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Abstract The capability to represent and use concepts like time and events in computer
science are essential to solve a wide class of problems characterized by the notion of change. Real-
time, databases and multimedia are just a few of several areas which needs good tools to deal
with time. Another area where this concepts are essential is artificial intelligence because an agent
must be able to reason about a dynamic environment.

In this work a formalism is proposed which allows the representation and use of several features
that had been recognized as useful in the attempts to solve such class of problems. A general
framework based in a many-sorted logic is proposed centering our attention in issues such as the
representation of time, actions, properties, events and causality. The proposal is compared with
related work from the temporal logic and artificial intelligence areas. This work complements and
enhances previously related efforts on formalizing temporal concepts with the same purpose.
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§1 Introduction
The capability to represent and use concepts like time and events are essential in computer

science to solve a wide class of problems characterized by the notion of change. Real-time, databases and
multimedia are just a few of several areas which needs good tools to deal with time. Temporal reasoning
is also a core area of artificial intelligence (AI) as it is necessary for an intelligent agent to know how to
behave in a dynamic world. It is for this reason that the artificial intelligence community is becoming
increasingly interested in formalizing temporal reasoning since two decades ago. 10)

One of the most influential proposals in AI has been that of Allen’s interval-based temporal
logic. 2) 5) The goal of this article is to provide an alternative general framework based on a a many-
sorted temporal logic that allows temporal reasoning and gives a cohesive account of previous work 16) 2)

17) 18) 38) We consider syntax and semantics with a detailed specification of each of the involved sorts, as
well as other complementary notions like individualization and causality.

Because of the diversity of aspects involved when temporal phenomena is considered, one is faced
with making choices. It is worth mentioning that there is no strong philosophical commitment in our
definitions and assumptions. The decisions are mostly based on computational reasons. This does not



2 Juan Carlos AUGUSTO

mean we do not pay attention to the philosophical literature. Instead we try to get a balance between
what is known from the philosophical literature and the computational implications in considering them.
It is also important to remark we will not be involved in this article with all problems arising from the
initially stated goal. For example, we will not consider the frame problem or non-monotonic aspects of
reasoning, whose relation with this proposal will be considered in a future article.

This work is organized as follows. The language and the specification of sorts, including some re-
marks on causality, are provided in section 2. Inference rules, semantics and the problem of individuation
arising on a reified logic are considered in section 3. Examples on how to use the proposed framework
are given in sections 2.7 and 4. A comparison between our proposal and similar frameworks is done
in section 5, showing how much some well-known proposals of the literature accomodates in this work.
Finally, conclusions and future work are given in section 6.

§2 Syntax of the Temporal Language
Following we will give the specification of a many-sorted temporal language called LT. This will

provide us with tools to naturally consider reification over time, properties, events and actions. These
have been considered in the literature of the area as key concepts on modelling a rational agent living
in a dynamic world. The reason for choosing reification is that it brings us some advantages from the
point of view of knowledge representation and use. As Allen has pointed out, 3) we need reification in
order to efficiently represent information in the knowledge base when we deal with incomplete knowledge.
Also it is useful to efficiently handle the problem to distinguish two individuals, e.g. if we need to know
if two events are different or not. In addition, we think many sorted logics offer a clear framework to
specify all these classes of individuals neatly separated and this separation also could lead to a more
efficient computational treatment. There are extensive studies of many-sorted logics with functions and
equality, giving syntax, semantics, proof theory and metatheoretical properties 17). Then we do not need
to reinvent it and instead we shall focus on the extension of such a general framework to do it suitable
for reasoning with temporal concepts connecting past work and personal work to get a more precisely
defined proposal. We start with a reminder of a sorted signature to be used in LT.

Definition 2.1

The alfabet of LT has the following elements:

1. We assume a countable set S of sorts such that S ⊇ {B, Ex, Ev,P,A,W} where: sort B is for
boolean values, i.e., true and false, sort Ex is for explicit temporal references and Ev is for
event-based temporal references, P is the sort for properties and A for actions. W will contain
the remaining individuals existing in the application domain. For each sort s we consider:
a) two quantifiers: ∀s and ∃s b) an equality symbol .=s c) a countable, possibly infinite, set Vs

of variables d) a countable and non-empty set CSs of constants.
2. A set of boolean connectives : ∧, ∨, → , ¬ and a set of auxiliary symbols: ), ( and “, ”.
3. A countable, possibly empty, set FS of function symbols, f0, f1, . . ., together with a rank function

r : FS → S+×S, assigning to each function symbol f a pair r(f) = (u, s), called rank, where u

represents the arity of f and s the sort of the result after applying f to its arguments. The set
of boolean connectives ∧, ∨ and → can be then considered as functions with rank (B.B,B) and
the connective ¬ with rank (B,B).
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4. A countable and non-empty set PS of predicate symbols, P0, P1, . . ., together with a rank function
r : PS → S?×B, assigning each predicate symbol P a pair r(P ) = (u, s), called the rank, where
u represents the sorts for the arguments of P and s the sort of the result after applying P to
its arguments. When the arity is zero, P is a propositional letter. Equality, .=s, is considered a
predicate with rank (s.s,B).

Next we define the well-formed formulas of the language LT 8) 9), in a BNF-style for brevity’s sake:

Definition 2.2

Let si, sj , . . . , sm, sn be sort names in S, the set of well-formed formulas of LT, wff, is defined as follows:

termsm
::= variablesm

| constantsm
| function namesm

( term list )
term list ::= termsi | termsj , term list
atomic formula ::= predicate name ( term list )
wff ::= atomic formula | ( termsn

.=sn termsn ) |(¬ wff ) |
( wff → wff ) | ( wff ∧ wff ) | ( wff ∨ wff ) |

((∃sn variablesn ) wff ) | ((∀sn variablesn ) wff )

Notation: Symbols of each sort, as .=s and ∀s, are used only with symbols of the same sort. When it is
clear from the context we will omit the subscript to specify the intended sort. Also we take the convention
of numbering just the axioms of the theory. Nested negations are ruled out, i.e. all formulas of the form
¬¬F will be considered as equivalent to F . We will use ∀sx, y... or ∃sx, y... instead of ∀sx∀sy... and
∃sx∃sy.... We will also use x·>y, x<·y<·z, x v y v z instead y<·x, x<·y ∧ y<·z, x v y ∧ y v z respectively.
We will proceed analogously when using “<” and symbols from other sorts.

Examples of valid temporal constants are: 7-8-1991 and 3600. These could be used as a date and
the amount of seconds in an hour respectively. Examples of functions are: a) leap-year(A) that maps a
year into the constants true and false in the expected way and seconds year(A) that maps a year in the
set of natural numbers according to the amount of seconds that the considered year has. Some examples
of atemporal terms are: choral(magnificat) and author(magnificat, jsbach), representing respectively a
kind of musical composition and the authorship property of a person over a composition. If we consider
Ex,P, Ev,A and W as names of sorts the following are examples of well formed formulas in LT:

∃T i1, i2 Precedes(i1, i2)
∃Aa∃Ee∃Pp∃T i(Doat(a, i) ∧Occursat(e, i + 1) → Holdsat(p, i + 2))
∀T i1, i2(¬ Precedes(i1, i2) ∧ ¬ Precedes(i2, i1) → Simultaneous(i1, i2))
Occurson(born(jsbach), 21/3/1685)

In the following section we will give an axiomatization of the sorts Ex,P, Ev,A of interest for our pur-
poses of representing an agent with temporal reasoning capabilities. The sort W will remain without
specification because it depends on the particular domain to be modelled. Unlike other proposals in the
literature 2) we do not consider the notion of process as an essential one. We do this under the hypothesis
that they could be constructed from events and states. 18) 38)
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2.1 The sort Ex

We will provide in this section an axiomatization of the sort of explicit temporal references,
Ex. Here we use “explicit temporal references” and “explicit time” as a short way to refer to numeric,
absolute, calendric kind of temporal references. On the other hand by “implicit time” we mean non-
numeric, relative, event-based, temporal references. We could consider two kinds of references which in
turn define subsorts of Ex. We could start its definition considering one of these subsorts, that defined by
“instants”. Later we shall consider the other subsort, defined by “intervals”. Here the word “subsort” has
a weak meaning in the sense that intervals are built from instants instead as a completely independent
notion. This step will be left as a further refinement to this proposal. By an instant we mean the shortest
temporal measure with respect to the granularity assumed on the system being modelled. An instant
must not be considered here as durationless, instead it is the name of the unit of measure assumed in
the system (which in some articles is called chronos). This is a point-based conception of time over
which we shall later construct an interval-based structure. The subsort T is formalized in the structure
INS : 〈T , <〉 where T is a set of points of time termed “instants” and <: T ×T is an order relation. The
following axioms are valid in T (Notation: we usually shall denote members of T by i and its subscripts):

∀i1 ¬(i1 < i1) (1)

∀i1, i2, i3(i1 < i2 ∧ i2 < i3 → i1 < i3) (2)

∀i1 ∃i2(i2 < i1) (3)

∀i1 ∃i2(i1 < i2) (4)

∀i1, i2(i1 < i2 ∨ i2 < i1 ∨ i1
.= i2) (5)

∀i1, i2(i1 < i2 → ∃i3(i1 < i3 ∧ ¬∃i4i1 < i4 < i3)) (6)

∀i1, i2(i1 < i2 → ∃i3(i3 < i2 ∧ ¬∃i4i3 < i4 < i2)) (7)

which characterise an irreflexive, transitive (hence asymmetric), nonending and discrete line of time.
This excuses us from considering some characteristic problems of other structures but absent in discrete
frameworks such as the intermingling problem 20) and the specification of the moment of change in a
property. 40) It is also important to notice we are not assuming the structure as ismorphic to Z, which
allows us to give an entirely first-order axiomatization. We now define a notion of interval over INS as
a subsort inside Ex, which will be represented by means of I.

The usual method to build intervals in similar frameworks is to consider them as a set of in-
stants. Here we do not choose this way because of problems that arise in considering the ocurrence of
events associated to intervals in relation with its non-homogeneity property. That is to say, usually it is
considered that if an event occurs in an interval conceived as a set of instants it also occurs in the set
of instants that defines it. This conflicts with the non-homogeneity hypothesis over events. Since we are
assuming events as non-homogeneous it is more adequate to associate an interval with a pair of instants
considering it as a unit. Nothwithstanding, the points delimiting the interval allow us to do a kind of
instant-based and constraint-based reasoning that has been proved very useful in temporal reasoning. 27)

Definition 2.3

We will call an interval each member of the set I = {[i1, i2] ∈ T × T | i1 < i2}. We shall also consider
the partial function int mapping elements of T × T on elements of I: int(i1, i2) =def [i1, i2] if i1 < i2.
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Notation: We shall change the usual parenthesis associated with ordered pairs for brackets to align them
to the usual appeareance in the temporal reasoning literature. We shall also usually denote intervals by
I and its subscripts.

