| ssues of CBD Product Quality and Process Quality

Mark Woodman, Oddur Benediktsson
School of Computing Science

Middlesex University

Trent Park
London N14 4Y Z, UK
+44 (0)20 8411 4360
m.woodman@madx.ac.uk,
o0.benediktsson@mdx.ac.uk

ABSTRACT

This position paper presents arguments for including the
properties of processes involved in various approaches to
component-based software development in predicting sys-
tem properties. It discusses how processes impact on sys-
tem properties and relates the issues raised to standards that
already address process and product quality. Although
many standards still apply, CBD changes interpretations
and emphases.

Keywords
Component-based development, software quality, process
assessment

1 INTRODUCTION

The darting point of this position paper is the long-
established domain of software process quality and capa-
bility assessment. The paper aims to contribute to the dis-
course on predicting properties of component-based sys-
tems from the properties of their parts, recognising that in
many engineering contexts the maxim applies that process
quality is neither necessary nor sufficient for product qual-
ity. We argue that many of the processes involved in com-
ponent-based software development affect the quality of
the systems produced: predicting the properties of such
systems is complicated by these newly emphasised soft-
ware development activities and several questions must be
addressed before using component properties as predictors
for system properties. Here we enumerate several of the
CBD issues we have confronted and suggest how the par-
ticular processes impact on the prediction of component-
based system properties.

Bruno L efever
COMPUTER ASSOCIATES Systems Engineering and Automation
Boulevard de le Woluwe, 34
1200 Brussels, Belgium

+32 (0)2 77328 98
bruno.lefever@ca.com

Friedrich Stallinger

Kepler University Linz
Altenbergerstral3e 69
4040 Linz, Austria
+43 (0)732 2468 8868
fs@sea.uni-linz.ac.at

The work described here is part of the EU-funded project,
OOSPICE [11], whose goals include the specification and
validation of a generic model for CBD, the specification,
tooling and user trials of a conforming CBD method, and
the extension of the 1SO 15504 international suite of stan-
dards on software process assessment [8] to cover object-
oriented and component-based software development. The
OOSPICE partnership' includes representatives in Europe
and Australia of academe, the software industry and users.

2 QUALITY OF CBD SYSTEMS

There is a large variety of software development ap-
proaches that can justifiably claim to be component-based.
To develop rules for predicting the properties of a system
developed from components necessitates looking at the
variety of approaches and variety of ways that components
appear in systems. For example, the SEI vision of CBD, as
expressed by Bachman et al. [3], states that the (certified)
properties of components and component frameworks be
used to predict system properties. However, nothing is said
about predicting system properties when components are
compositions or adaptations of other components. Further-
more, nothing is said about predicting the properties of
frameworks that are likely to be composed from a variety
of pieces, or indeed components. Bachman et al. aso re-
quire a component model for component-based systems but
say nothing about how its properties may be used in the
prediction of system properties. We argue that these and
similar omissions by others are evidence of the implicit
impact of development processes which dictate such prac-
tices as component composition, adaptation, etc. So predic-
tion of system properties must involve determining process
properties.

In fact the processes involved in CBD can change the
meaning of traditionally defined quality attributes. For ex-
ample, Allen [1] tabulates ten CBD-related “ilities” for
which he suggests IT and business benefits. They are: accu-
racy, adaptability., clarity, flexibility, interoperability,
maintainability, performance, replaceability, reusability,
scalability. The underlined items lie outside the list of
quality characteristics and subcharacteristics as listed in the

SO 9126 standard [9], which is the basis for many stan-
dard approaches relating to software quality. The terms
above are subject to many interpretations. To make prog-
ress with predicting system properties requires unambigu-
ous semantics and a more extensive list. However, Allen
does expose the difference CBD makes. His characteriza-
tions are tailored to the context of CBD and they reflect a
shift in what the terms traditionally mean, for example, as
listed in 1SO 9126. Moreover, new business goals are in-
troduced by CBD that have contributed to its popularity.
For example, “time-to-market” may be an overriding busi-
ness goal implying that the reusability attribute is at the top
of thelist.

