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Abstract. A computational model of biological neurons is used to learn
the exclusive or relation. The neural model is a fatiguing leaky integrate
and fire model, and spontaneous firing emerges from the hypo-fatigue.
This spontaneous firing enables the system to move from direct stimula-
tion from the environment. A form of Hebbian learning, post-synaptic
weighted compensatory learning, is used to support firing in interior neu-
rons. A range of numbers of interior neurons performs the task at above
99% precision.

1 Introduction

There are many computational models of biological neurons, and of more com-
plex biological neural systems composed of neurons and their connections. How-
ever, it is difficult to build neural models, which adhere to biological constraints,
that perform complex computational tasks.

One biological constraint is that learning is Hebbian in nature [1]. Typically
with neural systems, learning is merely the change of connection strengths, which
are biologically synaptic strengths; with Hebbian learning, the strengths are
changed based solely on the properties of the pre and and post-synaptic neurons.
This is typically the firing behaviour of these neurons, and the prototypical rule
increases the strength when the neurons co-fire (see sections 2.2 and 4).

One biological requirement, from Hebbian learning, is that neurons need to
fire to positively influence neural circuits. However, in many computational
models only neurons that are directly linked to sensors fire, and in mammalian
brains most neurons are not directly linked to sensors. Yet, biological neurons
fire without external input [2]; they fire spontaneously.

The Boltzmann model [3] does fire spontaneously, without being directly
linked to sensors. Other models can also be modified to randomly spike [4]. The
author has used a fatiguing leaky integrate and fire (FLIF) neural model for
quite some time, and has recently extended the fatigue model so that the neurons
spontaneously fire ([5] and see section 2.1); the initial model reflected biological
neuron firing behaviour relatively accurately, and the extension improved the fit
to the biological data.

The emergence of spontaneous firing without input from the model provides
a mechanism for a neural system, based on these FLIF neurons, to make use of
neurons that are not directly stimulated. This in turn has created a system that
can learn the exclusive or (xor) function.



Xor is a function with two binary inputs, see table 1. If either is true, the
result is true, but if both are true or both are false, the output is false. It is
difficult to learn xor in a net where the input neurons are directly connected to
the output neurons, where both are directly stimulated by the environment. It
is difficult because the synaptic weights, following a Hebbian rule, will reflect the
co-firing behaviour of the neurons, and these behaviours are identical between
any input/output pair.

The remainder of this paper describes reasonably biologically accurate com-
putational system that solves the xor problem. It then links this system to other
existing work, including Boltzmann machines, describes some short-comings, and
considers how this work might be extended.

2 Model

Broadly speaking, the components of the model are the neural model, the learn-
ing algorithm, and the topology (the way the neurons are connected). The
system can be found at http://www.cwa.mdx.ac.uk/undone.

2.1 FLIF Model

The FLIF neural model is a point model in the family of integrate and fire [6]
neural models. An integrate and fire model is described by equation 1.

θ < Aj =
∑

i∈Vi

wij (1)

The neuron integrates activity sent from other neurons that fired in the last
cycle (Vi) weighted by the synaptic strength wij . It fires if the activity surpasses
a threshold θ.

The model is discrete and runs in cycles that roughly correspond to 10 ms
of time. It is leaky as described by equation 2, so if it does not fire in one cycle,
it retains some of the activation for the next cycle. Without input, activation
decays from step t− 1 to step t being divided by a constant D > 1.

At
j = At−1

j /D (2)

The neuron also fatigues each step it fires. Fatigue is increased by a constant
Fc each step a neuron fires. The neuron’s fatigue is added to the threshold so
that neurons that frequently fire require more activation to fire.

When a neuron does not fire, its fatigue is reduced. In older models this
was reduced by a constant Fr in each step that the neuron did not fire, but the
fatigue value of a neuron never went below zero. The modified version allows
fatigue to be negative. When a neuron is hypo-fatigued, it will fire when fatigue
is negative enough (−F > θ).

In this model, if the neuron fired and fatigue was less than -.25, the fatigue
value was halved. Otherwise, it was increased by Fc as usual. When fatigue was



below -.25, it was reduced exponentionally as described in equation 3.

