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Abstract. In computational neuroimaging, the analysis of functional
Magnetic Resonance Images (fMRIs) using fuzzy clustering methods is
a promising data driven approach to explore brain functional connec-
tivity. In this complex domain, accurate evaluation procedures based on
suitable indexes, able to identify optimal clustering results, are of great
values strongly affecting the validity and interpretation of the overall
fMRI data analysis. A large number of clustering validation indexes have
been proposed in literature. This work proposes a comparison analysis of
eight representative fuzzy and crisp clustering validation indexes. Salient
aspects of the proposed strategy are the use of the widely adopted fuzzy
c-means algorithm as underlying fuzzy clustering algorithm and the use
of resting state fMRI data from the NITRC repository.
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1 Introduction

Data Clustering is one of the widely used methods to explore data in several
domains. It utilizes only the statistical information inherent in the data without
human supervision [5]. Fuzzy clustering computes degrees of membership of a
single data to multiple clusters. In computational neuroimaging, the analysis of
functional Magnetic Resonance Images (fMRIs) using fuzzy clustering methods is
a promising data driven approach to explore brain functional connectivity. fMRI
data have a complex content that regards both spatial and temporal information:
the spatial ones are related to the mapping of brain regions that have common
topological properties, whereas the temporal ones are referred to the detection
of brain signal changes in correspondence to specific experimental times (see
Fig. 1). In this context, clustering techniques find homogeneous spatio-temporal
patterns without relying on any model of functional response are considered in
principle more accurate than model-based methods when dealing with fMRI data
analysis under complicated experimental conditions [9,17]. Clustering algorithms
perform a partition of the complex fMRI content in homogeneous groups. Find-
ing an optimized partition is a sophisticated task: not all the fMRI patterns are
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separable in distinguished crisp parcels since some of them could share common
properties, as in the case of extended brain networks that vary the coactivation of
different brain modules during an experimental task. Thus, the natural dynamic
of the neuronal structures must be managed properly by clustering algorithms
that should be able to handle both simple regularities of well-known patterns
related to low-level active tasks and complex irregularities of partially-known
patterns related to high-level active tasks or self-referred passive paradigms.
Clustering has an important role in fMRI passive studies allowing to investigate
the neurophysiological resting state that has debated biomarkers [9] and also
evidence-based differences related both to gender and age [3]. In this context
accurate evaluation procedures based on suitable indexes able to identify opti-
mal (and suboptimal) clustering results are of great values strongly affecting the
validity and interpretation of the overall fMRI data analysis which is still a con-
troversial task in neuroimaging. Among the varied methods used for fMRI data
clustering, fuzzy c-means [2] is certainly the most popular method [9,11,16,18].
An important issue in cluster analysis is the cluster validation aimed to measure
how well the clustering results reflect the structure of the data set. For this pur-
pose a large number of clustering validation indexes (CVIs) have been proposed
in literature [4,7,13–16,19] to detect the optimal cluster number for a given
dataset on the base of a balancing between the two opposite criteria of compact-
ness within each cluster and separation between them. Several studies have been
developed to investigate and compare the effectiveness of fuzzy and crisp CVIs
in appropriately determining the number of clusters and measuring the good-
ness of clusters themselves produced by diverse algorithms [1,8]. Despite several
achievements obtained, guidelines resulting from these general studies have not
yet been adopted with large consensus and validation indexes are often selected
basing on individual experience and/or arbitrary criteria. Critical aspects arise
also in fMRI data analysis where clustering techniques are usually validated
using external criteria based on prior knowledge about the data, whenever pos-
sible, or using internal different indexes depending on individual studies. The
problem can be addressed by proposing comprehensive comparison studies ori-
ented to specific clustering algorithm and specific application domains in such a
way that resulting guidelines are applicable in future studies. Proceedings from
these considerations, in this work we focus the attention on validation of fuzzy
clustering of fMRI data and develop a comparison analysis of a set of represen-
tative fuzzy and crisp CVIs. Salient aspects of the proposed strategy are the use
of the widely adopted fuzzy c-means (FCM) algorithm as underlying clustering
algorithm and the use of resting state fMRI data from the NITRC repository
[10]. The remaining part of the paper is organized as follows: Sect. 2 describes
the clustering problem and the soft algorithm chosen to approach its solution,
Sect. 3 lists the indexes used to validate the clustering results, Sect. 4 describes
the general experimental procedure, the datasets used and the results obtained.
Section 5 reports both the discussion of the results and the conclusions.



