European Software Day - Middlesex University submission 05/06/02

SYSTEMS FAILURES:
An approach to understanding what can go wrong

John Donaldson & John Jenkins
Middlesex University
John.Donaldson@dial.pipex.com J.Jenkins@mdx.ac.uk

Presented at European Software Day of EuroMicr'00, Maastricht, NL, September 2000.
Published in Proceedings of the European Software Day of EuroMi@di), I1SBN 0-7695-0872-4

Abstract

Software Systems permeate just about every aspect of life throughout developed and
industrialised nations today. When failures arise, the aftermath is highly complicated because
there are so many ways that they may occur. The complexity of the situation becomes evident
even before the apparent or actual causes are considered, especially when the rate of change of
the technology is taken into account.

Systems failures cause havoc everywhere. They may be total, partial or temporary; and
examination of the subject has to consider: implemented systems, systems being enhanced and
totally new projects.

This paper considers some of the common causes of Systems Failures that are being investigated
following the end of Esprit projects (Multispace and Space-UFO). The work takes a more
specific look at the quality implications on software systems failures and then goes on to look at
current research into what steps may be taken to systematically understand what has actually
gone wrong. From that point, possible options open to provide credible and robust solutions to
these types of problem, are discussed.

1. Introduction

Software is used throughout developed and industrialised nations today. It is at the root of
applications ranging from sophisticated military control systems and real-time applications in

surgery through multimedia and business systems to the chip technology that is now involved in
familiar utensils of life such as cell-phones, photo-copiers, and a host of recreational devices.

When failures arise, they are highly complicated because there are so many ways that they may
occur. The complexity is evident even before the apparent or actual causes are considered. For
example: there is the question of whether or not it is the system itself that is in trouble or a project
that is being done to create or enhance a system. There are questions of whether the system:
totally fails as with the notorious London Stock Exchange Taurus project [1]; partially fails as
with one current UK. Government project [2], or simply “goes down”, as with the London Stock
Exchange where a temporary software failure caused the trading system to be unavailable for
seven hours on"5April 2000. As this 3-dimensional picture builds up, its complicated nature
becomes even greater, when the rate of change of the technology is taken into account. The
problem is recognised as being a serious one [3] and many attempts have been made at rectifying
it.

Page 1



European Software Day - Middlesex University submission 05/06/02

The Esprit projects Multispace (ESPRIT project 23066) and Space-UFO (ESPRIT project
22292) examined software quality practices and provided a framework for addressing these
issues. This work has been taken forward with the specific aim of looking into the causes and
nature of systems failures. Systems failures cause havoc everywhere. In the USA, the Federal
Aviation Authority (FAA) has attempted without success over fifteen years, to install an “all
States” Air Traffic Control system [4]. A similar protracted situation has arisen in the UK with
Air Traffic Control [5] and is one of the reasons given by H.M. Government for proposing the
partial denationalisation of Air Traffic Control within the UK. One particularly interesting
outcome from the initial work has been the way that the perception of what happens in Europe is
different from what happens in the United States and the fact that where there is a cross culture
between Europe and the USA then quite different problems may to emerge[6].

Failure causes vary considerably. Each case has to be taken in isolation and examined, to see
where it has gone wrong in the past or is starting to go wrong at present. In a true-life scenario, it
is essential to be able to predic3t likely problems that may arise or accurately recognise failure
symptoms when they occur. To achieve this it is important to be able to identify what is really
going on and when these facts have been established, to be able to select a suitable means of
handling the situation.

2. Causes of systems failures

A number of key factors have been observed to contribute towards project failure [7], [8].
Broadly speaking the reasons may be grouped into three categories: requirements engineering,
insufficient resources and human intervention.

