPIN s1 checkPIN s2

Figure 4: Subprocesses of checkPIN w.r.t manager ATM

checkPIN s3 checkPIN s4

Figure 5: Subprocesses of checkPIN w.r.t. manager BankComputer

Figure 6: Employee process getMoney

getMoney s1 getMoney s2

Figure 7: Subprocesses of getMoney w.r.t manager ATM
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getMoney s3

getMoney s4

Figure 8: Subprocesses of getMoney w.r.t. manager BankComputer

Figure 9: Employee process verifyAccount

verifyAccount s1 verifyAccount s2

Figure 10: Subprocesses of verifyAccount
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Figure 11: Employee process processTransaction

processTransaction s1 processTransaction s2

Figure 12: Subprocesses of processTransaction

Figure 13: Manager process BankComputer
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Figure 14: Employee process readCard

readCard s1 readCard s2

Figure 15: Subprocesses of readCard

Next we introduce the rules composing program P.

4.1 State changes in employee processes

This kind of rules implies the time each employee remains on a given state. Let ts be a transition
from state STi to state STj in a given employee E. For this state change could be performed at
time t a) E must be currently on STi and b) all subprocesses that are currently prescribed to
E must contain ts. Precondition (a) can be expressed by requesting proposition STi to be valid
at t. Precondition (b) deserves a deeper explanation.
Let ME = {M1, . . . , Mq} be the set of all managers for E. Of all subprocesses that can be

Figure 16: Employee process ejectCard
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ejectCard s1 ejectCard s2

Figure 17: Subprocesses of ejectCard

Figure 18: Employee process cancel

cancel s1 cancel s2

Figure 19: Subprocesses of cancel
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Figure 20: Manager process ATM
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prescribed to E by manager Mi ∈ ME, let Si = {SP i
1, . . . , SP i

n} be the set of those which
contains ts. For each manager Mi it is requested at least one subprocess included in Si to be
prescribed to E at time t. This precondition is expressed by the following conjunction:

((SP 1
1 ∨ . . .∨ SP 1

r ) ∧ . . .∧ (SP q
1 ∨ . . .∨ SP q

s ))

After the state change, i.e. at time t + n, n ∈ N, employee E will be no longer in state STi

but in STj. This can be expressed by asserting propositions ¬STi and STj at time t + n. The
complete schema for rules modelling state changes in employee processes is shown next:

✷((STi ∧ (SP 1
1 ∨ . . . ∨ SP 1

r ) ∧ . . . ∧ (SP q
1 ∨ . . . ∨ SP q

s )) → ✸(¬ STi ∧ STj))

Example 1 shows a state change from Connected to Processed in employee getMoney. Fig. 7
shows that transition “call PT” is allowed in both subprocesses which can be prescribed by
ATM, getMoney s1 and getMoney s2. But Fig. 8 shows that getMoney s4 is the only sub-
process, of those which can be prescribed by BankComputer, that contains “call PT”. Thus,
it does not matter which subprocess is ATM currently prescribing, getMoney s1 or getMoney s2

but BankComputer must be prescribing getMoney s4. Otherwise, i.e. if getMoney s3 is cur-
rently prescribed, the state change cannot be performed. This is expressed in the rule as
((gMs1 ∨ gMs2) ∧ gMs4).

Example 1

✷((cpConnected ∧ ((gMs1 ∨ gMs2) ∧ gMs4) → ✸(¬ cpConnected ∧ cpProcessed))

Note this rule admmits some kind of optimization: it can be proved that disjunction
(gMs1 ∨ gMs2) is not really needed. Manager ATM is always prescribing a subprocess to getMoney,
be it getMoney s1 or getMoney s2, thus it will always be the case that one of these two sub-
processes will be prescribed by the time getMoney tries to change from state Connected to
Processed. As a consequence, disjunction (gMs1 ∨ gMs2) is always true. In other words, this
optimization can be done when all subprocesses that can be prescribed by a given manager con-
tain a given transition. In our example, both getMoney s1 and getMoney s2 contain transition
“call PT”, i.e. manager ATM can never impose a restriction on getMoney performing the change
from Connected to Processed. The rule above can then be re-written as follows:

✷((cpConnected ∧ gMs4) → ✸(¬ cpConnected ∧ cpVerifying))

This optimization strategy is reflected in the algorithm of section 5, step 1.
�

4.2 Subprocess prescription

This kind of rules expresses the time subprocesses remain prescribed. To be more specific,
for every state of a manager process there will be a rule expressing the set of subprocesses
that are prescribed while the manager remains on that state. Let STi be a manager state and
Si = {SP1, . . . , SPn} be the set of subprocesses prescribed in this state. The translation process
will generate the following rule:
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✷(STi → (SP1 ∧ . . .∧ SPn))

Example 2 describes the set of subprocesses that BankComputer prescribes in states Waiting

and Verifying (Fig. 13). Those whose labels have the prefices cP and vA denotes subprocesses
of checkPIN (Figs. 4 and 5) and verifyAccount (Fig. 10), respectively. These labels are easy
to understand, for example cPs4 denotes subprocess checkPIN s4. We can also see that other
subprocesses are prescribed, those whose labels have the prefices gM and pT are subprocesses of
getMoney (Figs. 7 and 8) and processTransaction (Fig. 12), respectively.

Example 2

✷(bcWaiting→(cPs4 ∧ gMs4 ∧ vAs1 ∧ pTs1))

✷(bcVerifying→(cPs4 ∧ gMs4 ∧ vAs2 ∧ pTs1))

�

4.3 State changes in manager processes

This kind of rules implies the time each manager remains on a given state. According to PAR-
ADIGM model semantics, these rules also imply the time when subprocesses and traps are left.
Let ts be a transition from state STi to state STj in a given manager M . For this state change
could be performed at time t a) M must be currently on STi and b) the proper employees must
be currently inside those traps related to ts (see section 2). Precondition (a) can be expressed
by requesting proposition STi to be valid at t. Let Tentered = {TP1, . . . , TPn} be the set of traps
related to transition ts. Precondition (b) can be expressed by requesting proposition TPi to be
valid at t, for all TPi ∈ Tentered.

After the state change, i.e. at time t + n, a) M will be no longer on STi but on STj and b)
it is possible for some of those subprocesses prescribed in STi not to be prescribed in STj . As
a consequence all traps belonging to those subprocesses will be left. Postcondition (a) can be
expressed by asserting propositions ¬STi and STj. Let Sleft = {SP1, . . . , SPm} be the set of
subprocesses prescribed in STi but not in STj, and Tleft = {TPq, . . . , TPu} the set of traps
included in subprocesses of Sleft. Postcondition (b) can be expressed by asserting ¬SPi, for all
SPi ∈ Sleft, and ¬TPi, for all TPi ∈ Tleft. Finally, those subprocesses of STi that remain pre-
scribed in STj and those which are prescribed only in STj can be inferred from the assertion of
proposition STj and the rule describing subprocess prescriptions in STj (see section 4.2). Rules
modelling state changes in manager processes have the following schema:

✷((STi ∧ (TP1 ∧ . . .∧ TPn))
→ ✸(¬ STi ∧ STj ∧ (¬ SP1 ∧ . . .∧ ¬ SPm) ∧ (¬ TPq ∧ . . .∧ ¬ TPu)))