As it could be noticed, we are discarding “punctual intervals”, i.e., intervals of the form [i, i].
This is so because being simultaneously an instant and also an interval both its meaning and their set of
properties would be ambiguous.

Definition 2.4

We will consider the total functions begin, end : I → T that give us for each interval their beginning and
ending points respectively: begin([i1, i2]) =def i1 and end([i1, i2]) =def i2.

Now we could consider a structure INT : 〈I, <·,v〉 where I is a set of intervals and v (previous than),
<· (subinterval) relations, with <·,v⊆ I × I, defined as follows:

I1<·I2 =def {(I1, I2) ∈ I × I | end(I1) < begin(I2)}

I1 v I2 =def {(I1, I2) ∈ I × I | begin(I2) ≤ begin(I1), end(I1) ≤ end(I2)}

Also we will use the following definition (also obtainable from v):

I1 ·=· I2 =def begin(I1)
.= begin(I2) ∧ end(I1)

.= end(I2)

Instants and intervals were considered as abstract entities so far. Lets consider how they would
look in an everyday scenario.

Example 2.1

In order to represent dates we could take the extend western notation as a triple mm/dd/yyyy meaning
respectively month/day/year. For example, 01/20/2000 means january the 20th, 2000. If temporal
granularity or chronos of the system is fixed at days, then 01/20/2000 ∈ T and the order relation < is the
algorithm allowing us to say if a date is earlier than another or not. If temporal granularity is seted to
minutes then I = 01/20/2000 ∈ I and begin(I) = 01/20/2000, 00 : 01am and end(I) = 01/20/2000, 11 :
59pm. The way to denote dates and clock time was left to be decided at implementation time. The
system was defined free of a particular way to denote this entities. More on the way to chose interval
limits in section 5.5.

Because of the temporal entities introduced, now we can define a set of well-known relations in
the literature as those between intervals of Hamblin, later adopted by Allen, 1) and those between points
and intervals: 27)

Lemma 2.1

Interval relations BEFORE, MEETS, OVERLAPS, BEGINS, DURING, FINISHES, EQUALS, their
inverses and the following relations between points and intervals: precedes, start, divides, ends, follows
can be defined in T .

Proof As was shown by Allen and Hayes, 6) BEFORE, OVERLAPS, BEGINS, DURING, FINISHES
and EQUALS could be defined from MEETS. However, we will rewrite them according to our terminology
to show how simple is in our framework and to allow future citations of them.
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BEFORE(I1, I2) =def end(I1) < begin(I2)
MEETS(I1, I2) =def end(I1)

.= begin(I2)
OV ERLAPS(I1, I2) =def begin(I1) < begin(I2) < end(I1) < end(I2)
BEGINS(I1, I2) =def begin(I1)

.= begin(I2) ∧ end(I1) < end(I2)
DURING(I1, I2) =def begin(I2) < begin(I1) ∧ end(I1) < end(I2)
FINISHES(I1, I2) =def begin(I2) < begin(I1) ∧ end(I1)

.= end(I2)
EQUALS(I1, I2) =def I1 ·=· I2
Precedes(i, I) =def i < begin(I)
Start(i, I) =def i .= begin(I)
Divides(i, I) =def begin(I) < i < end(I)
Ends(i, I) =def i .= end(I)
Follows(i, I) =def end(I) < i

The reader can check this facts directly from the previously cited works 1)fig. 1 27)table 4.1 after appropriate
notation changes.

We could also get similar theorems to axiom 5 (we skip the proof for the sake of brevity):

∀I1, I2(BEFORE(I1, I2) ∨MEETS(I1, I2) ∨OV ERLAPS(I1, I2) ∨BEGINS(I1, I2)∨
DURING(I1, I2) ∨ FINISHES(I1, I2) ∨ EQUALS(I1, I2))

∀i, I(Precedes(i, I) ∨ Start(i, I) ∨Divides(i, I) ∨ Ends(i, I) ∨ Follows(i, I))

We can identify some general properties 38) about the structures T and I. Both satisfies Sym-

metry, i.e., seeing to the future and the past is not different, Connection, i.e., all pairs of elements
are related, and Homogeneity, i.e., all elements have the same properties.

2.2 The sort Ev

We attempt here a reconstruction of reasoning about change without explicit time. For this
purpose we will use a framework similar to that adopted for the sort Ex, this time splitting Ev into two
subsorts N and D for non-durative (punctual) and durative events respectively. Here the word subsort
has the same weak meaning that in the previous section in relation to instants and intervals. In a later
chapter we will present our proposal as an improvement of that given by Kamp 23) and a simplification
of that of Thomason. 32)

An event structure PUN : (N , <E ) is considered where N is a set of punctual events and
<E ⊆ N ×N is a binary order relation. The following axioms hold in the structure:

∀e¬(e <E e) (8)

∀e, e′, e′′(e <E e′ ∧ e′ <E e′′ → e <E e′′) (9)

∀e∃e′(e′ <E e) (10)

∀e∃e′(e <E e′) (11)

We consider a relation of punctual simultaneity represented by Sp ⊆ N ×N where:

e1Spe2 =def ¬(e1 <E e2 ∨ e2 <E e1)
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Because linearity does not follow from the previous axioms then we state the following:

∀e, e′, e′′(eSpe
′ ∧ e′Spe

′′ → eSpe
′′) (12)

Lemma 2.2

Sp defines an equivalence relation over N .

Proof Reflexivity is given because e1Spe1 =def ¬(e1 <E e1∨e1 <E e1) = ¬(e1 <E e1) that is obtained
by axiom 8. For symmetry we must look if e2Spe1 when e1Spe2. By definition of Sp, we could consider
instead if whenever is true ¬(e1 <E e2 ∨ e2 <E e1) then ¬(e2 <E e1 ∨ e1 <E e2) is true. But this is
clearly the case because it is just a matter of order in the disjunctive clauses. Transitivity is assured by
axiom 12.

Analogously to the sort T we will suppose:

∀e1, e2(e1 <E e2 ∨ e2 <E e1 ∨ e1Spe2) (13)

∀e1, e2(e1 <E e2 → ∃e3(e1 <E e3 ∧ ¬∃e4(e1 <E e4 <E e3))) (14)

∀e1, e2(e1 <E e2 → ∃e3(e3 <E e2 ∧ ¬∃e4(e3 <E e4 <E e2))) (15)

The event structure DUR : (D, BeginE , EndE) comprises a set D of durative events. We assume
each durative event has naturally associated the events of “starting to occur” and “ceasing to occur”.
Then analogously to the case of intervals we consider two functions, BeginE , EndE : D → N , by means
of which we could obtain the punctual events denoting respectively the beginning and ending of a given
durative event. For each event E ∈ D, we impose the restriction BeginE(E) <E EndE(E). We easily get
the relations durative simultaneity represented by Sd, overlapping events represented by Od, and abutting
represented by Ad. All these relations are defined as “Relation” ⊆ D ×D:

ESdE
′ =def BeginE(E) = BeginE(E

′) ∧ EndE(E) = EndE(E′)

EOdE
′ =def BeginE(E) <E BeginE(E

′) <E EndE(E)

EAdE
′ =def EndE(E) = BeginE(E

′)

Example 2.2

Let us suppose the following events,

E1

E2

E3 E4

then we have E1SdE2, E2OdE3 and E3AdE4.

2.3 Bridging the gap between Ex and Ev

It is useful to provide means of conexion between sorts Ex and Ev because sometimes, paradig-
matically in AI, we do not have complete knowledge about the world being formalized. In this section
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we consider ways to connect knowledge from two sorts increasing the chances to infer implicit knowledge.
Lets consider as a way of example the simplest combination. If we are told that two punctual events e1

and e2 occurred but not precisely when we could infer their order relation by connecting them with their
times of occurrence, t1 and t2. If t1 < t2 then we can infer that e1 is previous to e2. The goal of this
article is to draw several ways of connecting the diferent temporal references considered in Ex and Ev.
We start using the recently defined notion of event to define temporal notions associated without explicit
time references.

Definition 2.5

Let PUN : (N , <E ) be a structure of punctual events, as the simultaneity relation defines an equivalence
relation over N , we could identify an “instant” with each simultaneity class so defined over N . Also we
will consider a function e instant : N → T that returns a name of an instant associated with the
simultaneity class that a given punctual event belongs to.

Definition 2.6

Let DUR : (D, BeginE , EndE) be a structure of durative events. A set {E1, E2, . . . , Ek} of elements from
D will be termed a chain of events, abreviated as ξ, in the following cases:

1. every set of events related by Sd is a chain of events
2. if {E1, . . . , En} is a chain of events and En+1 is a set of simultaneous non-atomic events such

that for E ∈ En+1 either EnOdE or EnAdE, then E1, . . . , En, En+1 is a chain of events.

Example 2.3

The set of events described in example 2.2 allow us to define the following chains: {E1}, {E1, E3},
{E1, E3, E4}, {E2}, {E2, E3}, {E2, E3, E4}, {E1, E2}, {E1, E2, E3}, {E1, E2, E3, E4}.

It is interesting to observe we have now several options to define order relations over Ev. We start
considering an order relation defined over punctual events.

Definition 2.7

Let e instant be the function defined before over punctual events, then we define the order relation <′

as:

e instant(e1) <′ e instant(e2) =def e1 <E e2

Lemma 2.3

Let INS′ = 〈T ′, <′〉 be a structure of instants defined from a set of punctual events, then <′ defines a
strict linear order over T ′.

Proof we must prove that given two instants i1 and i2, they verify:

1. i1 <′ i2 → ¬(i2 <′ i1)
2. i1 <′ i2 ∧ i2 <′ i3 → i1 <′ i3
3. i1 6= i2 → i1 <′ i2 ⊕ i2 <′ i1 (where ⊕ means disjunctive union)

As T ′ is a set of punctual events and <′ is an order relation based on <E the proof is trivial from
axioms 9 plus simultaneity and asymmetry that are obtained from axioms 8 and 9. All we need to do
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is to translate in a suitable way assertions about instants onto the involved events axioms through the
linking definitions 2.5 and 2.7.