Each of these may be broken down into further sub-categories and sub-sub- categories although it
should be recognised that as the examination of the specific cause becomes more detailed, then
overlaps become apparent across the overall three categories. These three may in turn be broken
down into different constituent elements, some of which may be apply in each of the three
categories. The outcome is a situation where many, often disparate, reasons emerge. These may
involve incomplete, ambiguous, and inconsistent specifications; or further along the project’s life-
path the effects of poor planning and/or estimating may manifest themselves. In terms of project
management, there may be no clear assignment of authority and responsibility, or on the other
hand lack of adequate tools and techniques and not enough, or even wrong, user involvement may
be the cause of what has gone wrong. The causes are many, complex, and they interact with each
other. In some cases a single factor may spell out the problem whereas in others it is the
combination of many small and apparently insignificant factors that are to blame.

Everything is not always what it seems to be

While the reasons for these failures are many and various; they are not always what might have
been expected. The Arianne V rocket failed because its navigation software was inappropriate for
the dynamics of that rocket design and, on experiencing questionable data instructed the rocket to
self-destruct [9]. This was not actually a software failure, but one where the overall rocket system

had been incorrectly assembled. In another case in 1999, during a NASA Mars projects, it was
discovered that Imperial Units had been entered into the landing data where an appropriate
metrical figure was expected — with disastrous results. In other instances, external influences have
played a significant part such as the Denver Airport baggage handling saga [4], where an already
confused project became inextricably embroiled within the local Political situation in Colorado.

What this means is that any analysis has to take account of factors which might not at first seem
to be remotely connected with the technology in use.

Expectancy

Page 2



European Software Day - Middlesex University submission 05/06/02

There is a fairly novel situation where public expectancy of computer technology is high and,
when all goes according to plan, its contribution to modern lifestyles is most beneficial. This high
expectancy fuels the competitive nature of computer. Within the more developed countries of the
world safety-critical issues are more often than not handled by computers and once again the
expectancy is extremely high and projects have to take account of this in their preparation. The
result of all this means that the disciplines associated with the design specification and
development of computer systems are almost held to ransom by their own success!

Fashion

“Fashion” has much to answer for. For example, the popularity of data warehousing has on
occasions obscured its basic objectives [10]. Many efforts have failed because those involved
were attempting to grapple with a concept that was huge or wholly inappropriate to their own
particular circumstances. The causes of the problems may be due to size, but they are also due to
the complicated and complex nature of the data warehousing concept itself.

Stakeholder Interest

Fashion can give rise to problems but another source of trouble is the varying nature of the
interests of the stakeholders involved in a project. This often gives rise to conflict, frequently
without any intentional criticism being involved.

In one United Kingdom Government project a very positive picture of a particular system is
provided on their official web-site, [11]. On the other hand Hansard (the official record of
proceedings in the House of Lords and in the House of Commons) tells a different story [12],
[13].

Finally, on top of all of this is the reaction of human beings to what is involved. It appears that to

the human mind, even in the business context, software is fun; it is contrary and sometimes
appears to be miraculous. When it works it is wonderful and everybody wants something

wonderful to happen now! Meeting the kind of expectancy generated by such emotions will never
be an easy task.

Building a formal approach to coping with systems failure problems.

In order to be able to suggest possible ways of preventing software failures, it is necessary to
investigate in detail, what is going on in the real software world. To do this it is first necessary to
examine what has gone before with a view to determining what general characteristics tend to
become apparent. This has to be taken back over a number of years in order to give a wider
sample of data. Such an approach also means that a retrospective look will determine if changes
in available software, hardware, or in the change of rate-of-advance of those technologies, implies
that what has gone before may be applied with confidence to the present day.

The symptoms of systems failure
The symptoms of failure can be grouped into groups which occur fairly commonly. For example:

e Technology « Insufficient Resources * Internal politics / Inertia
» Coping with Technology + Malicious (Technical) » Government policy
* Requirements * Malicious (Industrial) » Grandiosity

These may be split into (e.g.) “large projects” and “small projects” and just as one might find

problems with scaling up software from small to large, the problems experienced with small and
large projects may differ considerably. What appears as “large” to one organisation may appear
as “small” when compared with (e.g.) a Government Department system or project. It is as yet

Page 3



European Software Day - Middlesex University submission 05/06/02

unclear just what the implications of size are, and just how the inferences drawn from one type of
project may be used to seek solutions for similar projects on a different scale. On the other hand
many of the problems experienced such as “Requirements Elicitation” are common to most
projects regardless of size. These differences however have to be examined to find key causes.
Other variations on the same theme include the size of the organisation, the type of technology
being used and the degree of autonomy allowed to CIOs in each project.