Example 3 describes the state change from state Waiting to state Verifying in manager
BankComputer (Fig. 13). This change cannot be performed until both traps T-cP4 and T-vA1

have been entered. As in state Waiting the manager is prescribing subprocesses checkPIN s4 and
verifyAccount s1, this means for the manager could change to state Verifying a) checkPIN

17



must be in state Connected, i.e it should have called verifyAccount (see checkPIN s4 in
Fig. 5), and b) verifyAccount must be in state NotVerifying, i.e. prepared to accept a
new call (see verifyAccount s1 in Fig. 10). Once the manager is in state Verifying, employee
verifyAccount must be allowed to proceed with its execution, i.e. it must be allowed to leave
trap T-vA1. Then, the manager prescribes verifyAccount s2 instead of verifyAccount s1 and
trap T-vA1 is left because it is included in verifyAccount s1. Proposition
(¬ vAs1 ∧ ¬ TvA1) expresses the fact verifyAccount s1 is no longer prescribed and trap
T-vA1 is left. Fig. 13 also shows that subprocess checkPIN s4 remains prescribed in state
Verifying, and thus checkPIN cannot leave trap T-cP4. This means checkPIN cannot proceed
until verifyAccount ends its job. Proposition bcVerifying and the rule shown in example 2
express the fact a new subprocess, verifyAccount s2, is now prescribed and that checkPIN s4

remains prescribed.

Example 3 State change from state Waiting to state Verifying in manager BankComputer

✷((bcWaiting ∧ tcP4 ∧ tvA1) → ✸(¬bcWaiting ∧ bcVerifying ∧ ¬vAs1 ∧ ¬tvA1))
�

4.4 Inside a trap

This kind of rules implies the time employees remain inside their traps. Specifically, for every trap
TP in subprocess SP , where SP is a subprocess of employee E, there will be a rule expressing
that E is currently inside TP . Note this information is needed by the rules which express state
changes in manager processes (see section 4.3 above).
Let STP = {ST1, . . . , STn} be the set of states which defines trap TP . Employee E will remain
inside TP as long as SP remains prescribed to E and E remains on any state STi ∈ STP . Thus,
the translation will generate rules with the following schema:

✷((SP ∧ (ST1 ∨ . . .∨ STn)) → TP )

Example 4 expresses the fact employee checkPIN remains inside trap T-cP2 as long as it is
prescribed subprocess checkPIN s2 and it remains on states Connected, Verifying or Checked.

Example 4

✷((cPs2 ∧ (cpConnected ∨ cpVerifying ∨ cpChecked)) → tcP2) �

4.5 Initial conditions

All processes are supossed to start their executions coordinately. Of course, subprocesses that are
prescribed to every employee at this time are those related to the set of initial states of manager
processes. Let init be a proposition that only holds at the initial time, and ST1, . . . , STn the set
of initial states of all processes. The translation will generate rules with the following schema:

init

init → (ST1 ∧ . . .∧ STn)

18



Example 5 shows the initial conditions for the processes of our example. NotChecking,
NotVerifying and Waiting are the initial states of employees checkPIN, verifyAccount and
manager BankComputer, respectively. State Waiting implies the first subprocesses to be pre-
scribed by BankComputer to checkPIN and verifyAccount are, respectively, checkPIN s4 and
verifyAccount s1 (see Fig. 13 and Example 2).

Example 5 Initial states

init

init → ( cpNotChecking ∧ vaNotVerifying ∧ bcWaiting )

�

Although for simplicity we have suppossed that initial conditions are generated by the transla-
tion process, it is perfectly possible for this information to be supplied by the user. She/he could
specify different sets of initial states for every process, thus obtaining a different simulation for
the system behavior.

Finally, we finish this section by warning the reader that program P is defined as the union of
all rules (sections 4.1, 4.2, 4.3, 4.4 and 4.5) generated so far by the translation process.

5 The translation process as an algorithm

The translation process will be described as a set of steps that takes a PARADIGM specification
as input and generates a PLTL program as output. The PARADIGM specification is assumed
to be correct, and it contains all the information needed for the algorithm to produce the PLTL
program. As a matter of true, not all elements of the PARADIGM specification are needed
to obtain an executable translation. For example, it can be noticed in section 4 that transition
labels are not used to generate any rule. Those elements which are really used include processes,
subprocesses, states, traps and some relationships between them. They will be described as a
collection of sets (section 5.1), which is a suitable form future implementations can be obtained
from. Indeed, the algorithm itself will be described as an “imperative-like” pseudo-code with
set-manipulation primitives (section 5.2).

5.1 Input sets

Next we present the sets that must be provided for the translation could be performed. They
encode some elements of the PARADIGM models, but we do not assume any particular tool for
constructing these sets. We have chosen a set of labels for denoting process, states, subprocess
and traps which may differ from those appearing in the figures. However, these labels are quite
obvious and easy to recognize. In some cases, they were needed to ensure uniqueness. For
example, both employees checkPIN and getMoney have a state named Connected (Figs. 3 and
6), so we have renamed each state with a prefix denoting the process it belongs to: cpConnected
and gmConnected respectively. We can also see that subprocess labels can be quite long. Thus we
have renamed them with the prefix of the process their belong to and the number of subprocess.
For example, cPs4 denotes subprocess checkPIN s4.
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1. A finite set EMP denoting all employee processes. In the example (Figs. 3, 6, 9 and 11)
we have:
EMP = { checkPIN, getMoney, verifyAccount, processTransaction, readCard,

ejectCard, cancel }.

2. A finite set MAN denoting all manager processes. In the example (Figs. 20 and 13) we
have:
MAN = { atm, bankComputer }.

3. A finite set PROtransitions denoting the set of transitions of every process.
PROtransitions =

⋃n
i=1 {(Pi,

⋃m
j=1 {(STj, STk)})} for some 1 ≤ k ≤ m, such that Pi denotes

a process and (STj, STk) denotes a transition from state STj to state STk in process Pi.
In the example (Figs. 3, 6, 9, 11, 14, 16, 18, 20 and 13) we have:

PROtransitions = {
(checkPIN, { (cpNotChecking, cpConnected),

(cpConnected, cpVerifying),

(cpVerifying, cpCheckOK),

(cpVerifying, cpCheckNotOK),

(cpCheckOK, cpNotChecking),

(cpCheckNotOK, cpNotChecking) }),
(getMoney, { (gmNotGetting, gmConnected),

(gmConnected, gmProcessed),

(gmProcessed,gmMoneyPaid),

(gmMoneyPaid, gmNotGetting) }),
(verifyAccount, { (vaNotVerifying, vaEncrypted),

(vaEncrypted, vaAccountVerifiedOK),

(vaEncrypted, vaAccountVerifiedNotOK),

(vaAccountVerifiedOK, vaNotVerifying),

(vaAccountVerifiedNotOK, vaNotVerifying) }),
(processTransaction, { (ptNotProcessing, ptWaitingForProcessing),

(ptWaitingForProcessing, ptProcessed),

(ptProcessed, ptNotProcessing) }),
(readCard, { (rcNotReading, rcReading),

(rcReading, rcCardOK),

(rcReading, rcCardNotOK),

(rcCardOK, rcNotReading) }),
(rcCardNotOK, rcNotReading) }),

(ejectCard, { (ecNotEjecting, ecWillingToEject),

(ecWillingToEject, ecEjected),

(ecEjected, ecNotEjecting) })
(cancel, { (caNotCancelling, caWillingToCancel),

(caWillingToCancel, caCancelled),

(caCancelled, caNotCancelling) })
(atm, { (atmWaiting, atmReadingCard),

(atmReadingCard, atmChekingPIN),
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(atmChekingPIN, atmPINChecked),