We proceed now to do similar steps regarding durative events. We start defining some auxiliary
functions which are used to define new order relations. Later we state some results as done for the
punctual events case.

Definition 2.8

If D is a set of events, ξ is a chain of events from D as in definition 2.6, and 2D the power set of D,

then the function First : 2D → D returns one of the events starting before the rest of the set (discarding
simultaneity). Analogously, Last : 2D → D returns one of the events ending after the rest of the set
(again discarding simultaneity).

First(ξ) =def

{
E if E ∈ ξ and there is no E′ ∈ ξ(BeginE(E

′) <E BeginE(E))
undefined otherwise

Last(ξ) =def

{
E if E ∈ ξ and there is no E′ ∈ ξ(EndE(E) <E EndE(E′))

undefined otherwise

Definition 2.9

Let DUR = (D, BeginE , EndE) be a structure of events. We can consider event-based intervals as the
temporal extent associated with every non-empty subset of D that form a chain of events. The function
e interval : 2D → I return the interval associated to a set of durative events. Then, e interval is a
function assigning names of intervals to sets of events.

Definition 2.10

Let e instant and e interval be the functions defined before, and ξ1, ξ2 two chain of events. Then we
will consider the following orders:

e interval(ξ1)B′e interval(ξ2) =def e instant(BeginE(First(ξ1))) <′ e instant(BeginE(First(ξ2)))
e interval(ξ1)B′e interval(ξ2) =def e instant(EndE(Last(ξ1))) <′ e instant(BeginE(First(ξ2)))

Lemma 2.4

Given INS1 = 〈T ′, B′〉 and INS2 = 〈T ′,B′〉 structures of instants defined from a set of punctual events.
Neither B′ nor B′ defines a strict linear order over T ′.

Proof It is enough to see that in both cases the third axiom fails.

Now we can go through one of the main goals of this section, that is to establish a relation
between the sorts Ex and Ev. Most of the previous definitions were defined with the purpose to fulfil this
goal acting as a bridge between explicit time-based and event-based knowledge. In principle, no concrete
time (“clock time”) is assumed to be associated with events. Typically, the knowledge or data base will
have a set of punctual and durative events designators representing an implicit time together with some
order constraints. There will also be references to instants and intervals. Sometimes we could connect all
this information referring to an event taking advantage of inferences on one way to represent temporal
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concepts and the other relating both views of the information. For example, the notions of temporal
precedence over instants and intervals could be reconstructed in terms of those defined for events.
We could consider the functions p events : D → N × N such that p events(e) = (BeginE(E), EndE(E))
and de instants : N ×N → T × T such that de instants(e1, e2) = (e instant(e1), e instant(e2)). From
the previous definitions some relations could be established between elements of Ex and Ev as indicated
in figure 1.

6

?

-

-

N ×N T × T

D I

p events int

e interval

de instants

Fig. 1 Translating durative events to intervals.

We do not have a function like e interval in figure 1, but we are able to obtain the same result
through the composition of p events, de instants and int, in these order. We could also transform the
information the other way around. If we consider functions points : I → T × T where points(I) =def

(begin(I), end(I)) that is to say the inverse of int, and d event : N → D by means of which we obtain
the durative event associated to the punctual events denoting the beginning and the end of its ocurrence.
Using them we could transform knowledge over punctual events into instant based knowledge as indicated
in figure 2.

?

6

-

-N ×N T × T

D I

d event points

e interval

de instants

Fig. 2 Translating punctual events to instants.

In this case the imposibility to apply the function de instants can be replaced by the composition
of d event, e interval and points.

Example 2.4

Let E be a durative event: “the stone fell from my hand to the floor”, which ocurrence starts in the
punctual event e1 of “release the stone” and concludes in the punctual event e2 by which the stone touches
the floor. Let us suppose that associated interval to this event is [17 : 05 : 00, 17 : 05 : 02] on the form
hour : minutes : seconds. By using the functions associated to events we could recover the initial events
by means of: BeginE(E) = e1 and EndE(E) = e2. By using e instant we obtain e instant(e1) = 17 : 05 : 00
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and e instant(e2) = 17 : 05 : 02. After applying int(17 : 05 : 00, 17 : 05 : 02) = [17 : 05 : 00, 17 : 05 : 02]
we get the interval associated to the event and apply to it operations associated with the sort I. We
could also go from punctual events to their associated instants.

Then we have ways to get information from all kinds considered via simple functions. What
makes the difference between both concepts, explicit time and events, is that while events could be used
to denote time they are also associated with change. Not just as a way to detect when change occurs but
as a change producer. We now make explicit considerations about the way in which events relate with
explicit time and individuals of other sorts. Let Occursat(e, i) and Occurson(E, I) denote the occurrence
of a punctual event e in the moment i and the occurrence of a durative event E on interval I respectively.
They are related in the following sense:

∀D E ∀I I ∀T i (Occurson(E, I) ∧ In(i, I) → ¬Occursat(E, i))

where In(i, I) =def Start(i, I)∨Divides(i, I)∨Finishes(i, I). To relate event-based and “explicit time”-based
reasoning we could consider:

∀N e1, e2 ∀T i1, i2 (Occursat(e1, i1) ∧Occursat(e2, i2) ∧ e1 <E e2 → i1 < i2) (16)

∀N e1, e2 ∀T i1, i2 (Occursat(e1, i1) ∧Occursat(e2, i2) ∧ i1 < i2 → e1 <E e2) (17)

Similarly, we can derive the following axioms from our knowledge of two durative events defining
intervals of time that are known to have no part in common.

∀D E1, E2 ∀I I1, I2 (Occurson(E1, I1) ∧Occurson(E2, I2) ∧ E1B′E2 → I1<·I2)
∀D E1, E2 ∀I I1, I2 (Occurson(E1, I1) ∧Occurson(E2, I2) ∧ I1<·I2 → E1B′E2)

This can be done in the following way: If we know Occurson(E1, I1)∧Occurson(E2, I2)∧E1B′E2

then by definition of B′ and durative events we have BeginE(E1) <E EndE(E1) <E BeginE(E2) <E EndE(E2).
Throughout the functions de instants and e interval we can associate to E1 and E2 two intervals I1 and
I2 such that I1<·I2. With the second axiom we proceed analogously using the function d event and then
using functions BeginE and EndE to get the elements where to apply transitivity. We get the conclusion
by definition of B′. It is worth to notice that it is not possible to derive 17 from 16 and our previous
definitions and axioms. This is because we cannot use, as we did in sort P, the homogeneity property to
derive what happens in the interval from what we know about their subintervals. On the contrary, from
the non-homogeneity of events we are forced to state 17 as an axiom. Then, up to axiom 17 we could
get a purely instant-based theory in the way interval reasoning could be represented in terms of them.
After this point interval occurrences must be imposed as axioms. Finally, we consider weak negation over
durative events in the following sense:

∀D E ∀I I (¬Occurson(E, I) ↔ ∃T i (In(i, I) ∧ ¬Occursat(E, i))) (18)

2.4 The sort P
For the representation of properties we will consider predicates introduced by Galton: 18)

Holdsat(p, i) and Holdson(p, I) denoting that p is a property that is true in the moment i or interval
I respectively. Actually, we just use p as a simplification because instead of what is expected, we will
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have something like A(x) to assert that x possesses the property A. We can see that Holdson ⊆ P×I and
Holdsat ⊆ P × T are related in the following sense:

Holdson(p, I) =def ∀T i (In(i, I) → Holdsat(p, i))

From the previous definition we get the following theorems about homogeneity of properties over an
interval:

∀P p∀T i ∀I I (Holdson(p, I) ∧ In(i, I) → Holdsat(p, i)

∀P p∀I I, I′ (Holdson(p, I) ∧ I′ v I) → Holdson(p, I′))

We consider “weak negation” of properties over intervals that could be obtained directly from the negation
of the previous definition:

¬Holdson(p, I) =def ∃T i(In(i, I) ∧ ¬Holdsat(p, i))

In what follows we will use a relation Changes(e, p) : Ev × P denoting that e is an event, either
punctual or durative, which everytime it occurs provokes the change of the property p. The relation
between the change of a property and a previous occurrence of an event is stated through:

∀P p ∀T i, i′ ((Holdsat(p, i) ∧ ¬Holdsat(p, i′)) ∨ (¬Holdsat(p, i) ∧Holdsat(p, i′)) ∧ i < i′ →
∃Ev e (Changes(e, p)∧

[∃T i′′(Occursat(e, i′′) ∧ i′′ < i′) ∨ ∃II(Occurson(e, I) ∧ begin(I) < i′)]) (19)

It must be observed that in spite of the homogeneity of properties the set of combinations could
not be extended to consider a property changing its truth value from an instant to an interval, viceversa
or changing between consecutive intervals. This is because in spite of weak negation a property ceasing
to hold at an interval do not implies not holding in the beginning and ending points. To allow this kind
of inferences strong negation, i.e. a property does not holds in an interval if it does not at every instant
of that interval, must be previously added to the system.

2.5 The sort A
In some contexts it is difficult to differentiate one action from the event that it causes, e.g. John’s

flipping a switch. Then the reader could think if it is really necessary to have another sort for actions since
its consideration leads sometimes to possibly artificial differentiations between them. In this article we
will follow the hypothesis that this feature is convenient to the option of not being allowed to distinguish
them when so it is needed. We will consider that every action is performed by an agent:

∀A a (Action(a) → ∃W g Agent(a, g)) (20)

More axioms including actions but in relation with events and causality are considered in another
section below.

2.6 Actions, Events and Causality
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This section is devoted to a general formalization of the notion of causality in relation to tem-
porality. This section must not be considered as a full account of causality, instead it was conceived as
a way to connect notions introduced in previous sections. As a positive side effect we give details about
fundamental concepts to be considered in a later discusion about Allen’s proposal for causality. The
axioms impose general constraints on predicates related to causality. They must be suplemented with
other axioms bringing knowledge about special aspects of causality between specific events and actions
for particular scenarios. We concede that much of the following treatment would find a better account
in a non-monotonic framework but, as argued before, such considerations are beyond the scope of the
present work.