3. The effects of Systems Failures

Systems failures affect the organisations involved in creating, maintaining and using them and
they can have a profound effect on the people involved, directly or indirectly.

The organisations affected cover the entire spectrum of business and service communities and
where appropriate, those involved in any way with systems. (this therefore brings in the worlds of
arts and entertainment) and the very significant personal use of computers experienced in the
world today through (e.g.) e-commerce.

The people affected include those involved in developing or maintaining systems such as
project/software managers, systems analysts and programmers, graphics specialists, operators and
so on. But they also include other people connected to the systems or projects concerned such as
directors, line managers, service personnel and other employees; together with other external
suppliers, consultants and customers.

Turning to the effects on the organisations and people involved in Systems Failures; these may be
profound. A number of definitions of the state of failed or failing systems are working their way
into the lexicons of the software engineering and business communities. These include
descriptions such as “Death March” for a project that has past the point where it becomes
doomed; and “Runaway” where the time spent developing the system or the money spent on it
have gone well beyond what is commercially viable or within the bounds of managerial common
sense. Some typical features or such situations result in:

e Financial loss » Lowering of moral] performance down

« Depletion of assets and closures * Loss of shareholder confidence
* Job losses * Bad press/media publicity ... ... ...

4. Why is there such a problem when so much is known about failures?

It is reasonable to ask: why if much is known about what has gone before, is this problem so
difficult to overcome? The simple answer is that while much has been done to improve systems
practice and management, a relatively small amount of research has been specifically devoted to
addressing the subject of software systems failures.

Traditional well founded engineering disciplines have developed successful management practice
over a very long time. It is true that mechanical and electrical faults will give rise to problems
(and always will) but Software Systems were only been developed during the last half of the
twentieth century and their culture is still immature [14]. In addition to this, it is not surprising
that attempts to adopt good engineering practices in times of rapidly advancing technology and
fierce cost-controlled commercial competition, are being met with significant difficulties.

Another facet of the problem is seen when it is seen that software development technigques have
not matched the rate of advance of hardware technology. This rapidly changing technological

scene has been accompanied by equally dramatic falls in prices of memory and data-storage
media. The need for rapid development imposes its own constraints on performance, quality, and

Page 4



European Software Day - Middlesex University submission 05/06/02

productivity. Being able to quickly and cost-effectively provide complex software solutions of
good quality has become critical in differentiating success from failure [15]. However this is not
the whole story: it is essential to be able to recognise failure signs as soon as they start to emerge
and be able to know what to do in a given failing situation.

Much has been written to describe the failures themselves [4] but the unfortunate fact is that not
much research is going on in the area. Some exceptions to this may be found at NASA Goddard
(SEL), with input from the University of Maryland, and similar work is being conducted at three
USA universities funded by SERC. In Europe, work has so far been confined to Kaiserslauten
(de) and Linkoping (se) with new project work taking place at Middlesex University (uk). Other
closely related work on technology transfer is also taking place at Carnegie Mellon University
and the SPC in Washington in the USA; and at the University of York (uk). Safety critical issues
being addressed in Newcastle (uk) and City University, London (uk); and a different angle on
systems failures is also being studied by a number of Business Schools in the USA and UK. In an
area about which so much has been written, this does not represent a lot of “work-in-progress”.