(atmPINChecked, atmGettingMoney),

(atmGettingMoney, atmPayingOff),

(atmPayingOff, atmCardEjected),

(atmCardEjected, atmWaiting),

(atmReadingCard, atmNotOK),

(atmChekingPIN, atmNotOK),

(atmReadingCard, atmCancelling),

(atmChekingPIN, atmCancelling),

(atmNotOK, atmCancelling),

(atmCancelling, atmCancelled),

(atmCancelled, atmCardEjected) })
(bankComputer, { (bcWaiting, bcVerifying),

(bcVerifying, bcAccountVerifiedOK),

(bcAccountVerifiedOK, bcWaitingForTransactionRequest),

(bcWaitingForTransactionRequest, bcProcessing),

(bcProcessing, bcTransactionProcessed),

(bcTransactionProcessed, bcWaiting),

(bcVerifying, bcAccountVerifiedNotOK),

(bcAccountVerifiedNotOK, bcWaiting) })
}

4. A finite set MANsubprocesses denoting the set of subprocess prescribed in every manager
state. MANsubprocesses =

⋃n
i=1 {(STi,

⋃m
j=1 {SPj})} where STi denotes a manager state

and SPj denotes a subprocess prescribed in STi. In the example (Figs. 20 and 13) we have:

MANsubprocesses = {
(atmWaiting, {cPs1, gMs1, eCs1, rCs1, cAs1}),
(atmReadingCard, {cPs1, gMs1, eCs1, rCs2, cAs1}),
(atmChekingPIN, {cPs2, gMs1, eCs1, rCs1, cAs1}),
(atmPINChecked, {cPs1, gMs1, eCs1, rCs1, cAs1}),
(atmGettingMoney, {cPs1, gMs2, eCs1, rCs1, cAs1}),
(atmPayingOff, {cPs1, gMs1, eCs1, rCs1, cAs1}),
(atmCardEjected, {cPs1, gMs1, eCs2, rCs1, cAs1}),
(atmNotOK, {cPs1, gMs1, eCs1, rCs1, cAs1}),
(atmCancelling, {cPs1, gMs1, eCs1, rCs1, cAs2}),
(atmCancelled, {cPs1, gMs1, eCs1, rCs1, cAs1}),
(bcWaiting, {cPs4, gMs4, pTs1, vAs1}),
(bcVerifying, {cPs4, gMs4, pTs1, vAs2}),
(bcAccountVerifiedOK, {cPs3, gMs4, pTs1, vAs1}),
(bcWaitingForTransactionRequest, {cPs4, gMs4, pTs1, vAs1}),
(bcProcessing, {cPs4, gMs4, pTs2, vAs1}),
(bcTransactionProcessed, {cPs4, gMs3, pTs1, vAs1}),
(bcAccountVerifiedNotOK, {cPs3, gMs4, pTs1, vAs1})
}
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5. A finite set TRPstates denoting the set of states defining every trap.
TRPstates =

⋃n
i=1 {(TPi,

⋃m
j=1 {STj})} where TPi, denotes a trap and STj denotes a state

inside trap TPi. In the example (Figs. 4, 5 and 3, 7, 8 and 6, 10 and 9, 12 and 11, 15 and
14, 17 and 16, and 19 and 18) we have:

TRPstates = {
(tcP1, {cpNotChecking}),
(tcP2, {cpCheckOK}),
(tcP3, {cpCheckNotOK}),
(tcP4, {cpNotChecking, cpConnected, cpCheckOK, cpCheckNotOK}),
(tcP5, {cpVerifying}),
(tgM1, {gmNotGetting}),
(tgM2, {gmConnected, gmProcessed, gmMoneyPaid}),
(tgM3, {gmNotGetting, gmConnected}),
(tgM4, {gmProcessed}),
(tvA1, {vaNotVerifying}),
(tvA2, {vaAccountVerifiedOK}),
(tvA3, {vaAccountVerifiedNotOK}),
(tpT1, {ptNotProcessing}),
(tpT2, {ptProcessed}),
(trC1, {rcReading}),
(trC2, {rcCardOK}),
(trC3, {rcCardNotOK}),
(teC1, {ecNotEjecting}),
(teC2, {ecWillingToEject, ecEjected}),
(tcA1, {caNotCancelling}),
(tcA2, {caWillingToCancel, caCancelled}),
}

6. A finite set SPRtraps denoting the set of traps of every subprocess.
SPRtraps =

⋃n
i=1 {(SPi,

⋃m
j=1 {TPj})} where SPi denotes a subprocess and TPj denotes

a trap of SPi. In the example (Figs. 4, 5, 7, 8, 10, 12, 15, 17 and 19) we have:

SPRtraps = {
(cPs1, {tcP1}), (cPs2, {tcP2, tcP3}), (cPs3, {tcP5}), (cPs4, {tcP5}),
(gMs1,{tgM1}), (gMs2, {tgM2}), (gMs3,{tgM3}), (gMs4, {tgM4}),
(vAs1, {tvA1}), (vAs2, {tvA2, tvA3}),
(pTs1, {tpT1}), (pTs2, {tpT2}),
(rCs1, {trC1}), (rCs2, {trC2, trC3}),
(eCs1, {teC1}), (eCs2, {teC2}),
(cAs1, {tcA1}), (cAs2, {tcA2}) }

7. A finite set EMPsubprocesses denoting, for every employee, the set of subprocesses which can
be prescribed by every manager. EMPsubprocesses =

⋃n
i=1

⋃m
j=1 {(Ei, Mj ,

⋃q
k=1 {SPk})}

where Ei denotes an employee, Mj denotes a manager for Ei and SPk denotes a subprocess
of E that can be prescribed by Mj . In the example (Figs. 4, 5, 7, 8, 12, 15, 17 and 19) we
have:
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EMPsubprocesses = {
(checkPIN, atm, {cPs1, cPs2}),
(checkPIN, bankComputer,{cPs3, cPs4}),
(getMoney, atm, {gMs1, gMs2}),
(getMoney, bankComputer, {gMs3, gMs4}),
(verifyAccount, bankComputer, {vAs1, vas2}),
(processTransaction, bankComputer, {pTs1, pTs2}),
(readCard, atm, {rCs1, rCs2}),
(ejectCard, atm, {eCs1, eCs2}),
(cancel, atm, {cAs1, cAs2})
}

8. A finite set INIstates denoting the initial state of every process.
INIstates =

⋃n
i=1 {STi} where STi denotes the initial state of a process. In the example

(Figs. 3, 6, 9, 11, 14, 16, 18 and 13) we have:

INIstates = { cpNotChecking, gmNotGetting, vaNotVerifying, ptNotProcessing,

rcNotReading, ecNotEjecting, caNotCancelling, atmWaiting,

bcWaiting }

9. A finite set TRSsubprocesses denoting, for every employee transition, the set of subprocesses
it is included in.
TRSsubprocesses =