One issue to bear in mind is that in this proposal actions are considered different objects from
events altough this is not always the case all areas of computer science. Here we take this view in spite
of pragmatic advantages, as it allow us to state more clearly the different parts which play a role in the
description of change. We will consider first action causality and as a first hypothesis we will suppose that
an event cannot be previous to the action that produces it. It is worth mentioning that this hypothesis has
many supporters in the philosophical literature but not unanimity. For example, there are proponents of
the argument that all causes are simultaneous with their effects 39) while Davidson’s 16)pp. 158 representation
of causality limits itself to causes that strictly precede effects. We consider then two situations. One
option is that the beginning points could be simultaneous like perceiving the colour of an object when we
look at it or producing sounds while pulling the stick over the strings of an instrument. Also they could
be overlapping as when somebody pushes an object during a period until it collides with some object.
Another example is the promulgation of a law that is made in a particular date but whose effects could
begin later.

We will also assume that an event produced by an action can finish before the end of the action
that produces it. One scenario in which this could happen is when an action produces an instantaneous
event. For example, my action of spilling water out of a glass provokes the event of starting to spread the
water or the event of the first contact of water with the floor. Another situation of interest arises when
the effect of the action ceases before it is expected. For example, when somebody passes a bow over the
strings of an instrument and after some time the sound ceases because a string breaks. Regarding Allen’s
assumptions, the only surviving hypothesis is that the action cannot start later than the event it causes.

Let us suppose we use the predicate Acause as a relation Acause ⊆ A × Ev denoting that an
action causes an event occurrence. Also we consider Doat and Doon with actions in a similar spirit than
Occursat and Occurson for events denoting instantaneous actions, like snapping the fingers or blinking
the eyes, and durative actions, such as raising the arm, respectively. We could resume the previous ideas
as follows:

∀N e ∀T ie ∃A a (Occursat(e, ie) ∧ Acause(a, e) →
[∃T ia (Doat(a, ia) ∧ ia ≤ ie) ∨ ∃I Ia (Doon(a, Ia) ∧ begin(Ia) ≤ ie)]) (21)

∀D E ∀I Ie ∃A a (Occurson(E, Ie) ∧ Acause(a,E) →
[∃T ia (Doat(a, ia) ∧ ia ≤ begin(Ie)) ∨ ∃I Ia (Doon(a, Ia) ∧ (begin(Ia) ≤ begin(Ie)))]) (22)

As with action causation we introduce a predicate, Ecause as a relation Ecause ⊆ Ev×Ev, denoting
that there exists a correlation between two event occurrences. Actually, this is a simplification of the
problem because it could be argued that this could be considered as a relation Ecause ⊆ P×Ev×Ev. The
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reason that could be given is that properties are needed to allow the causing event to occur. Similar, but
weaker, arguments could be given to include the properties that change as part of the effect. We opted,
to simplify this point, the assumption that there are rules in the knowledge base to link properties with
events in an appropriate way to specify the dependence of events with its associated properties. Similarly
to Acause we consider the following axioms on event causation:

∀N e ∀T i ∃Ev e′ (Occursat(e, i) ∧ Ecause(e′, e) →

[∃T i′ (Occursat(e′, i′) ∧ i′ ≤ i) ∨ ∃I I′ (Occurson(e′, I′) ∧ begin(I′) ≤ i)]) (23)

∀D E ∀I I ∃Ev e′ (Occurson(E, I) ∧ Ecause(e′, E) →

[∃T i′ (Occursat(e′, i′) ∧ i′ ≤ begin(I)) ∨ ∃I I′ (Occurson(e′, I′) ∧ begin(I′) ≤ begin(I))]) (24)

We will add more on the relation between causation and time after introducing some refinement
to the Ecause relation. We consider also two types of event causations, direct and indirect causation. The
purpose of that is to distinguish between two classes of causality with different properties. This is an
attempt to distinguish the set of events {ei1 , . . . , ein} that are the direct cause for another event e from
the set of events {ek1 , . . . , ekm} that were the cause for {ei1 , . . . , ein}. Then besides the relation Ecause
we introduce the relations DEcause, IEcause ⊆ Ev × Ev denoting if an event e1 is or not a direct cause
of another event e2. We can resume this by the following definitions:

Ecause(e1, e2) =def DEcause(e1, e2) ∨ IEcause(e1, e2)
DEcause(e1, e2) =def Ecause(e1, e2) ∧ ¬IEcause(e1, e2)

This distinction does not seem to be fundamental. However, it could help to discuss some differences
about properties of causation as will be done later. Also it has some pragmatic advantages. If it is needed
not to take in to account all the details in a reasoning it could be convenient to do skips with respect to the
granularity of the knowledge available. For example, in a legal context it would be of interest to deduce
something related to the reason of death of a person. This would be centered in direct physical causes or
indirect reasons of the context on which it happened. In a related problem, there is a difference in the
sentence for a person that kills another and those that help him to do it. The first would be naturallly
described as who directly cause the direct cause of death and his accomplices as whom indirectly caused
the direct casue of death. In another context, we could be interested in explaining the allergic reaction a
man got by taking the wrong pill without reference to all the chemical and biological processes involved
in his body. However, altough most of the time the cause is just unknown, we often do it regardless this
is not the direct cause of the event but an indirect one. Then, in our theory we can distinguish when we
do not know if the event is a direct or an indirect one by using ECause. If we know that it is an indirect
causation or we want to use it to avoid a too much small-grain sized reasoning we can use IEcause. If we
know precisely that it is a direct causation we have DEcause at our disposal. Each kind of causation has
different properties. If there were some pair of events that depending on the context could be well related
either by direct or by indirect causation they could be put as related by Ecause or give them different
names to differentiate the direct causation from the indirect one.

To see that it is not true that indirect axioms satisfy anti-symmetry it is enough to think in some
devices like a set of pending metallic balls, aligned in such a way that there is a physical contact between
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them. If somebody takes one ball on an end and releases it, the impact, e1, of the released ball on the
following one is transmitted by the others until the last is separated and in the inverse movement it plays
the role of the first ball shocking, e2, with the rest when it comes back in the inverse direction. The
process is repeated and causes the first ball to collide in the same way as previously and so on. Indirectly,
e1 causes e2 and e2 causes e1, then in some cases like these, indirect events are not anti-symmetric. In
the same scenario, if we have that e1 causes e2 and e2 causes e1, by transitivity we have that e1 indirectly
causes itself then e1 is also reflexive. Another scenarios that support this view is a pendulum clock that
functions with weights, like old clocks of sixteen and seventeen centuries and billards games. We could
also consider if DEcause is anty-symetric and it seems that this is not the case. Let us suppose a boy
on an end of a seesaw. The event of the boy walking from one end of the seesaw to the other causes the
table to go down. Also, under some assumptions, the seesaw table going down causes the boy to walk
from one point to the other. Then each event causes the other and in some circumstances we do not
have anti-simmetry even in direct event causation. Then we could just consider one axiom setting that
transitivity implies indirect event causation and one axiom discarding anti-reflexivity just on direct event
causation:

∀Ev e, e′, e′′ (Ecause(e, e′) ∧ Ecause(e′, e′′) ↔ IEcause(e, e′′)) (25)

∀Ev e, e′ (DEcause(e, e′) → e 6= e′) (26)

It is interesting to note that from the previous axioms and definitions we cannot expect to have some
axioms relating Direct and Indirect causality with time in the following way:

DEcause(e, e′) → [∀I I(Occurson(e, I) → ∃I I′(Occurson(e′, I′) ∧ MEETS(I, I′)))]

IEcause(e, e′) → [∀I I(Occurson(e, I) → ∃I I′(Occurson(e′, I′) ∧ BEFORE(I, I′)))]

Direct causation does not imply “being immediately followed by” and indirect causation does not imply
“not being immediately followed by”. We could think of the following scenarios to see that this is the
case. For the first case it is enough to consider again the situation where the boy walks over the seesaw
provoking its going down. This is a direct causation and both events, the boy walking from one ending to
the other and the wood moving from one position to the other, are simultaneous. Also the promulgation
of a law is a direct cause to make the law start to be applied after a period. Then, in this last case we
have a temporal gap in the time between the causing event and the caused event. For indirect causation
we could consider a stack of two blocks, to say T over B, and some event causing the block B to move,
for example an explosion under B. The movement of B directly causes the movement of T . But the
explosion under B indirectly caused the movement of T and they are simultaneous events. Furthermore,
when we established that e1 causing e2 could be indirect if there was an event caused by e1 that causes e2

we are not ruling out other events in the middle and therefore, a temporal gap between e1 and e2. Then
it seems all we can say is that the caused event cannot start before the causing event, as was asserted
through a previous axiom.

2.7 Using LT as a Specification Language
Before completing the definition of this proposal we consider an illustration on how LT can be

used to specify temporal requirements in different contexts.
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Example 2.5

Real-time systems 22) 26) provide means to guarantee response times to various events occurring in these
systems. The possibility to specify durations is a key issue in this area because it allows to state deadlines.
In this way it is possible to establish that some steps in the behaviour of the system must be achieved
without exceeding these critical times at the reisk of reaching an undesired situation. We can see below
how we can use LT to specify some restrictions to the behaviour of a gas burner, a well-known problem
of the area.

“Gas must never leak for more than 4 time units in any period of at most 30 units”
length(J) =def end(J)− begin(J) for any interval J ∈ I
∀II, L (Occurson(leaks, L) ∧DURING(L, I) ∧ length(I) ≤ 30 → length(L) ≤ 4)

Example 2.6

Synchronization is a key issue in multimedia systems 21) because it is essential to have a way to specify
order in duration notions between different media items to be sure that the presentation follows an
organized plan. Multimedia items can a) have a fixed duration or last as long as the user wants b) have
a relative location regarding other events or being launched at a fixed time after the beginning of the
presentation or even be shown at a special day and time of a year c) be shown once or in a repetitive way
d) be conditioned by other events or totally independent. system-user interaction must also be considered
because it can have a significant impact in the presentation even leading to replanning, e.g. when a user
reverses a video or jumps some scheduled items in a presentation. We consider first some examples of
synchronization specifications in order to show how they can be written using LT.

*) “If the video finishes or it is stopped, its associated sound file must be also stopped”.

∀T t (Doat(user stop(presentation.mpg), t) ∨Occursat(end video(presentation.mpg), t) →

Holdsat(ends display(presentation.mpg), t + 1))

*) “Simultaneously with the beginning of the presentation starts to show a rotating logo for 30
seconds and play Vivaldi’s Gloria. After that gradually blur the logo and lower the volume in 4 seconds”.