A particular software process, or every actual enactment of
such a process, may influence the way component proper-
ties are interpreted (e.g. by applying different weighting to
aquality attribute). Alternatively, a process may change the
focus for predicting a system quality attribute, for example,
from the system’s components to the producers of its com-
ponents. In that case, the capability of the main processes
employed to produce the component or even the maturity
of the organization (e.g. as per 1SO 9001 certification) that
produced the components may be of great importance for
predicting system properties.

3 THE WIDE SPECTRUM OF CBD

Thereis a plethora of software devel opment experience that
is claimed to be component-based. Considerable work is
being carried out to find abstract representations of the
methods used in CBD and OOD as is exemplified in the
work of Henderson-Sellers and Unhelkar [7] and others. A
simple taxonomy is not possible. The variety of CBD ap-
proaches can be viewed as space of instantiations derived
from a common (meta)model. Somewhere in that space are
those approaches that package objects (e.g. as advocated by
D’ Souza and Wills[6]).

Elsewhere in that space may be an e-business strategy [1]:
“e-Business improvement planning is an incremental and
continuous process that recognizes that IT is now integral
to the success of the business strategy.” Some approaches
are centered on the use of COTS/MOTS/GOTS but these
may occupy quite different spaces; cf. the phase-ordered
view summarized by Cai et al. [4] with the view of long
term involvement of component vendors represented by
Morisio et al. [10]. Other CBD approaches emphasize cor-
porate re-use policies (e.g. the Select-Perspective ap-
proach). Not only do the high-level characterizations of
CBD influence process properties and hence product prop-
erties, the way individual projects enact a particular ap-
proach matters.

Some experts do more clearly acknowledge the impact of
processes. Bosch [2] takes a product-line approach, which
emphasizes system architecture over components per se; he
explicitly draws attention to the tension between what
might be seen as a purist view of CBD and a pragmatic

Woodman et al.

view. (He characterizes these as “academic” and “indus-
trial” views; his terms may be tongue-in-cheek but serve to
illustrate different but valid interpretations.) The distinction
is important in the context of predicting properties of a
system from the properties of its components. A view of
components as “black boxes’ that are accurately specified
both in terms of behavior and service level together with
certification rules promises a tractable calculus for deter-
mining properties of compositions and adaptations (i.e.
extensions or constraints) of third-party components. Hence
a quality assessment approach like 1SO 15504 can be ex-
tended to this end. However, a view that admits compo-
nents to be “open boxes’ requires stringent assessment of
the development processes for such a calculus to work.

Furthermore, the requirement of Bachman et al. [3] that
component frameworks be taken into account is crucial. In
his summary of the “industrial” view of CBD, Bosch char-
acterizes the approach to frameworks and glue as ad hoc.
Our discussions with industry make us prefer the term
“pragmatic’. Many companies are both constrained and
empowered by what is immediately available, by legacy
systems and by their expertise in what may be called “ap-
plication integration”. This expertise often results in
framework reuse at the specification level; a particular sys-
tem may consequently have many parts with many tech-
nologies, e.g. CORBA, EJB, MQSeries. Companies see a
high potential of reuse in the application integration ap-
proach. This is independent of the underlying component
framework. For example, an ERP package may be used
with, say, HP Unix, or IBM’s CICS; these are different
component frameworks for component implementations
offering identical, or at least similar, component specifica-
tions. Any combination of, for example, an EJB-framework
component specification and the chosen ERP one would be
reusable. This is because there are several component im-
plementations (each running on their own framework)
available for the same specification. In other words, the
middleware layer in the application integration world offers
flexibility regarding new combinations of smaller-grained
component frameworks into bigger ones via generic inter-
faces. The pragmatic engineering approach taken by many
companiesis still very much component-based but includes
complex, though well practised, processes. This is further
evidence that process properties must be factored into the
prediction of component-based system properties.

4 RELATING COMPONENT QUALITY TO
PRODUCT QUALITY

Following Allen [1] business goals translate into product
quality attributes. For example the goal short time-to-
market is highly dependent on the reusability attribute of a
component-based product. Similarly the goal reduced
maintenance cost depends on the maintainability attribute
of the product.

In general we suppose that the “ quality-in-use” attributes of
a product (e.g. desired functionality) are influenced by ex-

ternal quality attributes (e.g. requirements quality) that in
turn are influenced by internal quality attributes (e.g. design
quality) [9]. Internal quality attributes are influenced by
the software process quality (e.g. verification activities).