⋃n
i=1 {((STi, STj),

⋃m
k=1 {SPk})} for some 1 ≤ j ≤ n, where (STi, STj)

denotes a transition of a given employee E from state STi to state STj and SPk denotes a
subprocess of E containing such a transition. In the example (Figs. 4, 5, 7, 8, 10, 12, 15,
17 and 19) we have:

TRSsubprocesses = {
((cpNotChecking, cpConnected),{cPs2, cPs3, cPs4}),
((cpConnected, cpVerifying), {cPs2, cPs4}),
((cpVerifying, cpCheckOK), {cPs2, cPs3}),
((cpVerifying, cpCheckNotOK), {cPs2, cPs3}),
((cpCheckOK, cpNotChecking), {cPs1, cPs3, cPs4}),
((cpCheckNotOK, cpNotChecking), {cPs1, cPs3, cPs4}),
((gmNotGetting, gmConnected), {gMs2, gMs3, gMs4}),
((gmConnected, gmProcessed), {gMs1, gMs2, gMs4}),
((gmProcessed, gmMoneyPaid), {gMs1, gMs2, gMs3}),
((gmMoneyPaid, gmNotGetting), {gMs1, gMs3}),
((vaNotVerifying, vaEncrypted), {vAs2}),
((vaEncrypted, vaAccountVerifiedOK), {vAs2}),
((vaEncrypted, vaAccountVerifiedNotOK), {vAs2}),
((vaAccountVerifiedOK, vaNotVerifying), {vAs1}),
((vaAccountVerifiedNotOK, vaNotVerifying), {vAs1}),
((ptNotProcessing, ptWaitingForProcessing), {pTs2}),
((ptWaitingForProcessing, ptProcessed), {pTs1, pTs2}),
((ptProcessed, ptNotProcessing), {pTs1}),

23



((rcNotReading, rcReading), {rCs1}),
((rcReading, rcCardOK), {rCs2}),
((rcReading, rcCardNotOK), {rCs2}),
((rcCardOK, rcNotReading), {rCs1}),
((rcCardNotOK, rcNotReading), {rCs1}),
((ecNotEjecting, ecWillingToEject), {eCs2}),
((ecWillingToEject, ecEjected), {eCs1, eCs2}),
((ecEjected, ecNotEjecting), {eCs1}),
((caNotCancelling, caWillingToCancel), {cAs1}),
((caWillingToCancel, caCancelled), {cAs2}),
((caCancelled, caNotCancelling), {cAs1})
}

10. A finite set MANtraps denoting the set of traps that must be entered for every state change
in a manager process could be performed.
MANtraps =

⋃n
i=1 {((STi, STj),

⋃m
k=1 {TPk})} for some 1 ≤ j ≤ n, where (STi, STj)

denotes a transition of a given manager M from state STi to state STj and TPk denotes
a trap that must be entered for such a transition could be performed. In the example
(Figs. 20 and 13) we have:

MANtraps = {
((atmWaiting, atmReadingCard), {trC1}),
((atmReadingCard, atmChekingPIN), {trC2, tcP1}),
((atmChekingPIN, atmPINChecked), {tcP2}),
((atmPINChecked, atmGettingMoney), {tcP1, tgM1}),
((atmGettingMoney, atmPayingOff), {tgM2}),
((atmPayingOff, atmCardEjected), {tgM1, teC1}),
((atmCardEjected, atmWaiting), {teC2}),
((atmReadingCard, atmNotOK), {trC3}),
((atmChekingPIN, atmNotOK), {tcP3}),
((atmReadingCard, atmCancelling), {tcA1}),
((atmChekingPIN, atmCancelling), {tcA1}),
((atmNotOK, atmCancelling), {tcA1}),
((atmCancelling, atmCancelled), {tcA2}),
((atmCancelled, atmCardEjected), {teC1}),
((bcWaiting, bcVerifying),{tcP5, tvA1}),
((bcVerifying, bcAccountVerifiedOK), {tvA2}),
((bcAccountVerifiedOK, bcWaitingForTransactionRequest), {tcP4}),
((bcWaitingForTransactionRequest, bcProcessing), {tgM4, tpT1}),
((bcProcessing, bcTransactionProcessed), {tpT2}),
((bcTransactionProcessed, bcWaiting), {tgM3}),
((bcVerifying, bcAccountVerifiedNotOK), {tvA3}),
((bcAccountVerifiedNotOK, bcWaiting), {tcP4})
}
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5.2 Steps

Now we describe the translation algorithm as a set of steps, each one taking one or more input
sets (section 5.1) and generating a kind of rule for the PLTL program. We assume the existence
of a procedure generateRule() which performs the output of a rule to the PLTL program. All
variables are considered local to each step environment. Set variables are denoted with uppercase
calligraphic letters, e.g. A. Element variables are denoted with uppercase italic letters, e.g. A.
Constant elements will be denoted with lowercase italic letters, e.g. a. Readers will note that
some algorithm lines are distinguished with [n]. This will make sense in section 5.3 where we
offer a complexity study.

1 : State changes in employee processes INPUT: EMP, PROtransitions, TRSsubprocesses,

EMPsubprocesses

PROCEDURE:

% for each employee

Tmp1 := EMP ;

[1] Repeat until Tmp1 = Ø;
begin

Let e ∈ Tmp1 ;

Tmp1 := Tmp1/{e} ;

[2] Let Te such that (e, Te) ∈ PROtransitions ;

% for each transition of this employee

Tmp2 := Te ;

[3] Repeat until Tmp2 = Ø ;

begin

Let (sti, stj) ∈ Tmp2 ;

Tmp2 := Tmp2/{(sti, stj)} ;

% Sij is the set of all subprocesses containing this transition

[4] Let Sij such that ((sti, stj),Sij) ∈ TRSsubprocesses ;

% Se is the set of all subprocesses prescribed by each manager

% to this employee

[5] Let Se = { SM | ∃M ∈ MAN ( (e, M,SM) ∈ EMPsubprocesses ) } ;

% intersect each subset of Se with Sij, and form the set SM
ij

% Strict inclusion I ⊂ SM expresses the optimization

% described in section 4.1

[6] Let SM
ij = { I | ∃SM ∈ Se ( I = SM ∩ Sij ∧ I ⊂ SM ) } ;

Suppose SM
ij = { {sp1

1, . . . , sp
1
r}, . . . , {spq

1, . . . , sp
q
s} } ;

[7] GenerateRule(

✷((sti ∧(sp1
1 ∨ . . .∨ sp1

r ) ∧ . . .∧ (spq
1 ∨ . . .∨ spq

s)) → ✸(¬ sti ∧ stj))
)

end % {Repeat until Tmp2 = Ø}
end % {Repeat until Tmp1 = Ø}
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2 : Subprocess prescriptions

INPUT: MANsubprocesses

PROCEDURE:

% for each manager state

Tmp1 := MANsubprocesses ;

[1] Repeat until Tmp1 = Ø
begin

% Sst is the set of all subprocesses prescribed in this state

Let (st,Sst) ∈ Tmp1 ;

Tmp1 := Tmp1/{(st,Sst)} ;

Suppose Sst = {sp1, . . . , spn} ;

[2] GenerateRule( ✷(st → (sp1 ∧ . . . ∧ spn)) )

end % {Repeat until Tmp1 = Ø}
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3 : State changes in manager processes.

