
User-Centric Software Development Process

Juan Carlos Augusto
Research Group on Development of Intelligent Environments

Dep. of Computer Science, Middlesex University, London, UK
e-mail: j.augusto@mdx.ac.uk

Abstract—The Software Engineering community has
produced plenty of recipes on how to build software systems.
Through the decades, we have seen a shift from the more
structured and organized to the most flexible approaches,
lately with emphasis on speed. Although these methods in
principle apply to all software, in being generic they may not
address specific needs of some areas where systems have
special features and demands. We argue in this paper that
Intelligent Environments is one such area to be considered
and in need of a tailored software development process. We
introduce a new software development process and explain
how is to be applied in systems of the Intelligent
Environments field.

Keywords - Intelligent Environments; Software
Engineering, Software Development Process.

I. INTRODUCTION

“An Intelligent Environment is one in which the

actions of numerous networked controllers (controlling
different aspects of an environment) is orchestrated by
self-programming pre-emptive processes (e.g., intelligent
software agents) in such a way as to create an interactive
holistic functionality that enhances occupants
experiences”.(Vic Callaghan, [4]) Do we need a different
way to build these systems? Here we argue that we do.
Systems in this area are made of a collection of pre-
existing fields, which grew up mostly independently:
sensors, actuators, networks, interfaces, intelligent
software, and human-computer interaction. Hence, it is
understandable that despite the significant effort invested
by companies and research centres around the world, these
systems still remain an engineering challenge, from the
simple deployment and maintenance issues to the core
algorithmic problems and decision-making challenges of
system organization. A sign of the formidable difficulties
we face is that Intelligent Environments are still
predominantly built in labs instead as of commercial
products massively consumed around the world.

The technical literature does not offer specialized
solutions to this problem. A recent survey by Preuveneers
and Novais [2] covered requirements, component re-use
and system verification, and other Software Engineering
areas. The paper highlights that from an SE perspective,
there are specific needs teams developing Intelligent
Environments have to consider, however does not report
on the general process of driving the development strategy.
Not their fault, there is not such a guidance yet. This paper
tries to remedy that.

Established Software Development Processes [3] can
be roughly split into plan-driven (i.e., waterfall) or agile
(i.e., SCRUM [1]).

II. A USER-CENTRIC APPROACH TO BUILD IES

A. User-centred approaches
One driving force for this research is to provide a

system that is tailored to developers of Intelligent
Environment systems. Closely linked with that is the need
for this process to be user-centric, as this is a core value of
the Intelligent Environments community [4]. To put it in
simpler terms: the focus is on How to make final users
happier with what they ordered?

B. A New Development Software Process
A new software model will not necessarily change the

way software is developed in an area; however, it offers
those with the willingness to develop software a guide that
will remind them along the process of the important stages
which define the ethos of an area.

Figure 1 shows in a picture the essence of the User-
Centric Software Development Process, or U-C SDP for
short. That diagram includes several typical stages of
software development that we will find present in
traditional software development models, e.g. the waterfall
model. This figure, however, highlights the importance
given to the intervention of the stakeholders driving the
process. Only one step is numbered, other steps are
performed following the arrows. Solid arrows mean
mandatory and dotted arrows mean non-mandatory (but
desirable). There are three stages which can be mixed in
any order although usually they will be performed
clockwise: the right hand side loop is the Initial Scoping,
the central loop is the Main Development and the left hand
side cycle is the IE installation.

A thesis worth assessing in the future is that this
process should be used for both creation and maintenance.
Although the refinements and fixings which may come
after the development and deployment may go faster
through these cycles, users should be involved in co-
designing and perfecting the system in all those stages.