Comparison of Validity Indexes for Fuzzy Clusters of fMRI Data 171

Fig. 1. This image displays resting-state functional connectivity as linear correlation
for the seed region in a sample of 1,000 subjects. The seed chosen is the Precuneus
(X/Y/Z MNI152 coordinates: 2 -60 30), that is the main core of the Default Mode
Network (DMN), a candidate biomarker for the fMRI resting state studies. In the
images, the Precuneus is in the zone with the highest functionality (yellow color).

2 Clustering Problem and Fuzzy C-Means Algorithm

The purpose of clustering is to partition a given set of data into groups (clusters)
following a predefined criterion. These groups contain data that have both high
similarity within clusters and high dissimilarity between the other clusters [5].

Let X = {x1, x2, . . . , xn} a given dataset (with n elements), and let C =
{c1, c2, . . . , cK} the set of cluster, where K is the desired number of clusters.
Regardless of the criterion chosen for the partition, the purpose of clustering is to
develop a partition matrix of size K×n denoted as U = [μij ], with i = 1, 2, . . . ,K
and j = 1, 2, . . . , n, where μij is the grade of membership of point xj to cluster ci.

In crisp clustering, each point in the specified dataset belongs to a single
cluster class. Then μij = 1 if xj ∈ ci, otherwise μij = 0. Instead, in fuzzy
clustering, a point can be associated with more than one cluster, potentially also
to all clusters, with a certain degree of membership, and the partition matrix in
this case is represented as U = [μij ], where μij ∈ [0, 1] indicates the degree of
membership of the j-th element to the i-th cluster.

The FCM algorithm proposed by Bezdek [2] is used for the data analysis in
a non-supervised way in several fields. The purpose of the FCM algorithm is to
create vectors called centroids that minimize the value of the function Jm that
is given by the sum of the intra-cluster quadratic error. Jm it is defined as:

Jm =
n∑

j=1

K∑

i=1

μm
ij ||xj − zi||2 (1)

where

• m > 1 is the exponent of the element of the fuzzy partition matrix to adjust
the degree of fuzzy overlap.

• zi is the centre of the i-th cluster.
• μij is the degree of membership of xj to the i-th cluster.
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• || . . . || is the Euclidean norm between a point and the corresponding cluster
center.

The FCM algorithm performs the following steps:

1. Randomly initialize the U matrix.
2. Calculate the cluster centroids with the following formula: zi =

∑n
j=1(µij)

m(xj)
∑n

j=1(µij)m

3. Update μij according to the following formula: μij = 1
∑K

k=1(
||xj−zi||2
||xj−zk||2 )

2
(m−1)

4. Calculate the objective function Jm

5. Repeat steps 2–4 until Jm improves less than the prefixed threshold or until
the specified maximum number of iterations is reached.

3 Cluster Validation Indexes

The use of a clustering algorithm must be complemented with the use of a val-
idation index to detect the optimal cluster number for a given input dataset.
A clustering validity index has two indicators: the compactness and the separa-
tion [12]. The compactness indicates the concentration of points that share the
same cluster. The separation, evaluates the degree of isolation among clusters. A
dataset is well partitioned if there is both high compactness and high separation.
But often the two indicators conflict, e.g., if the compactness is high, the sepa-
ration is low and viceversa. Therefore, a rationale between the two indicators is
needed to design a clustering validation index.

The aim of the present work is to identify suitable CVIs for fMRI Clustering
studies among a set of representative and widely used crisp and fuzzy indexes.
A total of eight indexes is considered and their formal definition given below.