The I1SO 15504 standard provides a process assessment
model: “Part 2 ... defines a two dimensional reference
model for describing processes and process capability used
in a process assessment. The reference model defines a set
of processes, defined in terms of their purpose and out-
comes, and a framework [sic] for evaluating the capability
of the processes through assessment of process attributes
structured into capability levels’ [8]. In the standard the
requirements are given for performing an assessment in a
consistent way. An assessment is performed on a given
process instances. We designate the outcome of an assess-
ment for a particular process the process capability profile.
The capability profile will summarize the ability of the pro-
cess to perform on the defined capability levels. There are
six capability levels enumerated O to 5 and named incom-
plete process, performed process, managed process, estab-
lished process, predicted process, and optimizing process.

Let us suppose that a component-based product is to be
constructed mostly from ready-made components together
with the needed glue-ware. Some non-functional quality
attributes of the product are stated such as maintainability,
performance, and reliability. Can the system quality attrib-
utes really be predicted from such attributes of the constitu-
ent components? The answer depends on what we know
about the constituent components. If we know, for exam-
ple, reliability measures for individual components and the
component usage pattern then the overall reliability can be
computed [14]. The same holds for performance. An attrib-
ute such as maintainability is a different story. Maintain-
ability attributes such as changeability and stability can be
quantified but it may be difficult to deduce overall main-
tainability for a system from that of the individual compo-
nents.

In some cases we may want to obtain knowledge about the
software process capability of the component vendor. Sup-
pose that a software developer is working with a compo-
nent vendor on a long-term basis and that the delivered
components are of critical importance. The developer might
then do well in asking the vendor for process assessment of
some of the pertinent processes such as the development
process, maintenance process, configuration management
process, and quality assurance process.

To conclude this abbreviated argument, we briefly examine
eleven potential CBD quality attributes — Allen’s ten [1]
plus reliability — and postulate the effect a CBD view has
on “classical” software processes. The 1SO 15504 process
reference model will be used as a baseline (a version is
published in [15]). The considerations are made with a
component user (i.e. the component-based system designer)
in mind. Putative CBD process names are be italicized.

Woodman et al.

Reusability. Increased reuse has long been seen as a
major business goal asis reflected by the reuse process
in 1SO 15504. CBD elevates reuse to new heights. This
will change activities in al process categories for ex-
ample acquisition and requirement elicitation in the
customer-supplier process category, analysis and de-
sign in the engineering process category in the sup-
porting life cycle process category, and risk manage-
ment in the organizational life cycle process category.

Maintainability. Reduced maintenance costs is seen
as a major benefit of CBD. Idedlly, “defect-free” com-
ponents are available and are distributed by vendors
that enhance functionality as needed. In a distributed
component-based system the system and software
maintenance process changes because of the involve-
ment of the component vendor. So will some other
processes such as configuration management.

Accuracy. The capability of the component to provide
the agreed effects and with needed precision must be
designed into the component. Here component certifi-
cation [4] comes into play. It is a new process in rela
tion to the current 1SO 15504 reference model [8].

Clarity. Rigorous and clear interface specification is
mandatory for successful CBD. Again component cer-
tification is called for to ascertain the clarity as seen
from the component user.

Replaceability. A component needs to be easily re-
placeable with another component having different
implementation code. Accuracy and clarity of the in-
terface is a key issue here as well as the way the com-
ponent utilizes the underlying component framework.
Again component certification is called for.

Interoper ability. The capability of a component to
interact with other components and the component
framework. From the component usage point of view
interoperability is an attribute of highest importance.
Component interoperability is concluded from the
specifications. The main concern of the component
user is its adherence to the specifications. The compo-
nent user (i.e. the acquirer) may need to get involved in
the specification activity and again component certifi-
cationis called for.

Scalability. The property of scaling-up smoothly is
well known in many domains, e.g. database systems.
In distributed CBD systems unexpected bottle-necks
may show up. Some new activities may need to be
added to testing to validate needed scal ability.

Perfor mance. The component needs to provide appro-
priate performance under peak load relative to the
amount of allocated resources. Again component certi-
fication is called for to validate stated performance at-
tributes.

9. Flexibility. The component needs to be liberated from
“one-track” development and deployment. Some new
activities may need to be added to testing to validate
needed flexibility.