The idea with the first circular path is that the
stakeholders should be in control and that IE infrastructure
can (ideally: should) be checked by stakeholders (see
dotted arrows) to make sure they accept it before
prototyping is started. Although some projects claim to
involve stakeholders, actually this does not happen in
practice so this method is explicitly reinforcing this aspect.
In addition, systems are installed in already build houses so
the same emphasis on stakeholders’ involvement is put on
the validation stage. Prototyping, as other stages of the
process, can be ‘zoomed in’ and decomposed in several
steps and iterations. Behind the spirit of this proposal is
that teams often have a product and then try to create an
excuse to sell it. By forcing the revision of technology and

the acknowledgment of the stakeholders, we increase the
chances that the stakeholders can veto inadequate
technology being imposed to them by engineers.

The freedom of interplay between the second and third
loops is deliberate. The rationale for that is that in some
areas of Intelligent Environments, e.g., Ambient Assisted
Living (AAL) [5], there is a lot of emphasis on testing
systems in as close as possible to final deployment
contexts. The so-called “Living Labs” 1are labs which are
inhabited by real final users (including proper homes kitted
up). This usually complements the more traditional
software development done in a university lab or in a
company. These can co-evolve in many different ways
and some development teams will put more emphasis in
one or the other, they may start with one or the other and
some will perform back and forth iterations amongst lab
and real home development. No strategy is guaranteed to
work better in all cases and hence they are purposefully
left somehow detached so that our model remains flexible
to adapt to different strategies.

C. Ethics
Ethics is mentioned in several system descriptions but

rarely given any attention at system development level. To
increase the chances that ethics is embedded in the product
being developed the U-C SDP explicitly includes it as part
of the process. Underlying all this development there
should be an ethical framework which should be taken into
consideration from beginning to end of the process and at
all stages there should be specific actions taken to ensure
the ethical layer of the system is translated accurately from
one stage to the other [6].

III. U-C SDP EXPLAINED
This section explains the different elements in Figure 1.

The depiction of the process has three main loops: Initial
Scoping (on the right hand side), Main Development (low
centre loop) and the IE installation (left hand side loop).
Each of the sub-sections below describes the component
elements and their connections.

A. Initial Scoping
1) Interview Stakeholders: each project should start

by gathering the expectations of the stakeholders. The
very essence of systems in this area is to serve humans.
This principle shapes U-C SDP as through the different
stages they can continuously monitor and influence the
development with their opinions.

2) Define Required Services: the technical teams
translate the information gathered from stakeholders into
services the system will aim to provide.

3) Define Required IEs Infrastructure: the technical
teams select the sensors, actuators and other devices and
interfaces which will allow the materialization of the IE in
the real world. The figure shows dotted arrows indicating
it is suggested the technical team checks whether the
proposed infrastructure to materialized the services is
acceptable to the stakeholders and the stakeholders can
accept or make alternative suggestions (which should be
taken on board by the team).

1 http://www.openlivinglabs.eu/

4) Initial Design and Prototyping: this involves the
use of methods and tools which allow the technical team
to make an initial approach to the system. The result of
this stage is shown and explained to the stakeholders, their
suggestions for changes should trigger another iteration
through the Initial Scoping cycle. This iteration will go
very fast if changes are minimal or should be devoted the
necessary time if they are more fundamental.

B. Main Development
1) Design: having the approval of the stakeholders at

this stage implies a more detailed design analysis which
should be strongly connected with the other stages of this
cycle (i.e., create technical material which can feed testing
and verification). Notice there is also a smaller loop
between design and stakeholders indicating the
desirability of making this step not an isolated stage but
an interactive one with the stakeholders.

2) Implementation and Testing: this is about coding
and testing that code. Testing should consider software,
hardware and human-computer interfaces.

3) Verify Correctness: verification (e.g., through
model checking) is one the most rigorous soundness
checks available which can [8] and should be performed
on systems in this area. Notice the dotted arrows to
indicate verification and testing are complementary and
should be used in conjunction to make sure the system
built is correct.

4) Interview Stakeholders: stakeholders should be also
involved on testing and approving the final functionality
obtained through the interfaces and other aspects of the
system they will experience.