INPUT: MAN, PROtransitions, MANtraps, MANsubprocesses

PROCEDURE:

% for each manager

Tmp1 := MAN ;

[1] Repeat until Tmp1 = Ø
begin

Let m ∈ Tmp1

Tmp1 := Tmp1/{m} ;

% Tm is the set of transitions of this manager

[2] Let Tm such that (m, Tm) ∈ PROtransitions ;

Tmp2 := Tm ;

% for each transition of Tm

[3] Repeat until Tmp2 = Ø ;

begin

Let (sti, stj) ∈ Tmp2 ;

Tmp2 := Tmp2/{(sti, stj)} ;

% Tij is the set traps of this transition, i.e. those traps that

% must be entered for this transition could be performed

[4] Let Tij such that ((sti, stj), Tij) ∈ MANtraps ;

% I is the set of subprocesses prescribed in state sti
[5] Let I such that (sti, I) ∈ MANsubprocesses ;

% J is the set of subprocesses prescribed in state stj
[6] Let J such that (stj ,J ) ∈ MANsubprocesses ;

[7] D = I/J ;

% Tleft is the set of traps included in subprocesses of D,

% i.e. those traps that are left after the state change

[8] Let Tleft = {TP | ∃SP ∈ D ( (SP, TSP ) ∈ SPRtraps ∧ TP ∈ TSP ) } ;

Suppose Tij = {tp1, . . . , tpn} ;

Suppose D = {sp1, . . . , spm} ;

Suppose Tleft = {tpq, . . . , tpu} ;

[9] GenerateRule( ✷((sti∧ (tp1 ∧ . . . ∧ tpn) →
✸(¬sti ∧ stj∧ (¬sp1 ∧ . . . ∧ ¬spm) ∧ (¬tpq ∧ . . . ∧ ¬tpu)))

)

end % {Repeat until Tmp2 = Ø}
end % {Repeat until Tmp1 = Ø}
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4 : Inside a trap.

INPUT: SPRtraps, TRPstates

PROCEDURE:

% for each subprocess

Tmp1 := SPRtraps ;

[1] Repeat until Tmp1 = Ø
begin

% T is the set of traps of this subprocess

Let (sp, T ) ∈ Tmp1 ;

Tmp1 := Tmp1/{(sp, T )} ;

% for each trap in T
[2] Repeat until T = Ø ;

begin

Let tp ∈ T ;

T := T /{tp} ;

% Stp is the set of states defining this trap

[3] Let Stp such that (tp,Stp) ∈ TRPstates ;

Suppose Stp = {st1, . . . , stn} ;

[4] GenerateRule( ✷((sp ∧ (st1 ∨ . . . ∨ stn)) → tp) )

end % {Repeat until T = Ø}
end % {Repeat until Tmp1 = Ø}

5 : Initial conditions.

INPUT: INIstates

PROCEDURE:

GenerateRule( init ) ;

Suppose INIstates = {st1, . . . , stn} ;

[1] GenerateRule( init → (st1 ∧ . . . ∧ stn) )

5.3 Complexity

It can be proved that our translation algorithm runs in polynomial time. It is not our intention
to offer a rigorous, formal proof of our claim but just give the reader an sketch of such a proof.
Nevertheless we think it suffices to give the reader an idea of the algorithm efficiency.

We will develop our complexity analysis using the asymptotic notation often known as “the
order of” or “big Oh” (see e.g. [BB96]). Thus we will find an upper bound for the worst-case
execution time of the algorithm steps presented previously. Formally,
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Definition 1 Let n ∈ N be the size of the algorithm input and t : N → R
≥0 a function

expressing the algorithm execution time for input n. Let f : N → R
≥0 an arbitrary function, then

t is “in the order of” f iff t(n) ∈ O(f(n)), where O(f(n)) = {g : N → R
≥0|(∃c ∈ R

+)(∃n0 ∈ N)
(∀n ≥ n0)[g(n) ≤ cf(n)]}.

Therefore, we can state our claim in the asymptotic notation as:

Claim 1 Let n be the size of a given PARADIGM model M, i.e. the input size for the translation
algorithm. Let t(n) be the function expressing the execution time of our translation algorithm.
Let St, Sp and Tp be the sets of all states, subprocesses and traps of M, respectively. Let
IS1, . . . , ISm be the input sets derived from M, i.e. those sets obtained as shown in section 5.1.
Then t(n) ∈ O(ni), i ∈ N, n = max(|St|, |Sp|, |Tp|, |IS1|, . . . , |ISm|). �

We defined the model size n as being the maximum cardinality among particular sets because
a) the algorithm performs its computation over different input sets and b) we must operate with
a unified input size for obtaining a unique function expressing the order of the entire algorithm.
It is also worthy to mention that some execution times are considered negligible in the broader
computation. These comprise assignments and the time that takes to remove an element from a
set once it has already been found. In addition we assume that sets are simply implemented as
lists, that all set operations are performed as sequential searches over their data structures and
the time that takes to generate a rule is proportional to the number of propositions included in
the rule schema.

The translation algorithm comprises five separate steps (see section 5.2), all assumed to be
performed sequencially. Proving that each one of these steps runs in polynomial time allow us to
infer the entire algorithm is polynomial. These partial proofs refer some lines in the algorithm
which has been marked with [n]. Function max(a1, . . . , an) returns the maximum value among
a1, . . . , an. |S| denotes the cardinality of set S.

Theorem 1 Rules expressing state changes in employee processes (see step 1 in section 5.2)
can be generated in O(n5). �

Sketch of proof 1 The order of step 1 is

Ostep1 = Lo.max(O2, O3) (1)

where Lo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |EMP | ≤ n (2)

and O2 is the order of a search over PROtransitions (line [2]),

O2 = n (3)

and O3 is the order of the inner loop (line [3]),

O3 = Li.max(O4, O5, O6, O7) (4)
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where Li is the number of iterations of the inner loop (line [3]), Li = |Tmp2| = |Te|, where Te is
the set of transitions in employee e,

Li ≤ n (5)

and O4 is the order of a search over TRPsubprocesses (line [4]),

O4 = n (6)

and O5 is the order of a search over EMPsubprocesses (line [5]),

O5 = n (7)

and O6 is the order of the time that takes to compose set SM
ij (line [6]), which involves an

intersection-inclusion proof for every element of set Se,

O6 = |Se|.max(O∩, O⊂) (8)

where O∩ is the order of the time that takes to perform Sm ∩Sij, which in turn can be bounded
by |Sm|.|Sij|. As |Sm| is at most the maximum number of subprocesses that can be prescribed
by a manager to a single employee, and |Sij | is at most the maximum of subprocesses a given
transition is part of, then |Sm| ≤ n and |Sij| ≤ n, then

O∩ = n2 (9)

and O⊂ is the order of the time that takes to perform I ⊂ Sm, which in turn can be bounded
by |I|.|Sm|. As |I| is at most |Sm| ≤ n, then

O⊂ = n2 (10)

and |Se| is at most the maximum number of managers for a given employee,

|Se| ≤ n (11)

and O7 is the order of the time that takes to generate the rule (line [7]). We can see the number
of elements to be written in the PLTL program is clearly dominated by |SM

ij |, which in turn is
at most |Se| ≤ n and then

O7 = n (12)