∀T t (Occursat(start, t) →
Occurson(play(GloriaV ivaldi.wav), [t, t + 30])∧ Occurson(show(logo.dxf), [t, t + 30])∧
Occurson(blur(logo.dxf), [t+31, t+35]))∧Occurson(decreasevol(GloriaV ivaldi.wav), [t + 31, t + 35]))

*) “After the logo display was started show a video until the logo finishes (after 3 minutes, mea-
sured in seconds) or the user stops it”.

∀T t (Occurson(show(logo.dxf), L) ∧ (L = [t, t + 30]) →
∃DE∃II (Name(E, display video) ∧Occurson(display video(presentation.mpg), I)∧
((OVERLAPS(L, I) ∧ (length(I) = 180)) ∨ (∃Nu (Nombre(u, user push stop) ∧ EndE(E)Spu))
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§3 Inference Rules and Semantics
We assume a set of inference rules that could be briefly described as a Gentzen system for many-

sorted logics with equality.17)12) Gallier 17) gives a detailed exposition of the metatheoretical properties
and the proof procedure associated to a many-sorted logic with these inference rules.

We have defined several kinds of individuals then we are also concerned with the problem of
deciding when two expressions of our logic refer to the same individual. We had considered at the end of
the last section this problem with respect to equality. This provides the same general theory of equality
for all sorts. Here we consider particularities associated with the individuation of members of each sort.
The justification to pursuit such an individuation besides the equality inference rules previously stated is
that some kind of sort asks for a more detailed way to specify when two individual references are supposed
to be the same. This is of particular interest in artificial intelligence applications where knowledge about
the world is supposed to be usually poor and we need to find other means to get implicit knowledge from
previous explicit knowledge. In sorts W, P and Ex we do not provide further ways to prove equality
than those previously introduced through the inference rules. In sort T , given its set of axioms, we could
derive

∀i1, i2(¬(i1 < i2) ∧ ¬(i2 < i1) → i1
.= i2)

For the sort I we have defined

I1 ·=· I2 =def begin(I1)
.= begin(I2) ∧ end(I1)

.= end(I2)

In the sort Ev we consider that two events are distinguishable from their spatio-temporal location
∀N e1, e2 ∀T i ∀W l

(Occursat(e1, i) ∧Occursat(e2, i) ∧At(e1, l) ∧At(e2, l) ↔ e1 = e2) (27)

∀D E1, E2 ∀I I ∀W l
(Occurson(E1, I) ∧Occurson(E2, I) ∧At(E1, l) ∧At(E2, l) ↔ E1 = E2) (28)

It is worth mentioning that there is a justification in the previous axioms for a spatial sort where
designate that something is a location. This is useful here because when we specify a location in the
present framework we must choose an individual from W and in this sort there is a wide range of them.
We will not explicitly define a special sort considering all individuals of W as a possible location for the
ocurrence of an event. We consider that two actions in the sort A are distinguishable by spatio-temporal
coordinates and the agent that performs them.

∀A a1, a2 ∀T i ∀W g, l

(Doat(a1, i) ∧Doat(a2, i) ∧At(a1, l) ∧At(a2, l)∧

Agent(a1, g) ∧Agent(a2, g) ↔ a1 = a2) (29)

∀A a1, a2 ∀T i ∀W g, l

(Doon(a1, i) ∧Doon(a2, i) ∧At(a1, l) ∧At(a2, l)∧

Agent(a1, g) ∧Agent(a2, g) ↔ a1 = a2) (30)

It could be considered a many-sorted algebra based semantics 17) for LT as follows. The different
sorts are carriers and each sort sk has its own function mapping terms, possibly from diferent sorts, to
terms in the sort sk, i.e., f : si × . . . × sj → sk . A special boolean sort is considered, B, with the
constants true and false as elements. Boolean classical operators like ∧,∨,→ are regarded as functions
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of type f : B × B → B and ¬ as f : B → B. Each predicate P (t1s1, . . . , tnsn) has associated a function
mapping terms t1s1, . . . , tnsn from sorts s1, . . . , sn to B. In particular, we could interpret the symbol .=
in this way.

These models are restricted by conditions imposed to particular relations introduced in the previ-
ous section. For example, the relation begin, end : I → T restricts the possible models to those where the
beginning of an interval is smaller than its end. Similarly, BeginE , EndE : D → N restricts valid models to
those stisfying that the starting event of a durative event is previous than its ending event. We postpone
more details about semantics to other paper so the emphasis of this paper is kept at the syntactic level.

§4 More on Applications
The previous sections describe a theory conceived to handle the notions of time and change. In

that sense it can be seen as a specific theory. On the other side it is a general purpose device which can
be specialized in many ways. It still can (and must) be supplemented with more specific knowledge in
order to solve real problems. Some potential applications were suggested in a previos section and more
applications are considered through the examples given below.

Example 4.1

Temporal Databases 35) 33) deal with problems associated to storing and recovering time-dependent in-
formation. There are several proposals to build this kind of systems which can be grouped into two
main approaches, the extension of the relational model and the extension of the deductive model 37).
The deductive approach resorts to a declarative specification of the information through facts (explicit
data) and rules (implicit data). LT can be used both as a language to store temporal information and to
query the database as it is usual in the deductive approach to databases. Having a declarative temporal
language gives also a very powerful and convenient way to state database constraints. 15) Recently some
awareness has arisen about the need of being able to refer both to instantaneous as well as durative
temporal references for an appropriate handling of temporal data in this context.

Previous works about point-based approaches in the literature are numerous and show how ad-
vantageous is to have a point-based set of primitives. 36) On the other hand, recent research shows that
duration based notions are equally helpful and sometimes essential to capture some situations of the
real world 34). A situation where duration related primitives are essential and could not be replaced
by a point-based mapping involves reasoning about events occurrence. This is because there are non-
homogeneous events, i.e. their holding in an interval I does not allow to infer it occurred in a subinterval
of I. An example of these events is a phone call performed from A to B during [I1, I2]. The same phone
call cannot be said to have occurred in a subinterval of [I1, I2] neither it can be decomposed in any serie
of calls taking the same period. That series will have different properties, for example that of being more
expensive.

Example 4.2

This problem deals with the possibility and necessity to combine effects of actions in order to achieve
a unique goal. The scenario described in 5) includes the attempt to decouple a car by activating the
decoupler while the engine is moving forward. A way to write Allen and Fergusons scenario in LT would
be as follows:



A General Framework for Reasoning About Change 19

MEETS(I0, I1) ∧MEETS(I1, I2)
Holdson(coupled(n1, car1), I0)
Doon(setthrottle(n1), I1)
Doon(activating(n1), I2)
(SE1) ∀Wn∀II, I′(Doon(setthrottle(n), I) → Occurson(move(n), I′)) ∧MEETS(I, I′)
(SE2) ∀Wn∀II(Doon(activating(n), I) → Occurson(activate(n), I))
(SE3) ∀Wn∀II(Occurson(move(n), I) → Holdson(moved(n), I))

(SE4) ∀Wn, c∀II′, I′′, I(Holdson(moved(n), I′) ∧Occurson(activate(n), I′′) ∧ ¬(I′ ¢¤I′′)∧
MEETS(I, conj(I′, I′′) ∧Holdson(coupled(n, c), I) → Occurson(uncouple(n, c), conj(I′, I′′)))

where conj(I′, I′′) is the intersection interval between I′ and I′′ and

I ¢¤I′ =def BEFORE(I, I′) ∨ MEETS(I, I′) ∨ BEFORE(I′, I) ∨ MEETS(I′, I)

(SE5) ∀n, c∀II(Occurson(uncouple(n, c), I) → ¬Holdson(coupled(n, c), I′) ∧MEETS(I, I′)
∀Aa∀II(Doon(a, I) ↔ ((a = Doon(setthrottle(n1), I) ∧ I = I1) ∨ (a = Doon(activating(n1), I)) ∧ I = I2)))

A line of reasoning is that the car will tend to remain coupled getting Holdson(coupled(n1, car1), I2)
by persistency. 8) 12) The Frame Problem is handled in Allen’s proposal using the Explanation Closure
Axioms technique. This strategy involves to add axioms stating that no properties change unless explicitly
changed by an event and no events occur except as the result of the actions.

If setting the throttle occurs later, for instance Doon(setthrottle(n1), I2), it is not possible to use
SE1 and SE3 and the coupling persists. But, if the moving event occurs during I2 the decoupling can be
achieved as indicated by SE1:

Doon(setthrottle(n), I1) → Occurson(move(n), I2))

From Doon(activating(n1), I2) and SE2 we can obtain Occurson(activate(n1), I2):

Doon(activating(n), I2) → Occurson(activate(n), I2))

By persistency it could be assumed Holdson(coupled(n1, car1), I1) then we could support
Occurson(uncouple(n1, car1), I2) by SE4 as follows:

Holdson(move(n1), I2)∧ Occurson(activate(n1), I2)∧
¬(I2 ¢¤I2) ∧MEETS(I1, I2)∧
Holdson(coupled(n1, car1), I1) → Occurson(uncouple(n1, car1), I2))

Finally, see figure 3, by SE5 we can conclude ¬Holdson(coupled(n1, car1), I2):

Occurson(uncouple(n1, car1), I2) → ¬Holdson(coupled(n1, car1), I2)

But because Allen’s interval relations are qualitative in essence several restrictions to desirable
practical reasoning apply involving even simple quantitative reasoning.

a) if we want to specify that the action setthrott le must last more than two time units in order
to cause the move or that the action activating must be started earlier than one unit after the start of
setthrotle we can use the following rules in LT:
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I0 I1 I2

Holds(coupled(n1, car1)) ¬ Holds(coupled(n1, car1))

Occurs(move(n1))

Do(setthrottle(n1))

Occurs(activate(n1))

Do(activating(n1))

Occurs(uncouple(n1, car1))

↓

↓

↓

?

@
@R

Fig. 3 Synergistic Effects, a way to obtain ¬Holdson(coupled(n1, car1), I2)

(SE1′)∀Wn∀II, I′(Doon(setthrottle(n), I) ∧ length(I) ≥ 2 → Occurson(move(n), I′)) ∧MEETS(I, I′)
(SE2′)∀Wn∀II, I′(Doon(setthrottle(n), I′) ∧Doon(activating(n), I)∧

OVERLAPS(I′, I) ∧ length([begin(I′), begin(I)]) < 1 → Occurson(activate(n), I))
but there is no way to state that in Allen’s proposal.

b) Could not be possible to take any decisions based on subtler issues as determining if the
decoupling event is or not instantaneous. For example, this can be seen when the behaviour of a device
depends on the time that the decoupling takes. This device would be required to differentiate between an
instantaneous decoupling, which is an abrupt and risky one, and a durative decoupling which indicates a
more controled and safe step.