C. Intelligent Environment Installation
1) Equipment Validation: deploying starts with the

infrastructure (hardware, network, devices, interfaces) and
this step should have a separate safety and reliability
check. Users can check if the infrastructure deployed is
acceptable for them (location, maintenance required, and
other practical aspects of its presence).

2) Software Validation: software is deployed on the
infrastructure and the behaviour of the system can be
experienced and tested by users. As in equipment testing
the user can object on individual parts of infrastructure,
here users can do the same on specific functions of the
systems.

3) Services Validation: this involves the stakeholders
experiencing the system for significant periods of time on
a continuous basis (e.g., through Living Labs).

4) Interview Stakeholders: Their feedback after
equipment or software testing goes to the development
team. A problem in any of those system components at
this stage can lead to redesigning and redevelopment of
the system by going back to any of the other main loops.
After the system has been improved it comes back to
another installation exercise.
These main loops and secondary loops can be executed as
many times as needed. The different combinations of

http://www.openlivinglabs.eu/

paths can be exercised in a specific rigid order and with
the full breath of services in mind from the very
beginning, more like in the Waterfall model, or with
smaller objectives in faster cycles more like in
incremental and agile models. However, as most systems
in this area are safety critical, the slower and more careful
approaches are strongly advisable.

D. Ethical Framework
Frequently papers within this field refer to ethical issues,
rarely these are implemented. Within our research group
we have considered the problem of finding a suitable
ethical framework for the development of systems in this
area and our resulting proposal is eFRIEND (see [4]).
This ethical framework is based on the principles that
AAL systems should provide services which collectively
are consistent with the following higher level ethical
principles: non-maleficence and beneficence, user-centred
multiple user groups, privacy, data protection, security,
autonomy, transparency and openness, equality, dignity
and inclusiveness of provision. These principles are
designed to protect users from informal and rushed system
development. These generic principles are translated in
eFRIEND to specific AAL features of a specific system.
We provide examples for these: 1) Non-Maleficence and
Beneficence: the system should avoid causing harm to any
of the users and the system should proactively seek for
opportunities to help and this help should be agreed by the
users in advance, 2) User-Centred: the type of technology
and associated services should be agreed with the users in
advance, 3) Multiple User Groups: The system should be
aware of the different needs and preferences of all
individuals, 4) Privacy: Users decide on the level of
acceptable monitoring, tracking and recording of
activities, 5) Data Protection: Users have access to the
sensitive information stored about them, 6) Security: The
system should protect the individuals whom it is helping,
7) Autonomy: User can selects degree of protection,
8) Transparency: All users should be clearly informed of
the pros and cons of the services offered by the system,
and 9) Equality, Dignity and Inclusiveness: The system
should provide help regardless of age and technical
background and ability.
We believe these principles should be taken into account
when developing Ambient Assisted Living systems and
this ethical framework overall should be used to inform
development from early stages of gathering requirements
and planning to later stages of validation and deployment.

IV. U-C SDP IN PRACTICE
Our User-Centred Software Development Process model is
more specific than other well-known models which have
been used for decades in software engineering; still it
keeps a degree of generality to be applied to any area
where user-centred systems are built. Intelligent
Environments is one such area where users are at the core
of systems conception and U-C SDP is well-suited to guide
systems throughout all stages.

As an example let us consider a project from the AAL
area which was funded by the UK government in
collaboration with government-funded healthcare

organizations (NHS trusts) and a company (Fold) focused
on the provision of services for elderly people. The project
was called NOCTURNAL (Night Optimized Care
Technology for UseRs Needing Assisted Lifestyles) and its
goal was to produce a commercially viable technological
infrastructure which, based in sensors, can increase safety
of elderly people at night time. Movement sensors were
deployed in each room of the house and pressure pads
were used in the main bed to allow the system to know
where the person being cared for was. Lights and a bedside
unit which was capable to provide calming music and
images were used as actuators. For an overview of this
project see [7].