From eqs. 9, 10, 11 and 12 we have that O6 = n3 (eq. 8).
From eqs. 5, 6, 7 and 8 we have that O3 = n4 (eq. 4).
From eqs. 2, 3 and 4 we have that Ostep1 = n5 (eq. 1). ✷

Theorem 2 Rules expressing subprocess prescriptions in manager states (see step 2 in sec-
tion 5.2) can be generated in O(n2). �
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Sketch of proof 2 The order of step 2 is

Ostep2 = Lo.O2 (13)

where Lo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |MANsubprocesses| ≤ n (14)

and O2 is the order of the time that takes to generate the rule (line [2]). We can see the number
of elements to be written in the PLTL program is clearly dominated by —Sst—, which in turn
is at most the maximum number of subprocesses that a manager can prescribe on a single state,
and then

O2 = n (15)

From eqs. 14 and 15 we have that Ostep2 = n2 (eq. 13). ✷

Theorem 3 Rules expressing state changes in manager processes (see step 3 in section 5.2) can
be generated in O(n4). �

Sketch of proof 3 The order of step 3 is

Ostep3 = Lo.max(O2, O3) (16)

where Lo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |MAN | ≤ n (17)

and O2 is the order of a search over PROtransitions (line [2]),

O2 = n (18)

and O3 is the order of the inner loop (line [3]),

O3 = Li.max(O4, O5, O6, O7, O8, O9) (19)

where Li is the number of iterations of the inner loop (line [3]). As Li = |Tmp2| = |Tm)|, where
Tm is the set of transitions in manager m, then

Li ≤ n (20)

and O4 is the order of a search over MANtraps (line [4]),

O4 = n (21)

and O5 = O6 is the order of a search over MANsubprocesses (lines [5] and [6]),

O5 = O6 = n (22)

and O7 is the order of the time that takes to compose the set D, which in turn involves the time
that takes to perform the difference Im/J (line[7]). As this time is bounded by |I|.|J | and |I|
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and |J | are at most the maximum number of subprocesses that can be prescribed by a manager
to a single employee, then |I| ≤ n and |J | ≤ n and

O7 = n2 (23)

and O8 is the order of the time that takes to compose set Tleft (line [8]), which involves a search
over SPRtraps for every element of set D. This time is bounded by |D|.|SPRtraps| ≤ n2, and
then

O8 = n2 (24)

and O9 is the order of the time that takes to generate the rule (line [9]). We can see the number
of elements to be written in the PLTL program is clearly dominated by |Tij|+ |D|+ |Tleft|. These
cardinalities are at most the maximum number of employees for any manager, the maximum
number of subprocesses that can be prescribed on a single manager state and the maximum
number of traps in the PARADIGM model respectively. Therefore, the time of generation is at
most 3n yielding

O9 = n (25)

From eqs. 20, 21, 22, 23, 24 and 25 we have that O3 = n3 (eq. 19).
From eqs. 17 and 18 we have that Ostep3 = n4 (eq. 16). ✷

Theorem 4 Rules expressing state changes in manager processes (see step 4 in section 5.2) can
be generated in O(n3). �

Sketch of proof 4 The order of step 4 is

Ostep4 = Lo.Oi (26)

where Lo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |SPRtraps| ≤ n (27)

and Oi is the order of the inner loop (line [2]),

Oi = Li.max(O3, O4) (28)

where Li is the number of iterations of the inner loop, this is Li = |Tmp2| = |T | where |T | is at
most the maximum number of traps in any subprocess, and then

Li ≤ n (29)

and O3 is the order of a search over TRPstates (line [3]),

O3 = n (30)

and O4 is the order of the time that takes to generate the rule (line [4]). We can see the number
of elements to be written in the PLTL program is clearly dominated by |Stp|, which in turn is
at most the maximum number of states defining a trap, less or equal than n and then
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O4 = n (31)

From eqs. 29, 30 and 31 we have that Oi = n2 (eq. 28).
From eqs. 27 and 28 we have that Ostep4 = n3 (eq. 26). ✷

Theorem 5 Rules expressing initial conditions (see step 5 in section 5.2) can be generated in
O(n). �

Sketch of proof 5 Clearly, the order of step 5 is dominated by the generation time (line [1]) which
in turn is proportional to the number of processes in the PARADIGM model. As this number
is less or equal than n, step 5 is O(n). ✷

Theorems 1, 2, 3, 4 and 5 support our claim, i.e., the entire translation algorithm runs in
polynomial time. In fact, it is at most O(n5).
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6 An example

Next we a complete PTL program generated by the translation process. This program contains
all the rules that are needed to simulate the ATM example processes.

%..............< Here begins the PTL program >........................

% STATE CHANGES IN EMPLOYEE PROCESSES

% in checkPIN()

✷((cpNotChecking ∧ cPs2) → ✸(¬ cpNotChecking ∧ cpConnected))

✷((cpConnected ∧ cPs2 ∧ cPs4) → ✸(¬ cpConnected ∧ cpVerifying))

✷((cpVerifying ∧ cPs2 ∧ cPs3) → ✸(¬ cpVerifying ∧ cpCheckOK))

✷((cpVerifying ∧ cPs2 ∧ cPs3) → ✸(¬ cpVerifying ∧ cpCheckNotOK))

✷((cpCheckOK ∧ cPs1) → ✸(¬ cpCheckOK ∧ cpNotChecking))

✷((cpCheckNotOK ∧ cPs1) → ✸(¬ cpCheckNotOK ∧ cpNotChecking))

% in getMoney()

✷((gmNotGetting ∧ gMs2) → ✸(¬ gmNotGetting ∧ gmConnected))

✷((gmConnected ∧ gMs4) → ✸(¬ gmConnected ∧ gmProcessed))

✷(gmProcessed ∧ gMs3) → ✸(¬ gmProcessed ∧ gmMoneyPaid))

✷((gmMoneyPaid ∧ gMs1 ∧ gMs3) → ✸(¬ gmMoneyPaid ∧ gmNotGetting))

% in verifyAccount()

✷((vaNotVerifying ∧ vAs2) → ✸(¬ vaNotVerifying ∧ vaEncrypted))

✷((vaEncrypted ∧ vAs2) → ✸(¬ vaEncrypted ∧
vaAccountVerifiedOK))

✷((vaEncrypted ∧ vAs2) → ✸(¬ vaEncrypted ∧
vaAccountVerifiedNotOK))

✷((vaAccountVerifiedOK ∧ vAs1) → ✸(¬ vaAccountVerifiedOK ∧
vaNotVerifying))

✷((vaAccountVerifiedNotOK ∧ vAs1) → ✸(¬ vaAccountVerifiedNotOK ∧
vaNotVerifying))

% in processTransaction()

✷((ptNotProcessing ∧ pTs2) → ✸(¬ ptNotProcessing ∧ ptWaitingForProcessing))

✷(ptWaitingForProcessing → ✸(¬ ptWaitingForProcessing ∧ ptProcessed))

✷((ptProcessed ∧ pTs1) → ✸(¬ ptProcessed ∧ ptNotProcessing))
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% in readCard()

✷((rcNotReading ∧ rCs1) → ✸(¬ rcNotReading ∧ rcReading))

✷((rcReading ∧ rCs2) → ✸(¬ rcReading ∧ rcCardOK))

✷((rcReading ∧ rCs2) → ✸(¬ rcReading ∧ rcCardNotOK))