10. Adaptability. “Components can be reused and ex-
tended in a “plug and play” fashion in different busi-
ness contexts.” [1] Some new activities may need to be
added to testing to validate needed adaptability.

11. Reliability. The component needs to provide a speci-
fied level of capability to avoid failure. In safety criti-
cal systems needed reliability levels are stated in terms
of frequency of failure. CBD of highly reliable systems
cals in the first place for components of designated
reliability and secondly that the resulting system meets
the reliability requirements. Again component certifi-
cation is called for to validate the stated reliability at-
tributes of components and component framework. In
addition the system builder must make sure that the
needed glue-ware and adaptations preserve the reli-
ability of the constituent components and component
framework. This naturally leads to the requirement that
the deployed processes need to be of “adequate” capa-
bility to provide for effective software development of
high quality software.

5 CONCLUSION

Supported by observations that particular processes in-
volved in CBD can change the meaning of traditionally
defined quality attributes or alter the focus for predicting a
system quality attribute, we claim that a series of questions
must be addressed before using the respective component
properties as predictors for system quality properties and
that this prediction must involve determining process prop-
erties. The development of rules for predicting the proper-
ties of a system developed from components based on this
hypothesis necessitates looking at the variety of approaches
of software development claimed to be component-based as
well as the variety of ways that components appear in sys-
tems. In short: we must account for actual CBD processes
in predicting a component-based system’s properties.

REFERENCES
1. P. Allen, Redizing e-Business with Components,
Addison-Wesley, 2001.

2. J. Bosch, Design and use of software architectures,
ACM Press, Addison-Wesley, 2000.

3. F.Bachman, L. Bass, S. Commela-Dorda, F. Long, J.
Robert, R. Seacord, K. Wallnau, Volume I1: Technical

10.

11.
12.

13.

14.

15.

Concepts of Component-Based Software Engineering,
Software Engineering Institute, CM U/SEI-20000TR-
008, May 2000, p 53.
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/
00tr008.pdf

X. Cai, M.R. Lyu, K. Wong, Component-Based Soft-
ware Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes, Pro-
ceedings APSEC 2000, Seventh Asia-Pacific Software
Engineering Conference, Singapore, December 2000,
pp 372-379.

J. Cheesman, J. Danidls, UML Components, Addison-
Wesley, 2000. http://www.umlcomponents.com/

D.F. D’Souza, A.C. Wills, Objects, Components, and
Frameworks wit UML, Addison-Wesley, 1998.

B. Henderson-Sellers, B. Unhelkar, OPEN modeling
with UML, Addison-Wesley, 2000.

ISO/IEC TR 15504-1:1998(E) Information technology
— Software process assessment.

ISO/IEC JTCL/SC7 N2228, FDIS 9126-1 Software
Engineering — Product quality — Part 1: Quality model.

M. Morisio, C.B. Seaman, A.T. Parra, V.R. Basili, SE.
Kraft, S.E. Condon, Investigating and Improving
COTS-Based Software Development Process, Pro-
ceedings | CSE 2000, 22nd International Conference on
Software Engineering, Limerick, June 2000, pp 32-41.

OOSPICE Web site at http://www.oospice.com/

SEL COTS Study, Phase 1 Initial Characterization,
Software Engineering Laboratory Series, SEL-98-001.
http://sel .gsfc.nasa.gov/website/documents/online-
doc/98-001. pdf

C. Szyperski, Component Software, ACM Press,
Addison-Wesley, 1999.

S. Yacoub, B. Cukic, and H. H. Ammar, Scenario-
based Reliability Analysis of Component-Based Soft-
ware, Proceedings of the Tenth International Sympo-
sium on Software Reliability Engineering, |SSRE'99,
Boca Raton, Florida USA, November 1-4 1999, pp
22-31.

S. Zahran, Software Process Improvement, Addison-
Wesley, 1997.

' The partners in OOSPICE are the Department of Systems Engineering and Automation, Kepler University Linz, Austria; Middlesex Uni-
versity, London; University of Boras, Sweden; Center for Object Technology and Application Research, University of Sydney; Griffith
University, Australia; Computer Associates, Brussels, Dataservice Informatik Ges.m.b.H, Austria; Huber Computer Datenverarbeitung

GmbH, Austria; and Volvo Information Technology, Sweden.

Woodman et al.