During the Initial Scoping phase different group of
stakeholders were interviewed and their views taken into
account (the financial constraints from the company, what
the NHS organizations and the users considered acceptable
services and technology where amongst the most important
issues to be balanced). These interviews were all face to
face. As a result a non-intrusive platform was defined
based on existing technology from the company. This
information allowed us to create an initial infrastructure
which was capable of delivering the acceptable services
agreed by the main stakeholders. The team has clear that
the first goal to achieve was to be able to deliver the
expected services and then subsequent iterations will be
used to do that in the optimal way for the company (e.g.
maximizing reliability and minimizing cost).

The Main Development phase focused on materializing
the initial conception of the system. The technical teams
in the consortium used formal methods to model the
system at different levels of abstraction, to simulate the
possible emergent behaviour of different alternative
solutions, and to verify that specific requirements were
present in the behaviour emerging from those modelled
solutions. This was interleaved with coding so the models
and code were expanding in synchrony [10]. In the first
iteration different stakeholders tried different parts of the
system which were closer to their interest and we gathered
feedback. In subsequent iterations they assessed the whole
infrastructure, to the extent their technical knowledge
naturally allowed them.

The Intelligent Environment Installation phase was
very important in all three iterations and in all cases it
involved final users experimenting with the system in their
own living spaces (homes or sheltered accommodation).
The first iteration was a bit dissociated in the sense that
equipment was experienced partially by different
stakeholders. Whilst the technical partners were
experimenting with sensors at their working places the
users and NHS partners were assessing the interfaces.
Iterations 2 and 3 involved a more holistic validation, just
that with different sensing technology. Stakeholder’s
feedback was used to inform each of the next iterations.
The first iteration was based on a system which was
provided by another company to Fold and although it
allowed to define the services a platform which was
shaped from the hardware onwards was preferred. Two
iterations were performed which subsequently focused on
a new hardware platform and the last one focused on
improving the efficiency of the platform. The interesting
part of the way the system progressed was that the initial
stage required a few iterations on the first circle (Initial

Scoping) with three separate elements: services,
infrastructure and interface. The first iteration consisted of
those three loosely integrated parts to make sure they were
acceptable. Once these were approved the system
progressed into the main development stage changes were
less radical and the infrastructure changed but not the
philosophy and way of service delivery. Hence iterations
2 and 3 were more related to the company’s technological
offer and the algorithms the university team used to
materialize the services with different technology. The
modelling, design, simulation and verification stages [9]
remained very much the same and the adjustments were
more at the interface between service programming and
sensors/actuators. The overall lessons learnt from that
experience were that the U-C SDP was organized but at
the same time flexible enough to accommodate for
changes and refinements which delivered the best
compromise for the stakeholders within the resources
available.

V. CONCLUSIONS
We have introduced a new process to guide the
development of Intelligent Environments. This is needed
because traditional methods do not specifically focus on
the importance of stakeholders and the different
technological components of IEs. We have provided an
initial validation with the development of an AAL system.
There are noticeable advantages of flexibility which allow
developers to follow different strategies akin to more
traditional strategies. Our method has been engineered to
provide more specific support to the IE community.

REFERENCES

[1] M. Cohn (2009). Succeeding with Agile: Software Development
Using Scrum. Addison-Wesley. ISBN-13: 9780321579362

[2] D. Preuveneers, P. Novais (2012). A survey of software
engineering best practices for the development of smart
applications in Ambient Intelligence. Journal of Ambient
Intelligence and Smart Environments 4:3 (149-162).

[3] I. Sommerville (2011) Software Engineering, 9th Edition, Pearson.
ISBN 13: 9780137053469.

[4] J. C. Augusto, V. Callaghan, A. Kameas, D. Cook, I. Satoh (2013).
Intelligent Environments: a manifesto. Human-centric Computing
and Information Sciences, 3:12, 2013. Springer.

[5] J.C. Augusto, M. Huch, A. Kameas, J. Maitland, P. McCullagh, J.
Roberts, A. Sixsmith, and R. Wichert. (Eds.) (2012). Handbook on
Ambient Assisted Living. Volume 11 of the Ambient Intelligence
and Smart Environments Book Series, IOS Press.