✷((rcCardOK ∧ rCs1) → ✸(¬ rcCardOK ∧ rcNotReading))

✷((rcCardNotOK ∧ rCs1) → ✸(¬ rcCardNotOK ∧ rcNotReading))

% in ejectCard()

✷((ecNotEjecting ∧ eCs2) → ✸(¬ ecNotEjecting ∧ ecWillingToEject))

✷(ecWillingToEject → ✸(¬ ecWillingToEject ∧ ecEjected))

✷((ecEjected ∧ eCs1) → ✸(¬ ecEjected ∧ ecNotEjecting))

% in cancel()

✷((caNotCancelling ∧ cAs1) → ✸(¬ caNotCancelling ∧ caWillingToCancel))

✷((caWillingToCancel ∧ cAs2) → ✸(¬ caWillingToCancel ∧ caCancelled))

✷((caCancelled ∧ cAs1) → ✸(¬ caCancelled ∧ caNotCancelling))

% SUBPROCESS PRESCRIPTIONS

% by manager ATM

✷(atmWaiting → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmReadingCard → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs2 ∧ cAs1))

✷(atmChekingPIN → (cPs2 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmPINChecked → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmGettingMoney → (cPs1 ∧ gMs2 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmPayingOff → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmCardEjected → (cPs1 ∧ gMs1 ∧ eCs2 ∧ rCs1 ∧ cAs1))

✷(atmNotOK → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

✷(atmCancelling → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs2))

✷(atmCancelled → (cPs1 ∧ gMs1 ∧ eCs1 ∧ rCs1 ∧ cAs1))

% by manager BankComputer

✷(bcWaiting → (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs1))

✷(bcVerifying → (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs2))

✷(bcAccountVerifiedNotOK → (cPs3 ∧ gMs4 ∧ pTs1 ∧ vAs1))

✷(bcAccountVerifiedOK → (cPs3 ∧ gMs4 ∧ pTs1 ∧ vAs1))

✷(bcWaitingForTransactionRequest → (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs1))

✷(bcProcessing → (cPs4 ∧ gMs4 ∧ pTs2 ∧ vAs1))

✷(bcTransactionProcessed → (cPs4 ∧ gMs3 ∧ pTs1 ∧ vAs1))
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% STATE CHANGES IN MANAGER PROCESSES

% in ATM

✷((atmWaiting ∧ trC1) →
✸(¬ atmWaiting ∧ atmReadingCard ∧ ¬ rCs1 ∧ ¬ trC1))

✷((atmReadingCard ∧ trC2 ∧ tcP1) →
✸(¬ atmReadingCard ∧ atmChekingPIN ∧ ¬ cPs1 ∧ ¬ rCs2 ∧ ¬ tcP1 ∧

¬ trC2 ∧ ¬ trC3))

✷((atmChekingPIN ∧ tcP2) →
✸(¬ atmChekingPIN ∧ atmPINChecked ∧ ¬ cPs2 ∧ ¬ tcP2 ∧ ¬ tcP3))

✷((atmPINChecked ∧ tcP1 ∧ tgM1) →
✸(¬ atmPINChecked ∧ atmGettingMoney ∧ ¬ gMs1 ∧ ¬ tgM1))

✷((atmGettingMoney ∧ tgM2) →
✸(¬ atmGettingMoney ∧ atmPayingOff ∧ ¬ gMs2 ∧ ¬ tgM2))

✷((atmPayingOff ∧ tgM1 ∧ teC1) →
✸(¬ atmPayingOff ∧ atmCardEjected ∧ ¬ eCs1 ∧ ¬ teC1))

✷((atmCardEjected ∧ teC2) →
✸(¬ atmCardEjected ∧ atmWaiting ∧ ¬ eCs2 ∧ ¬ teC2))

✷((atmReadingCard ∧ trC3) →
✸(¬ atmReadingCard ∧ atmNotOK ∧ ¬ rCs2 ∧ ¬ trC2 ∧ ¬ trC3))

✷((atmCheckingPIN ∧ tcP3) →
✸(¬ atmCheckingPIN ∧ atmNotOK ∧ ¬ cPs2 ∧ ¬ tcP2 ∧ ¬ tcP3))

✷((atmReadingCard ∧ tcA1) →
✸(¬ atmReadingCard ∧ atmCancelling ∧ ¬ rCs2 ∧ ¬ cAs1 ∧ ¬ trC2 ∧

¬ trC3 ∧ ¬ tcA1))

✷((atmChekingPIN ∧ tcA1) →
✸(¬ atmChekingPIN ∧ atmCancelling ∧ ¬ cPs2 ∧ ¬ cAs1 ∧ ¬ tcP2 ∧

¬ tcP3 ∧ ¬ tcA1))

✷((atmNotOK ∧ tcA1) →
✸(¬ atmNotOK ∧ atmCancelling ∧ ¬ cAs1 ∧ ¬ tcA1))

✷((atmCancelling ∧ tcA2) →
✸(¬ atmCancelling ∧ atmCancelled ∧ ¬ cAs2 ∧ ¬ tcA2))

✷((atmCancelled ∧ teC1) →
✸(¬ atmCancelled ∧ atmCardEjected ∧ ¬ eCs1 ∧ ¬ teC1))

% in BankComputer

✷((bcWaiting ∧ tcP5 ∧ tvA1 ) →
✸(¬ bcWaiting ∧ bcVerifying ∧ ¬ vAs1 ∧ ¬ tvA1))

✷((bcVerifying ∧ tvA3 ) →
✸(¬ bcVerifying ∧ bcAccountVerifiedNotOK ∧ ¬ cPs4 ∧ ¬ vAs2 ∧

¬ tcP5 ∧ ¬ tvA2 ∧ ¬ tvA3))
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✷((bcAccountVerifiedNotOK ∧ tcP4) →
✸(¬ bcAccountVerifiedNotOK ∧ bcWaiting ∧ ¬ cPs3 ∧ ¬ tcP4))

✷((bcVerifying ∧ tvA2) →
✸(¬ bcVerifying ∧ bcAccountVerifiedOK ∧ ¬ cPs4 ∧ ¬ vAs2 ∧

¬ tcP5 ∧ ¬ tvA2 ∧ ¬ tvA3))

✷((bcAccountVerifiedOK ∧ tcP4) →
✸(¬ bcAccVerifiedOK ∧ bcWaitingForTransactionRequest ∧ ¬ cPs3 ∧ ¬ tcP4))

✷((bcWaitingForTransactionRequest ∧ tgM4 ∧ tpT1) →
✸(¬ bcWaitingForTransactionRequest ∧ bcProcessing ∧ ¬ pTs1 ∧ ¬ tpT1))

✷((bcProcessing ∧ tpT2) →
✸(¬ bcProcessing ∧ bcTransactionProcessed ∧

¬ gMs4 ∧ ¬ pTs2 ∧ ¬ tgM4 ∧ ¬ tpT2))

✷((bcTransactionProcessed ∧ tgM3) →
✸(¬ bcTransactionProcessed ∧ bcWaiting ∧ ¬ gMs3 ∧ ¬ tgM3))

% INSIDE TRAPS

% belonging to checkPIN()

✷((cPs1 ∧ cpNotChecking) → tcP1)

✷((cPs2 ∧ (cpConnected ∨ cpVeryfing ∨ cpChecked)) → tcP2)