• The Pakhira Bandyopadhyay Maulik Index (PBMI) [13]. It evaluates the
product between compactness and separation and its optimal value is towards
the maximum. It is formalized as

PBMI(K) =

(
1

K
× E1

EK
× DK

)2

(2)

where K is the number of clusters used, i.e., K = {k
′
, k

′′
, . . . , kK}, the EK =

∑K
k=1 Ek holds such that the compactness is defined as crisp functional

J(U, Z) = Ek =
N∑

n=1

unk||xn − zk|| (3)

where U(N) = [unk]N×K is the binary partition matrix of the clustered data
and the crisp separation is formalized as

Dk =
K

max
k′,k′′

{
||zk′ − zk′′ ||

}
(4)

with zk′ �= zk′′ (that are different centroids). Note that xn is the n-th point
in the dataset and zk is the center of the k-th cluster. E1 =

∑N
n=1 ||xn − z1||

z1 is the centroid calculated on all points of the dataset
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• The FPBMI is the fuzzy version of the index proposed by Pakhira et al. [13].
It evaluates the product between compactness and separation and its optimal
value is towards the maximum. It is formalized similar as in the Eq. (2), except
for the compactness of all clusters that it is defined as fuzzy functional, i.e.,

Jm(U, Z) = Ek =
K∑

k=1

N∑

n=1

um
nk||xn − zk|| (5)

and E1 that defined the fuzzy compactness of the cluster 1, i.e., E1 =∑N
n=1 um

n1||xn − z1||. Both contain the membership value unk, where U(N) =
[unk]N×K is the fuzzy partition matrix of the clustered data.

• The Fukuyama Sugeno Index (FSI) [7]. It computes the difference between
fuzzy compactness and fuzzy separation and its optimal value is towards the
minimum., i.e.,

FSI(K) =
K∑

k=1

N∑

n=1

um
nk||xn − zk||2 −

K∑

k=1

N∑

n=1

um
nk||zk − z||2 (6)

in which the z is the mean of all Z centroids and the unk is the membership
value of the n-th point in the k-th cluster, and m is the fuzzy exponent.

• The Rezaee Lelieveldt Reider Index (RLRI) [14], also known as Compose
Within and Between scattering Index (CWBI). It is the sum of compactness
and separation and its optimal value is towards the minimum. In checks the
average compactness and separation of fuzzy clustering by using the sum of
two functions, i.e.,

RLR(K) = αScat(K) + Dis(K), (7)

where α is a weighting factor equals to Dis(Kmax) (the Dis(K) with the
maximum cluster number), and Scat(K) that is the clustering compactness
measure defined as

Scat(K) =
1
K

∑K
k=1 ||σ2(zk)||
||σ2(X)|| (8)

with ||x|| = (xT ·x)1/2. Note that σ2(X) denotes the variance of all the dataset
X and σ2(zk) is the fuzzy variance of cluster k. The Dis(K) is the clustering
separation measure defined as

Dis(K) =
Dmax

Dmin

K∑

k=1

[
K∑

k=1

||zk′ − zk′′ ||
]−1

(9)

with zk′ �= zk′′ (different k centroids) and with Dismax and Dismin are the
clustering separation with the maximum and minimum cluster number respec-
tively.

• The Wang Sun Jiang Index (WSJI) [15]. It is the sum of compactness and
separation and its optimal value is towards the minimum. It derived from
the RLRI, adopting a linear combination of average fuzzy compactness and
separation to evaluate clustering outcomes, i.e.,

WSJI(K) = Scat(K) +
Sep(K)

Sep(Kmax)
(10)
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where the separation Sep(K) is differently defined as in Eq. 9, i.e.,

Dis(K) =
D2

max

D2
min

K∑

k=1

[ K∑

k=1

||zk′ − zk′′ ||2
]−1

. (11)

Instead, the Scat(K) is the defined as in Eq. (8).
• The Xie Beni Index (XBI) [19]. It is the ratio between compactness and

separation and its optimal value is toward the minimum. It measures the
average within cluster fuzzy compactness versus the minimal value of the
between-clusters separation, i.e.,

XBI(K) =

∑K
k=1

∑N
n=1 u2

nk||xn − zk||2
N · mink′ �=k′′ {||zk′ − zk′′ ||2}

(12)

with K = {k′ , k′′ , . . . , kK} is the number of clusters used, N the number
of data points, unk the membership values associated to the points n and a
cluster k, the zk is the centroid of a generic cluster k.