The language LT has also been used 8) 9) 11) as the monotonic layer for a temporal argumentative
system able to solve typical problems in Artificial Intelligence like those described in Allen’s TRAINS
project 5) and Sandewall’s test suite 29).

§5 Other proposals
There are many proposals in the literature related to temporal notions representation. Many

works on philosophy and artificial intelligence are related to our proposal. Because of limitations on
space we restrict ourselves to consider some of the most relevant proposals in the literature.

5.1 Van Benthem on the Logic of Time
In what follows we will see how much of vanBenthem’s proposal 38)chapter I.4 could be reconstructed on the
basis of our previous definitions. Let us first consider the following abbreviations:

xOy =def ∃z(z v x ∧ z v y)

xUy =def ∃z(x v z ∧ y v z)
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and the function U : I × I → I where U([x1, x2], [y1, y2]) =def [min(x1, y1),max(x2, y2)] If we also
consider the following axioms as the axiomatization for a convex set of intervals derived from a point
structure (theorem I.4.1.4):

(<·, TRANS) : ∀I1, I2, I3(I1<·I2<·I3 → I1<·I3) (<·, IRREF) : ∀I1¬(I1<·I1)
(v, TRANS) : ∀I1, I2, I3(I1 v I2 v I3 → I1 v I3)
(v, REF) : ∀I1(I1 v I1)
(v, ANTIS) : ∀I1, I2(I1 v I2 v I1 → I1 ·=· I2)
(v, CONJ) : ∀I1, I2(I1OI2 → ∃I3(I3 v I1 ∧ I3 v I2 ∧ ∀I4(I4 v I1 ∧ I4 v I2 → I4 v I3)))
(v, DISJ) : ∀I1, I2(I1UI2 → ∃I3(I3 w I1 ∧ I3 w I2 ∧ ∀I4(I4 w I1 ∧ I4 w I2 → I4 w I3)))
(v, FREE) : ∀I1, I2(∀I3(I3 v I1 → I3OI2) → I1 v I2
(v, DIR) : ∀I1, I2∃I3(I1 v I3 ∧ I2 v I3)
(v, ATOM) : ∀I1∃I2(I2 v I1 ∧ ∀I3(I3 v I2 → I3 ·=· I2))
(<·,v,MON) : ∀I1, I2((I1<·I2 → ∀I3(I3 v I1 → I3<·I2)) ∧ (I1<·I2 → ∀I3(I3 v I2 → I1<·I3)))
(<·,v,MOND) : ∀I1, I2((I1<·I2 → ∀I3(I3<·I2 → U(I1, I3) <·I2))∧ (I1<·I2 → ∀I3(I2<·I3 → I2<· U(I1, I3))))
(<·,v,CONV) : ∀I1, I2, I3(I1<·I2<·I3 → ∀I4((I1 v I4 ∧ I3 v I4) → I2 v I4))

Lemma 5.1

(<·, TRANS), (<·, IRREF), (v,TRANS), (v,REF), (v, ANTIS), (v, CONJ), (v, DISJ), (v, FREE),
(v, DIR), (v, ATOM), (<·,v,MON), (<·,v,MOND) and (<·,v, CONV) are theorems in Ex.

Proof (<·, TRANS): if x<·y<·z, by definition of interval, points defining x are before than those of z.
(<·, IRREF): points defining an interval cannot be before than themselves by irreflexivity on INS.
(v, TRANS): from the relation of beginning and ending points stated on the hypothesis, transitivity over
T and the definition of v.
(v, REF): by considering begin(I1) and end(I1), the order relation over time points and definiton of v.
(v, ANTIS): reasoning by cases over the hypothesis, we arrive to the only consistent choice of ·=· on
beginning and ending points for I1 and I2.
(v, CONJ): by definition of O we know there exists a common interval, let us call it z, then z v x∧z v y

is true and so ∀I4(I4 v I1 ∧ I4 v I2 → I4 v z) indicating that z is the biggest for these x and y. Then it
suffices to take the biggest one satisfying xOy.
(v, DISJ): the dual of CONJ
(v, FREE): if all subinterval of x overlaps with y it is impossible to consider a subinterval of x without
overlapping y, therefore x v y.
(v, DIR): is derivable from the definition of interval (the fact that two points always define an interval).
(v, ATOM): follows the definition of v and the fact that the smaller subinterval allowed by definition is
of equal length to one, reserving zero-length elements to instants.
(<·,v,MON): we have considered only the first half. If we get by hypothesis that I1<·I2 and if I3 v I1
then by definition of < and v we conclude I3<·I2. The dual is analogous.
(<·,v,MOND): we consider the first half. If we get by hypothesis that I1<·I2 and if I3<·I2 then by
definition of < and function U we conclude that the interval U(I1, I3) is before I2. The dual is analogous.
(<·,v,CONV): by definition of interval, < and v.
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Observation: (<·, ASYM) : ∀I1, I2(I1<·I2 → ¬(I2<·I1)) could be derived directly because if I1<·I2
then by definition of interval end(I1) < begin(I2), and by definition of relation <· over intervals we had
¬(I2<·I1)). Alternatively, it could be derived from TRANS and IRREF .

As the reader can see, we have refused Van Benthem’s suggestion to include (<·,v, FREE?),
which in our notation becomes:

∀I1, I2(¬(I1<·I2) → ∃I3, I4((I3 v I1 ∧ I4 v I2) → ∀I5∀I6(I5 v I3 ∧ I6 v I4 → ¬I5<·I6)))
because it does not hold in our framework if we consider two abutting intervals. A theorem we could get
from previous axiomatization is the extension of discreteness to intervals:

Lemma 5.2

∀I1∃I2(I2 v I1 ∧ ∀I3(I3 v I2) → I3 ·=· I2))

Proof To see that it follows from our previous 6 and 7 let us consider three points i1, i2, i3. It is
enough to take I1 ·=· [i1, i3] and I2 ·=· [i1, i2] or I2 ·=· [i2, i3].

As it is clear from (<·,v,CONV) we are considering convex intervals here. That is, we are
considering a set of intervals:

CONV (I) =def {c = [i1, i2]| for all interval s = [s1, s2] such that
if c1 < s1 < s2 < c2 then s v c}

In addition to the previous definitions we could consider the relation OV ER(I) ⊆ CONV (I)×CONV (I)
of overlapping convex intervals:

OV ER(I) =def {(c1, c2)|c1 = [i1, i2], c2 = [i3, i4], (i1 ≤ i3 < i2) or (i3 ≤ i1 < i4)}

We had considered restricted convex intervals to assure that the functions to be given now are
totally defined. Let CONJ : OV ER(I) → I as CONJ([i1, i2], [i3, i4]) =def [max(i1, i3),min(i2, i4)]
(min and max have the intended meaning over numbers) and DISJ : OV ER(I) → I as
DISJ([i1, i2], [i3, i4]) =def [min(i1, i3),max(i2, i4)]. Based in this definitions we have the following results
(compare with vanBenthem’s 38)pp. 63):

Lemma 5.3

〈OV ER(I), CONJ,DISJ〉 is a (non-distributive) lattice.

Proof Let us consider the following intervals X = [x1, x2], Y = [y1, y2], Z = [z1, z2]. It is easy to see
that CONJ and DISJ are closed on OV ER(I) from their definitions. 〈OV ER(I), CONJ,DISJ〉 has
the following properties:

Commutativity: DISJ(X,Y ) ·=· DISJ(Y, X) because is always chosen the minimum left point
as the left bound and the maximum of the right points as the right bound and both operations are
commutative.

Associativity: DISJ(DISJ(X, Y ), Z) ·=· DISJ(X,DISJ(Y,Z)) because, again, by commuta-
tivity of min and max we get the leftmost point from the beginning of X,Y and Z regardless of the order
of evaluation. Similarly we get the rightmost point.
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Absorption: DISJ(X,CONJ(X, Y )) ·=· X because by CONJ we obtain an interval that is a
subinterval of X and by definition of DISJ we obtain X. It is straightforward to prove that the duals of
these properties also hold.

To see that it is not distributive it is enough to see that CONJ(Y,Z) could not overlap with
another convex interval X and in that case DISJ would not be defined. In the special case in which
DISJ(X, Y ) overlaps with DISJ(X,Z) then there must be a common subinterval. Then, the first term
will have all X and the common part of Y and Z while in the second term we will have X in all DISJ
operations and the common part of Y and Z by CONJ leading to the same interval.

Observation: we could not prove that there is a Boolean Algebra as vanBenthem 38)page 81 did,
because in doing so we must prove that CONJ(∅, X) = ∅. This does not apply here because there is not
such a thing as an empty interval in our framework.

5.2 Kamp and Thomason on the Logic of Events
There had been many attempts to formalize the notion of events in logical frameworks. The

purpose of this section is to explain why some of those attempts where not adecuate for this proposal.
Here we shall consider two well-known of those attempts starting with Kamp’s proposal 23).

Definition 5.1

The event structure K : (K, <k, Ok) consist of a set K of events and two binary relations: <k, Ok.
<k⊆ (K ×K) is an order relation between elements of K. Ok ⊆ (K ×K) is a relation used to denote
overlapping between elements of K. The relations <k, Ok satisfy the following axioms:

k1 <k k2 → ¬(k2 <k k1)
k1Okk2 → k2Okk1

k1Okk1

k1 <k k2 → ¬k1Okk2

k1 <k k2 ∧ k2Okk3 ∧ k3 <k k4 → k1 <k k4

k1 <k k2 ⊕ k1Okk2 ⊕ k2 <k k1

where A⊕B =def (A ∨B) ∧ ¬(A ∧B)
Observation: Using axiom k1 <k k2 ⊕ k1Okk2 ⊕ k2 <k k1 it could be defined, in the same way

as was done for sort Ev, a simultaneity notion between events in the following way:

k1Skk2 =def (¬k1 <k k2) ∧ (¬k2 <k k1)

Using the notion of event recently defined, Kamp considers the temporal notion associated with-
out resorting to explicit time references.