F t+1
i = F t

i − (−4)(3−F t
i ) (3)

This leaves four parameters to describe the neural model. Threshold theta is
2.2; decay D is 1.12; fatigue increase Fc is 0.45; and fatigue recovery Fr is 0.01.
In past simulations, these were free parameters for simulation, but these values
have been selected to fit the firing behaviour to biological neurons [5]. The
particular neurons modelled were rat somatosensory neurons under a widely
varying direct current injection regime. Similarly, the fatigue rules, equation
3, is quite complex. However, its inclusion lead to a closer fit to the biological
firing behaviour [7]. Fit to neural spiking behaviour is over 90% with an average
difference of less than two cycles (17 ms.).

All neurons in the system, are of this form. They all will spike spontaneously
if hypo-fatigued.

2.2 Compensatory Learning

The learning mechanism is another component of the model. While all evidence
points to biological modification of synaptic weights being Hebbian, this leaves
a vast range of possible rules. In the simulations described below, a compen-
satory learning rule has been used. In addition to the firing behaviour of the
two neurons a synapse connects, a compensatory rule takes into account the
total weight of the synapses in these neurons, forcing the total weight toward
a target total in conjunction with the firing behaviour. The author has a used
a compensatory rule based on the total of the pre-synaptic neuron’s synapses
in earlier work to learn hierarchical categories [8]. The simulations described
below make use of compensatory rule bsed on the post-synaptic neuron’s total
synaptic weight. This rule increases weights to neurons that fire infrequently,
typically due to spontaneous firing.

Hebbian rules are typically a combination of two rules, one for when the
neurons co-fire, and one for when they do not. Equation 4 is applied when the
neurons co-fire. Equation 5 is applied when the pre-synaptic neuron fires, and
the post-synaptic neuron does not. When the pre-synaptic neuron does not fire,
the weights do not change.

In equations 4 and 5, R is the learning rate, which is 0.01 in the simulations
below. WB is the target post-synaptic weight and Wj is the incoming synaptic
weight to the post-synaptic neuron. In these simulations, WB was set to 4.

∆+wij = (1− wij) ∗R ∗ 10(WB−Wj) (4)

∆−wij = wij ∗ −R ∗ 10(Wj−WB) (5)

Neurons may also be inhibitory. A parallel learning rule applies to inhibitory
neurons so that that the inhibitory synaptic weight is more negative for neurons
that do not co-fire. In these simulations, for excitatory neurons, synapses have
a weight between 0 and 1, and inhibitory neurons, a weight between -1 and 0.



2.3 Topology

The final component of the model is the topology, or how the neurons are con-
nected. Firstly, each neuron is either inhibitory or excitatory, following Dale’s
principle [9]. The network is divided into three subnets as shown in figure 1.

The Input subnet has no internal connections, as it acts as a proxy for envi-
ronmental stimulus. All its neurons are excitatory.

Within the Gas and Output subnets, connections are random, but there are
no self-connections. 50% of the neurons are inhibitory, chosen randomly. For
both inhibitory and excitatory neurons there are 20 connections.

There are connections between nets, and these only come from the excitatory
neurons. Each neuron has 10 connections, randomly selected, to neurons in the
destination net.

Input
Gas

Output-¾-

Fig. 1: Gross Topology of xor simulations. Boxes represent subnets, and arrows
connections between subnets.

The Input net has 600 neurons, and the Ouput net has 400; this represents
200 per category (see section 3). Different runs have different numbers of neurons
for the Gas subnet, but 800 is an example.

3 Experiment

The experiment was done by training the overall net, turning learning off, and
then testing the net. Training and testing were both done in sets of 20 simula-
tions cycles termed epochs.

In a training epoch, the appropriate inputs were externally stimulated. These
inputs (and outputs) were just instances of the xor problem, see table 1. The
Input net was broken into three patterns, E energy, A, and B. Each consisted
of 200 neurons that belonged only to that pattern. Similarly, the Output net
was broken into two patterns of 200 neurons each, Y es and No. An alternative
presentation mechanism would have been four input patterns, A, notA, B and
notB. It can be argued that the input pattern used is more natural as E could
be considered a go signal. It is more difficult than the four input mechanism
because the network is essentially storing four patterns, one with two elements,
two with three, and one with four; it then retrieves the output based only on
the input.