• The Davies Bouldin Index (DBI) [4]. It is the ratio between crisp compactness
and separation and its optimal value is towards the minimum., i.e.,

DBI(K) =
1

K

K∑

k=1

max
{ Sk′ + Sk′′

||zk′ − zk′′ ||
}

(13)

with k′ �= k′′ (different k centroids) and Sk′ the crisp clustering compactness
of the k′ = k-th cluster defined as

Sk′ =
(

1

Nk′

∑

xn∈ki

||xn − zk′ ||2
)1/2

(14)

where Nk′ is the cardinality of the cluster k
′
.

• The SDBI is the soft (fuzzy) version of DBI [16]. It is the ratio between the
fuzzy compactness and the separation and its optimal value is towards the
minimum. It is defined as

SDBI(K) =
1

K

K∑

k=1

max
{Sk′Uk′ + Sk′′Uk′′

||zk′ − zk′′ ||
}

(15)

where the fuzzy compactness Sk′ is the defined as follow

Sk′ =
(

1

N

∑

xn∈N

||xn − zk′ ||2
)1/2

(16)

in which N is the cardinality of the used datasets, whereas the Uk′ is the
average of the membership values for the cluster k

′
(note that k

′
and k

′′
are

different clusters).

4 Experiments and Results

Performances of the eight indexes introduced in Sect. 3 are evaluated using clus-
tering results obtained by processing fMRI datasets with different configuration
of FCM algorithm and comparing the optimal number of clusters indicated by
the indexes with those indicated by the available ground truth.
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4.1 FMRI Dataset

From the NITRC repository [10] and 1000 Functional Connectome Project, we
selected the Beijing dataset with 187 healthy subjects (73M/114F; ages 18–25; all
righthanded). The subjects did a resting state experimental paradigm with eyes
closed. The fMRI parameters were the following: TR = 2, slices = 33 acquired
with interleaved ascending procedure, time-points = 225, magnet = 3 [T]. The
selection of this dataset is motivated by the specific age range and because it
was just used by Biswal et al. [3] to discover resting state functional properties
and their gender determinants. The brain resting state measured with fMRI has
a bunch of possible biomarkers that allow researchers to build a likely ground
truth (or experimental-based ground truth). The common knowledge about those
biomarkers are presented in [3,9,11]. Since we want to get an empirical ground
truth to validate the indexes, we defined it taking in account the acquired com-
mon knowledge about resting state fMRI biomarkers, obtaining a two classes
ground truth and a four classes ground truth. The first has two labels associated
to the presence/absence of regions related to the so-called Default Mode Network
(DMN) [6] and the second has four labels associated to regions part of DMN and
other three candidate resting networks, i.e., the Visual Network (VN), the Sen-
sory/Motor Network (SMN) and the Other Resting Networks (ORN) (the last
one encompasses all the regions that are not classified as DMN, VN or SMN).

4.2 Experiments

Two experiments have been developed by using fMRI data. In the first exper-
iment two classes of truth are considered: what is DMN network and what is
not. In the second experiment, 4 classes are considered: DMN network, VN
network, SMN network and other resting networks. The FCM algorithm was
configured with number of clusters K = 2, 3, ..,

√
n and weighting exponent

m = 1.1, 1.2, . . . , 2.5. To improve robustness in the evaluation, each FCM imple-
mentation was executed 200 times for each configuration and clustering result
having the lowest Jm value was considered for the CVIs evaluation. In both the
experiments the 8 CVIs were applied to evaluate clustering results obtained by
the allowed FCM implementations distinguished by the different values of K and
m parameters. To enable the quantitative comparison analysis, CVIs values were
normalized taking into consideration the fact that some indexes designate the
optimal number of clusters by using the maximum value, while the others the
minimum value. In particular, the z-score normalization has been implemented
in a positive way for the indexes that minimize their optimal value, and in a
negative way for the indexes that maximize their optimal value. After normal-
ization, the indexes indicated the number of optimal clusters with the lowest
value, making them to be well comparable. Table 1 illustrates the CVIs values
resulting from the evaluation of clustering fMRI dataset by FCM with m = 2
and i ranging from 2 to 10.
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Table 1. Values of CVIs resulting from the evaluation of clustering fMRI dataset by
FCM with m = 2 and i ranging from 2 to 10.