Definition 5.2

Let K : (K,<k, Ok) an event structure. An instant, i, is a maximal subset of K such that:

1. ∀k1, k2 ∈ i (k1Okk2)
2. ∀(k1 ∈ K − i) ∃ k2 ∈ i ¬(k1Okk2)
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Let I(K) be the set of instants associated to K and i, i′ ∈ I(K). The notion of a precedence
order over instants could be reconstructed from that defined for events (see lemma 2.4):

i <ik i′ =def ∃k ∈ i, k′ ∈ i′(k <k k′)

Example 5.1

Let the set of events K : {k1, k2, k3, k4, k5, k6, k7} satisfying the following relations:

k4

k1 k2 k7

k3 k6

k5

Instants i1 = {k1}, i2 = {k4, k2, k3, k5}, i3 = {k6, k5} and i4 = {k7, k6} could be defined from
these events and it is true that i1 <ik i2 <ik i3 <ik i4.

It is important to bear in mind that if we consider a stronger order, for example:

i1 ¢ i2 =def ∀k1 ∈ i1, k2 ∈ i2(k1 <k k2)

we could have instants that are not before another but are not truly equal because they do not satisfy the
definition of instant. For example, i2 6 ¢i3 and i3 6 ¢i2, then we must accept i2Ski3. But, it is difficult to
think of i2 and i3 as denoting the same temporal space because they do not constitute the same instant
as a set (event k6 does not overlap with those of i2).

Observation: As we could observe an event could be part of more than one instant, depending
on the way they are grouped. If we consider the previous example, event k5 is part of i2 and i3 also k6

is part of i3 and i4. In other words, they could overlap. This seems rather conflictive with the notion of
an instant because they are supposed atomic, in some sense, and therefore they are usually assumed as
either distinct or equal. Kamp’s proposal seems to be more suitable to the concept of a period. We can
perceive also the problem in the following way. Let the instants i1 = {k1, k2, k3} and i2 = {k2, k3, k4} be
in the following arrangement:

k1

k3

k2

k4

As we could see, by definition we have that i1 <ik i2 because k1 <k k4. However, both instants
have the same temporal extension as a whole, which is counterintuitive with the intended order relation.
Thomason’s proposal considers a structure of events W = (W,≺,≺0,≺1), where “≺0” must be read as
“begins before” and “≺1” as “ends before”, satisfying axioms:
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w 6≺ w

w1 ≺ w2 ∧ w3 ≺ w4 → w1 ≺ w4 ∨ w3 ≺ w2

w1 ≺0 w2 ↔ ∃w(w ≺ w2 ∧ w 6≺ w1)
w1 ≺1 w2 ↔ ∃w(w1 ≺ w ∧ w2 6≺ w)

In addition w1Otw2 =def w1 6≺ w2 ∧ w2 6≺ w1.
Later, Thomason 32) offered another event-based framework considering the relation “Abuts”.

Also this definition is unsatisfactory to us but, for different reasons from the previous one. Although
technically better than the previous proposal there are reasons to avoid adopting it in this context. His
work is addressed to enhance Rusell’s proposal 28). Such goal influences his formalization in an undesirable
way as the author himself comments. 31)pp. 86 Furthermore, he starts assuming durative events, which is
clear from the basic relations. From this it seems that his proposal, as Kamp’s, are more suitable as a
formalization of periods of time and not of “periods from instants” as in our case.

5.3 Bochman’s Theory of Instants and Intervals
One of the best-known proposals in the temporal logic literature that considers an ontology based

both on instants and intervals is that offered by Bochman. 13) 14) In this section we will show how its
definitions and axioms are embeded in our theory.

With respect to his definitions it is enough to see they can be rewritten in our notation as follows:
i ≺ I indicates that “the point i is part of interval I ” is sinthesized in our predicate In(i, I). His notion
of “an interval being part of another”, I1 ¹ I2 , is represented in LT as I1 v I2 while the overlapping
between intervals, I1 ◦ I2, becomes OV ERLAPS(I1, I2) in our framework. Finally, an interval limited by
points, C(i1I i2), is expressed through I ·=· [i1, i2]. After giving these definitions, Bochman follows with
a series of axioms relating points with intervals (we will reproduce them using our notation):

PI1 ∀II1, I2∀T i(In(i, I1) ↔ In(i, I2)) → I1 ·=· I2
PI2 ∀T i1, i2(i1 6= i2 → ∃I(begin(I) .= i1 ∧ end(I) .= i2))

PI3 ∀I∃i1, i2(begin(I) .= i1 ∧ end(I) .= i2)

PI4 ∀I1, I2, i1((In(i1, I1) ∧ In(i1, I2)) → ∃I3∀i2(In(i2, I3) ↔ (In(i2, I1) ∨ In(i2, I2)))

PI5 ∀i1, i2, i3(i1 6= i2 6= i3 → ∃I(In(i1, I) ∧ ¬(In(i2, I) ↔ In(i3, I)))

PI6 ∀i∃I1, I2(In(i, I1) ∧ In(i, I2) ∧ ¬OV ERLAPS(I1, I2)

Lemma 5.4

Axioms PI1,PI2,PI3, PI4, PI5, PI6 are provable in LT.

Proof We proceed by showing how to obtain the same axioms in our proposal.

PI1 : if ∀II1, I2∀T i(In(i, I1) ↔ In(i, I2)), in particular i can range on a set of numbers whose minimum
are begin(I1) and begin(I2) and we can deduce begin(I1)

.= begin(I2). Analogously, as i can
obtain as a maximum end(I1) and end(I2) we deduce end(I1)

.= end(I2). Putting these two
facts together we obtain I1 ·=· I2 because of the definition in 2.1.

PI2 : by definition 2.3 an interval is a pair of points i1, i2 such that i1 < i2.

PI3 : by definition 2.4 we have: ∀I ∃i begin(I) .= i and ∀I ∃i end(I) .= i
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PI4 : the axiom expresses that all pair of intervals with at least a point in common defines an interval
that contains them. According to the hypothesis and definitions given in 2.1 we can deduce
that OV ERLAPS(I1, I2) ∨MEETS(I1, I2). Then we can build an interval Iu such that

Iu = min(begin(I1), begin(I2)),max(end(I1), end(I2))

then Iu clearly takes I1 and I2:

1. ∀i2(In(i2, Iu) → (In(i2, I1) ∨ In(i2, I2))
2. ∀i2((In(i2, I1) ∨ In(i2, I2) ← In(i2, Iu))

PI5 : for all triple of points i1, i2, i3 it is always possible to build an interval containing two of these
points but not the remainding. If we assume i1 6= i2 6= i3 for axiom 5 we have a strict order,
let us suppose i2 < i1 < i3, then we can define I = [i2, i1] or I = [i1, i3].
If I = [i2, i1]: i3 > end(I), consequently we have ¬In(i1, I) ∧ In(i2, I)
If I = [i1, i3]: i2 > begin(I), we have ¬In(i2, I) ∧ In(i3, I)

PI6 : consider i as the meeting point between two touching intervals: end(I1) = i = begin(I2)

As all the remaining concepts over intervals (Bochman’s definitions 1 to 4 on page 406) and
axioms for interval structures I1, I2, I3, I4, I5 are based on the preceeding definitions and axioms so it
could be seen that they also follow from our proposal. There are some differences between our proposals
as we started from a point based approach and later we built intervals over instants. Also we offered a
wider account of agency and temporal related notions.

5.4 Allen on the Logic of Intervals
Much of the work in the temporal reasoning area was motivated by Allen’s influential work.

Following we compare our proposal with that of Allen 2). We shall not consider his later works 6) 3) 4) as
they were dedicated to clarify some previous ideas without enlarging the theory or the usefulness of his
theory in natural language processing and planning without changing those aspects to be considered here.
Later 5) Allen published some issues of concern to our framework but we prefer to delay the consideration
of the frame problem for another article in spite of its complexity. In examining the proposal we just will
consider general axioms discarding those that represent some knowledge in a particular context.

Considering now the axiomatization we show how to get his axioms one by one.

H1 : HOLDS(p, T ) ↔ ∀t(IN(t, T ) → HOLDS(p, t))

is provable from our definition of Holdson. We must prove that:

Holdson(p, I) ↔ ∀I I (I v I′ → Holdson(p, i))

From Holdson(p, I) we have by definition that ∀T i (Divides(i, I) → Holdsat(p, i)) and by definition
of interval ∀I I (I v I′ → Holdson(p, i)). The other half runs by similar argument.

H2 : HOLDS(p, T ) ↔ ∀t(IN(t, T ) → (∃sIN(s, t) ∧ HOLDS(p, t))

One half of H2 could be derived from H1 and the other half is intended to prevent indefinitely intermingled
periods 18)pp. 176, which is not applicable in our discrete framework. Allen’s H3 is an abbreviation while

H4 : HOLDS(not(p), T ) ↔ ∀t(IN(t, T ) → ¬ HOLDS(p, t))
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is obtained by negation of H1 although we have not adopted not(p) and we just use ¬Holds(p, t). Naturally
Allen does not have negation over instants. H5 is a theorem of his previous definitions while

H6 : HOLDS(not(not(p)), T ) ↔ HOLDS(p, t))

discards nested negation as we asked in our section about syntax of the language LT. H7 is an abbrevia-
tion. For events, Allen considers

O1 : OCCURS(e, t) ∧ IN(t′, t) → ¬ OCCURS(e, t′)

Our axiom ∀DE ∀II ∀T i (Occurson(E, I) ∧ In(i, I) → ¬Occursat(E, i)) is stronger than O1 because if
the event cannot occur in an instant it could not occur in an interval because it cannot occur in all the
instants that define the interval. While his

O2 : OCCURRING(p, t) → ∃t′(IN(t′, t) ∧ OCCURRING(p, t′))

has no direct equivalent in our proposal because we do not consider processes as a basic entity. This is
one of the main departures of our proposal with respect to Allen’s. We think they must be replaced with
a construction of events and properties according to the case. 19) Finally, axiom O3 is not considered
because it is not general but an exemplification.

About event and agent causality theories 2) two axioms were given for the former concept:

O4 : OCCUR(e, t) ∧ ECAUSE(e, t, e′, t′) → OCCUR(e′, t′)

O5 : ECAUSE(e, t, e′, t′) → BEFORE(t, t′) ∨ MEETS(t, t′) ∨
OVERLAPS(t, t′) ∨ IN(t, t′) ∨ EQUALS(t, t′)

and the following was offered to formalize agent causality:

A1 : OCCURING(ACAUSE(agent,ocurrence), t) → OCCURING(ocurrence, t)

we do not consider this axiom because we do not have processes

A2 : ∀action ∃!agent, ocurrence (action = ACAUSE(agent,ocurrence))

compels actions to be done just by one agent and to generate just one ocurrence. This is unnecessarily
restrictive and we prefered not to impose it as it is clear from axiom 20.