All of the neurons in the input pattern are externally stimulated for 10 cycles,
and then the net is allowed to run for 10 cycles without input. That is one epoch,
and then the next pattern is presented in the next epoch. Each stimulated neuron
is given (2 + r) ∗ θ units of activation, where r is a random number between 0



Input 1 Input 2 Input 3 Ouput
E No
E A Yes
E B Yes
E A B No

Table 1: Xor Input Table.

and 1. Due to fatigue and inhibition, some externally stimulated neurons may
not fire in a given step. Note that neurons in the Gas net receive no external
stimulation.

Training proceeds for 1000 epochs. Then, learning is switched off, and the
network is run for 100 epochs with no external activation of the Output net.
During a testing epoch, the number of neurons firing in the Y es and No patterns
in the Output net are summed. Y es is the winner if it has more neurons firing,
and No is the winner otherwise. The answer is thus easily determined correct
or not.

This was all done for a given network, but networks are quite random so, it
was run over 100 networks per test condition. In table 2, different numbers of
neurons in the Gas subnet are shown.

Neurons in Gas 400 800 1200 1600 2000 800L 800SL
% Correct 98.31 99.77 99.86 99.88 99.95 98.94 93.71

Table 2: Performance Perecentage with Varying Size of Gas Subnet.

Another issue is the persistence of learning. It is not entirely clear if neurons
are always learning at the same rate, but continued learning is an issue, in
particular in the form of the stability plasticity dilemma [10]. With this in
mind, two other simulations were run. These are both with 800 neurons in the
Gas subnet, and are displayed in table 2; the 800L entry shows performance
with learning remaining on during testing, and the 800SL line shows 2000 cycles
with no input, just spontaneous activation, with learning on constantly. These
do show degraded performance, but they are relatively stable.

4 Background

Modelling the brain has a long history, going back to at least 1907. Neurons
have been modelled, learning has been modelled, and topology is a key issue.

Computational models of neurons can be broadly grouped into compartmen-
tal models and point models. Compartmental models break the neuron into 3D
parts, and then use conductance to determine the electrical properties of the
neuron dynamically. An early example of these is the Hodgkin-Huxley model
[11]. Almost without exception, these models are a more accurate reflection of
the biology than are point models, but they are expensive to simulate.



Point models are widely used, with integrate and fire models [6] being an
early and simple model. This is also used in the Hopfield model [12]. A widely
used extension includes leak [13], leading onto the FLIF model described above.

Boltzmann machines are another type of point model [3]. They fire, but they
fire on a regular basis without input. Increasing input increases their firing rate.

Hebbian learning is ill defined, but in all cases it is a local rule based on the
behaviour of adjacent neurons. Biologically, learning appears to be Hebbian,
with the spike timed dependent plasticity having solid biological support [14].
It is possible to separate independent and principal components with Hebbian
rules [15]. Anti-Hebbian rules force co-firing neurons apart to decorelate their
behaviour. This is still a local rule.

Another issue is topology. It is widely known that the brain is loosely con-
nected. However, well-connected topologies have had extensive use (e.g. [12])
as these have statistical mechanical properties that enable powerful analytical
results.

5 Conclusion

The author is encouraged by these simulations as it shows learning into multiple
layers using biologically accurate mechanisms. However, there are problems.

These results are a form of associative memory with the inputs associated
with the outputs via the intermediate layers. However, this misses the ability of
cell assemblies to persist, acting as both long and short-term memory.

Similarly, one might argue that linking biological reality with machine learn-
ing is unnecessary. However, from both perspectives it is important. From the
neuropsychological perspective, it is important to understand how neurons might
learn functions. From the machine learning perspective, learning across multi-
ple layers may provide a mechanism to escape from the brittleness of current
solutions, and learn a wide range of information.

Another concern is that there are a really large number of neurons used to
learn this relatively simple task. Future work with anti-Hebbian learning and
decorrelation will explore this.
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