Index i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

FPBMI 1.66 1.59 −1.66 −0.12 1.95 −0.44 0.62 1.62 −0.12

PBMI 1.02 0.89 −1.19 −0.47 0.69 −0.67 0.93 1.12 −0.44

FSI 0.75 0.81 −0.08 −0.53 0.07 −0.64 0.93 −0.42 −0.54

WSJI −0.27 0.02 0.02 −0.44 0.05 −0.35 1.09 −0.95 −0.61

XBI −0.73 −0.90 0.11 −0.46 −0.81 −0.40 −0.61 −0.63 −0.41

RLRI −0.82 −0.98 0.65 −0.31 −0.96 −0.11 −0.57 −1.05 −0.63

DBI −0.92 −0.97 0.93 −0.07 −1.03 0.28 −0.94 −0.29 0.46

SDBI −0.67 −0.46 1.21 2.43 0.02 2.35 −1.44 0.61 2.30

To summarize the set of results generated and develop systematically a com-
parative evaluation of CVIs, we introduced a measure E defined as:

E = |ni − nr| (17)

where ni is the optimal number of clusters designated by the index, nr the
number of cluster by reference. Table 2 illustrates performance of E values of the
8 CVIs, computed as average of E values obtained varying parameter m in the
two experiments mentioned above.

Table 2. Mean and variance of E values for the 8 index evaluating clustering of fMRI
data with 2 (Experiment 1) and 4 (Experiment 2) reference classes, the CVIs are in
ascending order based on the E mean.

Index Experiment 1 Index Experiment 2

E mean Var E mean Var

FSI 0.58 0.13 WSJI 0.78 0.08

RLRI 0.65 0.18 RLRI 1.35 0.17

WSJI 1.28 0.10 FSI 1.47 0.08

SDBI 1.54 1.50 SDBI 1.55 0.49

DBI 4.76 5.02 DBI 3.31 2.35

XBI 5.50 0.40 XBI 3.69 0.39

PBMI 6.22 0.42 PBMI 4.22 0.42

FPBMI 6.36 0.25 FPBMI 4.36 0.25

5 Discussion and Conclusions

In this work the performance of 8 well-known CVIs was quantitatively evalu-
ated by using the FCM algorithm to process fMRI data. The use of the selected
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dataset allows to investigate the behavior of CVIs under two different levels of
organizing data in two and four reference classes. The results obtained are pre-
liminary but useful to suggests guidelines for a reliable use of cluster evaluation
indexes and to contribute to a proper use of data driven, clustering techniques in
the complex and more and more investigated brain function evaluation domain.
Looking into the details of the results listed in Table 2, we noticed that RLRI,
WSJI and FSI gained the top three positions in both the experiments even if with
a different internal order. This fact leads to the conclusion that each one of them
is able to both mediate between different characteristics of cluster structures and
efficiently create a balance between compactness and separation. It was found
also that widely used indexes such XBI, DBI and PBMI showed values consid-
erable lower the three indexes mentioned above. The major differences between
the two sets of CVIs lie in the formalization of separation component that plays
an important role when dealing with clusters allocated closely as probably in
case of fMRI data, and in the management of the two measures (compactness
and separation) in the case of RLRI and WSJI is the sum of the two components,
FSI subtraction while XBI, DBI, SDBI apply the ratio and FPBMI, PBMI the
product. The novel SDBI index showed better values than crisp standard ver-
sion and gained a position just below the top three positions. The XBI, PBM,
FPBM, and DBI indices seem to be more suitable for contexts in which data
distribution with little overlap is hypothesized, or in which cluster compactness
is preferred.

Main conclusions obtained by our experimental work are consistent with
results obtained in previous works [12] while considering the different exper-
imental strategies and different domains. However caution must be exercised
when applying results to other fMRI contexts taking into account the variability
and complexity of these data and the different processing strategies. Future work
contemplates a refinement of the metric adopted in the comparison to include
other evaluation criteria and the use of a broader set of fMRI data with different
levels of complexity and inter-cluster overlap, to obtain results more robust and
extensible to other similar contexts.
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