A3 : OCCUR(ACAUSE(agent,event), t) → OCCUR(event, t)

One important thing this axiom expresses is that the event will occur as the outcome of the action
intended to cause it. The second aspect of it is that the interval of ocurrence must be the same. This is
a much more debatable issue and we have adopted a more different view in the axioms above.

In relation to his theory of causality he gave axioms to formalise his notion of intention. We will
not consider the topic in this work, because of the strong relation with non-monotonicity we prefer to
delay its consideration to another article when a better framework is considered to deal with it.

Also there are some divergences about the properties of event causality. In Allen’s own words
“... the ECAUSE relation is transitive, anti-symetric, and anti-reflexive”, 2)pp. 138 a conception which is
in conflict with our axioms 25 and 26. From section 2.6 it seems that in several respects Allen’s claim
is not true. As simple as the scenario of balls colliding is, he would not be able to prove that the first
impact is the cause of itself repeating since it assumes antirreflexivity. Allen would not also conclude that
the shocking of one ball with another is a cause for this to shock the other as he assume antysimmetry.
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5.5 Vila’s proposal
We have selected a functional approach for the definitions given in section 2.1 because of its

simplicity but this is not the only way we can set this framework. We could consider relations and a
set of axioms to put explicitly what is intended from the above definitions as Vila proposed. 40) In this
section we show how Vila’s axioms are included in our framework. For example, from def. 2.3 we get:

∀II(begin(I) < end(I))

∀T i1, i2((i1 < i2) → ∃II(begin(I) .= i1 ∧ end(I) .= i2))

From definition 2.4

∀II ∃T i begin(I) .= i

∀II ∃T i end(I) .= i

From the use of a function we get unique points as beginning and ending points for a given interval:

∀II ∀T i1, i2(begin(I) .= i1 ∧ begin(I) .= i2 → (i1
.= i2))

∀II ∀T i1, i2(end(I) .= i1 ∧ end(I) .= i2 → (i1
.= i2))

A major difference between our approaches is that Vila considered a dense structure of time
while we were comptempt ourseleves starting from a discrete basement. Also in Vilas proposal, instants
and intervals are treated from the very beginning at a same level. In LT intervals are defined from
instants altough both are considered from the very beggining and recognized as equally important. Vila’s
approach has advantages which he enumerates in his works, ours allows a step by step strategy in the
implementation of the system. Also our proposal seems to be given in more detail with respect to the
specification of sorts P, A and Ev as well as the treatment to dispense to the notions of causality and
individuation.

There are also some words to say about the way we address the problem to represent change.
That is to say how to represent that a given property P holds over an interval I1 and do not over another
interval I2 which immediately follows I1 avoiding to say that there is an instant where nothing could
be said or we are forced to recognize that both holds simultaneously. Vila’s advice is to left undefined
what happens in one of the interval limits, e.g. I1, and attach the negation of the property from the
beginning of the next interval, e.g. I2. In our case, because we are assuming a discrete framework, it
is possible to have at least two ways of dealing with such a situation. It could be assumed that change
occurs between two instants, i.e. in their discrete gap. Instead we could be interested in representing
change explicitly. In such a case we could dedicate an instant to that purpose. For example, assuming
a granularity of minutes and using I1 and I2 to represent two consecutive days, it could be considered
that end(I1) = 01/19/2000, 11 : 59pm < i < begin(I2) = 01/20/2000, 00 : 01am where i is the moment of
change. This could be explicitly represented as Occursat(day change, i).

5.6 A Comparison with Previous Approaches
We can summarize this section higlighting the differences between all these proposals and that

which is proposed in this work. All the previous approaches are intended to provide a theory of time which
considers concepts like instants, intervals and events as a ground for a theory of change. Some of them
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come from a purely logic perspective while others where offered in the contex of Artificial Intelligence.
The goal of this work is to provide a cohesive framework taking these previous works as a basis. The
second important goal is to define a framework which is specified in more detail benefiting later theoretical
studies and also being more informative to those who are interested on its implementation. Differences
between this proposal and those reviewed in previous section are below highlighted to complement those
comments at the end of each different proposal.

Van Benthem’s work on the logic of time 38) gives a formal account on temporal ontologies and
languages. One choice he explores is that of considering points and intervals as a basis of a theory of
time. Unfortunately his analysis, however interesting, does not offer a final proposal for a logic on these
lines but it is, in his own words, “suggestive”. It would be interesting to analize how to define a logic
with all the standard components taking Van Benthem’s suggestions as the starting point.

Kamp’s and Thomason’s proposals on events where considered in a previous section and then it
was explained why they are different from our proposal. We also provide a whole framework where the
theory of events fits. There are many ocassions where events order and duration are the only available
information usually connected to some extent with an incomplete source of information. For example, if
it is noticed that some machine stopped because it ran out of raw material. We need to be able to order
those facts in time even if we do not know when they exactly occurred. Also we must be able to consider
that some event like the machine stop occurred during another event, e.g., an alarm sounding, without
being forced to know neither how much they lasted nor even when they occurred. In LT events can play
an important role in case temporal information is provided without an explicit time attached. This still
gives the system a chance to do temporal reasoning while it could make some of the above mentioned
proposals useless.

Bochman explored an instant and interval based ontology 13) 14) as well as different ways to com-
bine those different temporal references, leading the author to suggest these features could be appropiate
to define an intuitionistic logic. This work has been done from a purely logic perspective and it would
be worthy to devise how to supplement it with notions like those considered in this work. A deeper
consideration of this work in the context of computer science would require a clearer and more detailed
specification of the system regarding syntax, semantics, inference rules, events, actions and persistency.

The interval logic for temporal reasoning proposed by Allen 2) 5) has been one of the most
influential in the literature of the associated field in AI. However its specification lacks some level of
detail that would allow to consider its implementation. To cite some of these features we can start with
some ontological ones of the proposal. There are some details about the temporal structure itself that
are intentionally ignored. 2) The author contents himself with a linear conception of time, in pp. 131,
and he does not say for example, if time is discrete, dense or continuous, because his aim is to define
a general theory of action and time. The lack of specification of these basic features leaves several
problematic questions open to fully understand the theory, not to mention those who want to do an
implementation of that system. Since it depends on the temporal structure which is choosen if it can
be axiomatized in a first-order or in a second-order logic. Because Allen’s proposal 2)page 128 is a typed
first order logic so it could be inferred that it will be impossible to use a temporal domain which is
isomorphic to the real numbers, the naturals or the integers as all of them demand second order axioms
in their formalizations. Also nothing is said about different problems which arise naturally once you
choose a given temporal structure. For example, once density is allowed something must be said about
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the “dividing instant problem”. 38)page 4 Instead we considered in this work a proposal which is more on
the line of a detailed approach, specifying in detail what the temporal hypothesis of LT are. We adopted
a discrete and entirely first-order axiomatizable temporal structure which acts as a departing point of
our proposal. This allows future extensions of the system which would consider dense or continuous time
in an ordered and progressive way. Regarding the logic system as a whole we can also notice that some
basic and desirable ingredients are lacking, such as 1) a clear specification of the syntax and semantic 2)
the inference rules 3) a detailed axiomatization of any concept different from intervals.

Vila’s work is one of the latest approaches in the field including instants and intervals as a part
of the temporal ontology. In fact much of that work was a source of inspiration for this proposal. There
are some differences however. While his proposal is based on a dense conception of time we started from
a purely discrete structure. The Presentation is also different at the level of depth we consider events,
actions, causality, inference rules and individuality. One major concern of Vila’s work was the Dividing
Instant Problem as a result of adopting a dense temporal structure. It was shown in the last section that
it is not a problem for our proposal as we are considering a discrete approach.

§6 Conclusions
Many applications need to handle the notion of time and change at some extent. The scenarios

where the system is intended to work can demand the representation of temporal information in different
ways. Typically we could need to consider instantaneous or durative references as well as quantitative or
qualitative temporal information. Several proposals have been made to incorporate theories which can
handle these features. However, most of them need more clarification regarding some basic features in
order to be considered a good departure point for an implementation.

Throughout this article a general framewok for representing and reasoning with temporal infor-
mation is provided which enhances previous proposals in several ways:

1. we start from a well-known many-sorted logic with functions and equality which has a Gentzen-
style proof system with a resolution method associated.

2. the considered sorts are clearly specified. In the particular case of events, we provided axioms
and definitions that allow us to reason without explicit time. This reduces the impact of lacking
information. Also a connection between explicit time and event-based reasoning is established.

3. the temporal ontology is presented in two steps that allow incremental implementation, starting
with non-durative temporal notions and building durative temporal references from them.

4. the consideration of both instants and intervals provides a way to solve problems, which where
addressed elsewhere. 18)

5. because in our proposal most of the temporal constraint problems could be translated as purely
instant-based or instant-interval based, it is more likely to have more efficient implementation.
We could take advantage of previous research 27) where algorithms were proposed for that
kind of constraint problems. These algorithms will give us more efficiency in the temporal
constraint solver than in case we are forced to do constraint reasoning in a purely interval-based
framework 41).

It is worth mentioning that temporal reasoning seems not to be an isolated phenomena in rational
process and many other kinds of reasoning need to be considered in relation with it. Here just a few of
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them have been selected leaving to future work the exploration of concepts as granularity, spatio-temporal
reasoning, deeper considerations of qualitative reasoning, the frame problem and non-monotonic reason-
ing. Some of these problems were considered by the author in complementary work. The implementation
of the system has not been done yet but it seems to be naturally carried out in a typed programming
language where the different sorts could be directly represented.

This logic, supplemented with the explanation closure technique, 30) was used in connection to a
nonmonotonic meta-system 8) 9) 11) 12) solving succesfully well-known problems of the artificial intelligence
literature 5) 29). It is also posible to use it alone to solve problems in the wide spectrum of areas that
need ways to formalize the notion of change, e.g. databases, multimedia, real-time, scheduling, natural
language, to name just a few. The adequacy of the proposed framework to particular areas and classes
of problems is a present line of research. The above list of features makes it attractive by itself and the
examples included in the last section show its versatility.
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