✷((cPs3 ∧ (cpNotChecking ∨ cpConnected ∨ cpChecked)) → tcP3)

✷((cPs4 ∧ cpVerifying) → tcP4)

% belonging to getMoney()

✷((gMs1 ∧ gmNotGetting) → tgM1)

✷((gMs2 ∧ (gmConnected ∨ gmProcessed ∨ gmMoneyPaid)) → tgM2)

✷((gMs3 ∧ (gmNotGetting ∨ gmConnected)) → tgM3)

✷((gMs4 ∧ gmProcessed ) → tgM4)

% belonging to verifyAccount()

✷((vAs1 ∧ vaNotVerifying) → tvA1)

✷((vAs2 ∧ vaAccountVerifiedOK) → tvA2)

✷((vAs2 ∧ vaAccountVerifiedNotOK) → tvA3)

% belonging to processTransaction()

✷((pTs1 ∧ ptNotProcessing) → tpT1)

✷((pTs2 ∧ ptProcessed) → tpT2)
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% belonging to readCard()

✷((rCs1 ∧ rcReading) → trC1)

✷((rCs2 ∧ rcCardOK) → trC2)

✷((rCs2 ∧ rcCardNotOK) → trC3)

% belonging to ejectCard()

✷((eCs1 ∧ ecNotEjecting) → teC1)

✷((eCs2 ∧ (ecWillingToEject ∨ ecEjected)) → teC2)

% belonging to cancel()

✷((cAs1 ∧ caWillingToCancel) → tcA1)

✷((cAs2 ∧ caCancelled) → tcA2)

% INITIAL CONDITIONS

init

init → (cpNotChecking ∧ gmNotGetting ∧ vaNotVerifying ∧ ptNotProcessing ∧
rcNotReading ∧ ecNotEjecting ∧ caNotCancelling ∧ atmWaiting ∧
bcWaiting)

%........................< Here ends the PTL program >........................
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7 Model verification

This section shows that it is possible to link the output of our translation, a PLTL-based pro-
gram, to a verification procedure about correctness in the initial PARADIGM specification. We
show that well-known properties from the systems verification literature [MP92] can be naturally
associated to this translation. A later stage in our research will involve to link this notions to
the already available tools SPIN and STeP.

Before offering a number of examples for such properties, our notation must be explained. Propo-
sitions vaAccountOK, vaAccountNotOK and vaNotVerifying are true anytime
verifyAccount (Fig. 9) remains on states AccountOK, AccountNotOK and NotVerifying, re-
spectively. Propositions cpVeryfing, cpChecked and cpNotChecking are true anytime checkPIN
(Fig. 3) remains on states Veryfing, Checked and cpNotChecking, respectively. Propositions
TcP4, TvA2 and TvA3 are true anytime checkPIN (Fig. 5) and verifyAccount (Fig. 10) remain
inside traps T-cP4, T-vA2 and T-vA3, respectively. Proposition vAs2 is true anytime subprocess
verifyAccount s2 (Fig 10) is prescribed.

Example 6 A safety property:
“Any account can be either accepted or rejected, but it can never be in both states”

✷ ¬(vaAccountOK ∧ vaAccountNotOK)

�

Example 7 A guarantee property:
“It is possible for the ATM to report a PIN as checked while BankComputer is still verifying it”

✸(cpChecked ∧ vAs2)

�

Example 8 Some response properties:
“Whenever the system reaches the state Verifying during the checkPIN stage of the procedure it
eventually reaches the state where the PIN is already Checked.”

✷(cpVerifying → ✸ cpChecked)

“If ATM requests BankComputer to verify a PIN, it always gets an answer, be it positive or
negative”

✷(TcP4 → ✸(TvA2 ∨ TvA3))

�

Example 9 A response/recurrence property:
“The stage of verifying account implies to check whether the account is acceptable or not. After
that step the process is reinitiated.”

✷(vaNotVerifying → ✸((vaAccountOK ∨ vaAccountNotOK) ∧ ✸ vaNotVerifying))

�
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Example 10 A recurrence property:
“The process of checking a PIN can be cyclically invoked”

✷(✸ cpNotChecking ∧ ✸ ¬ cpNotChecking)

�

It can be seen the verification process can be set, either at the more general level of the function-
ality of the system (examples 6 and 9) or at a subtler level of traps and subprocesses (examples
7 and 8).

Our PLTL translation can be coupled more or less easily with a PLTL interpreter, e.g. ETP, to
verify temporal properties. Other alternatives includes the consideration of systems like STeP
and SPIN. As mentioned earlier, SPIN is based on model checking. Because in this technique
the space of possible states of the global automata is explored the tool is restricted to finite state
systems. On the other hand highly efficient algorithms made this tool very succesfull for indus-
trial applications. STeP instead is a collection of tools mainly focused on a deductive approach
to verification, although also provides model checking support. Being a deductive system it can
deal with infinite state specifications and hence, providing better scalability than tools centered
on state-exploration like SPIN.

However some further work must yet be done in order to link our proposal with either STeP and
SPIN, we think that our work on making explicit the temporal relationships implicitly encoded
in each PARADIGM specification may help to accomplish future goals, as finding translations
from Paradigm to SPL. On the other hand, K. Etessami [Ete99] shows that is possible to trans-
late an extended version of Linear Temporal Logic (LTL) to Buchi Automata, being the latter
another specification language for SPIN. As PLTL is a sublogic of LTL, it is likely that further
research support SPIN as a profitable tool for verifying PARADIGM models, i.e. by first using
our algorithm to translate a PARADIGM model M to a PLTL program P, then by using Etes-
sami’s work to translate P (an LTL program) to Buchi automata B and finally by using B as
the input for SPIN.

We found that PLTL is a flexible language where to easily encode a wide range of distinctive
features in Paradigm, e.g. those relating traps and suprocesses. It is our conjecture that encoding
those notions in other formalisms could not be so straigthforward. For example, the reader
must notice that model checkers cannot deal with formulas containing operators from the past
fragment of PLTL. Although the encoding of these notions in Fair Transition Systems, in the case
of STeP, or global automata, in the case of SPIN, is a matter of further research, we nevertheless
have learnt some important insights on the dynamic involved with Paradigm based specifications.
They hopefully will allow us to give some other steps on improving the verification possibilities
available to Knowledge and Software Engineers using PARADIGM.

8 Conclusions and Further Work

We have introduced a translation process that takes a PARADIGM specification as input and
generates a Temporal Logic based program which expresses, from a declarative approach, the
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dynamic behavior of such specification. This program can be used for tracing process inter-
actions. Also, it can be seen as a database that can be queried for system verification. For
example, classical properties such as guarantee, persistence, response and others can be queried
to verify the correctness of a particular PARADIGM model.

A translation algorithm based on set-manipulation primitives has been presented, which can be
proved to run in polynomial time. Indeed, we have been testing a current implementation in
PROLOG.

A very interesting issue to be considered in further work involves rule enhancement for modelling
processes that are not always active, as it is usually the case for real systems. Translation could be
also extended for expressing some constraints that are not included in PARADIGM models but
usually affects the system dynamics. For example, SOCCA models, which include PARADIGM
models as a perspective of the system modelled, also provides information about the order in
which processes are actually called (see e.g. Fig. 2).
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