[6] S. Jones, S. Hara, J. C. Augusto (2013). eFRIEND: an Ethical
Framework for Intelligent Environment Development. To appear
in Proc. of 7th Int. Conference on PErvasive Technologies Related
to Assistive Environments (PETRA 2014), 27-30 of may, 2014.

[7] J. Augusto, M. Mulvenna, H. Zheng, H. Wang, S. Martin, P.
McCullagh, J. Wallace (2014). Night Optimised Care Technology
for Users Needing Assisted Lifestyles. Behaviour and Information
Technology. doi:10.1080/0144929X.2013.816773 Taylor&Francis.

[8] J. Augusto, M. and Hornos (2013): Software Simulation and
Verification to Increase the Reliability of Intelligent Environments.
Advances in Engineering Software, Vol. 58, Pages 18-34, Elsevier.

[9] J. Augusto, H. Zheng, M. Mulvenna, H. Wang, W. Carswell, P.
Jeffers (2011): Design and Modelling of the Nocturnal AAL Care
System. Proc. 2nd Int. Symposium on Ambient Intelligence
(ISAmI 2011), pp. 109-116. Salamanca - Spain. Springer Verlag.

[10] A. Gravell, Y. Howard, J. C. Augusto, C. Ferreira, and S. Gruner
(2003): Concurrent Development of Model and Implementation.
Proc. of 16th Int. Conference on "Software and Systems
Engineering and their Applications". Paris, France. .

Figure 1. holistic view of the User-Centred Development Software

	I. Introduction
	II. A User-Centric approach to build IEs
	A. User-centred approaches
	B. A New Development Software Process
	C. Ethics

	III. U-C SDP explained
	A. Initial Scoping
	1) Interview Stakeholders: each project should start by gathering the expectations of the stakeholders. The very essence of systems in this area is to serve humans. This principle shapes U-C SDP as through the different stages they can continuously ...
	2) Define Required Services: the technical teams translate the information gathered from stakeholders into services the system will aim to provide.
	3) Define Required IEs Infrastructure: the technical teams select the sensors, actuators and other devices and interfaces which will allow the materialization of the IE in the real world. The figure shows dotted arrows indicating it is suggested the t...
	4) Initial Design and Prototyping: this involves the use of methods and tools which allow the technical team to make an initial approach to the system. The result of this stage is shown and explained to the stakeholders, their suggestions for changes ...

	B. Main Development
	1) Design: having the approval of the stakeholders at this stage implies a more detailed design analysis which should be strongly connected with the other stages of this cycle (i.e., create technical material which can feed testing and verification). ...
	2) Implementation and Testing: this is about coding and testing that code. Testing should consider software, hardware and human-computer interfaces.
	3) Verify Correctness: verification (e.g., through model checking) is one the most rigorous soundness checks available which can [8] and should be performed on systems in this area. Notice the dotted arrows to indicate verification and testing are co...
	4) Interview Stakeholders: stakeholders should be also involved on testing and approving the final functionality obtained through the interfaces and other aspects of the system they will experience.

	C. Intelligent Environment Installation
	1) Equipment Validation: deploying starts with the infrastructure (hardware, network, devices, interfaces) and this step should have a separate safety and reliability check. Users can check if the infrastructure deployed is acceptable for them (locati...
	2) Software Validation: software is deployed on the infrastructure and the behaviour of the system can be experienced and tested by users. As in equipment testing the user can object on individual parts of infrastructure, here users can do the same on...
	3) Services Validation: this involves the stakeholders experiencing the system for significant periods of time on a continuous basis (e.g., through Living Labs).
	4) Interview Stakeholders: Their feedback after equipment or software testing goes to the development team. A problem in any of those system components at this stage can lead to redesigning and redevelopment of the system by going back to any of the...

	D. Ethical Framework

	IV. U-C SDP in practice
	I.
	II.
	III.
	IV.
	V. Conclusions
	References