5. Building a systematic approach to solving systems failure problems.

It is essential to identify the true causes of why a system failed, is failing or has the potential to
fail. Current work at this point is directed at finding a means of taking symptoms and “distilling”
them into the true characteristics of a system problem. This is not a question of treating the case
with suspicion as often errors creep in to the very best of practices owing to very understandable
coincidences of a number of events. At the more extreme end however, it is not uncommon to
encounter situations where (e.g.) an apparent symptom has been given as “software package
inadequacy” but was actually due to the private agenda of an individual within the project team.
In any case, rigorous treatment as opposed to “opinion” is required.

What this has meant is gathering extensive cases from the literature and conducting field work to
gather information from industry during on-going system problem and success scenarios. This
process is currently taking place and an appropriate bopafledge is under construction in

the light of what is being uncovered.

A formal representation

Having assembled the data into a manageable format, there is a whole range of possible ways to
assist with understanding these symptoms. A number of approaches have been considered: they
vary according to the degree of tightness that the specification/modelling technique takes.

(a) At the most formal end of the scale, Petri Nets [16] were initially considered They use a
symbiosis of state- and event- oriented graphs, with tokens bound to the states involved to
cope with (e.g.) concurrency. The drawback of this approach is however that while he state
transitions described provide a valuable way of explaining what is going on, the esoteric
nature of the subject of systems failures means that the definition of the states involves
becomes ery involved with huge numbers of variables (and constants) to be taken into
account.

(b) At the softer end of the modelling spectrum are appraoches such as the OPEN Method
“Object-oriented Process, Environment and Notation” [17], which has relevance in describing
systems failure scenarios, by having a meta-model framework that may be tailored to
individual projects and addressing personal skills, organisational culture and requirements.

Grounded Theory allows models to be created early in the life-cycle of a development project
which can establish information systems requirements, support non-sequential process
models (such as prototyping), and be used to assist with the derivation of preliminary
architectural components [18].

Page 5



European Software Day - Middlesex University submission 05/06/02

(©

The three basic elements of grounded theory are concepts, categories and propositions.
Concepts are the basic units of analysis since it is from conceptualisation of data, not the
actual datger se that theory is developed. Corbin and Strauss [19] state that in their opinion,
theories cannot be built with actual incidents or activities as observed or reported; (i.e. they
cannot be derived from "raw data."). The incidents, events, happenings are taken as, or
analysed as, potential indicators of phenomena, which are thereby given conceptual labels.

The Grounded Theory method is particularly adept at handling voluminous qualitative data, it
has specific rigorous procedures for reaching theoretical formulations from such data, and is
usually expressed in natural language. The very nature of systems failures and the broad-
based nature of Grounded Theory and ethnographic approaches means that these concepts are
playing a significant role in the search for solutions to the problems described.

In the “centre” of these approaches to modelling techniques is the increasingly popular UML
[20], which is rapidly becoming a standard modelling technique within the field of Software
Engineering. In UML, activity diagrams are able to express tasks in conjunction with
information flows, enriched by operators for branching, forking and joining an activity graph.
Work in other establishments is proceeding with a view to extending UML For example an
amended version of UML has been created [21] to describe “Task Models for Co-operative
Work”. Here a system has been modelled, which refers to state relationships among activity
elements. Task dynamics may be modelled, including temporal ordering of activities.

The relatively simple yet comprehensive approach used in UML together with its almost
universal acceptance and consequent familiarity, makes it a highly appealing approach for
formally handling systems failures scenarios.

6. A hypothetical mechanism (SSD/CASE TOOL)

A schematic representation of the intended failure analysis process is given in figure 1. Basically
it involves being able to take a given situation and examine it against other similar situations and
logical sets of rules designed to assess what is actually taking place. The vehicle for this is an
inference engine with the ability to on draw supplied in summarised-data and textual formats.

Case Details: Project Failure Symptoms:

s Lty bt )0 bl )

- Tumover

- Milestone events

!

I

Logical «— CASE — /

Scenario — ANALYSIS - Knowledge Base
Interpretation

(dynamic)

Project Failure Characteristics

Risk Analysis
& Assessment

vyvywyy

Recommendations ??7?

Page 6



European Software Day - Middlesex University submission 05/06/02

Figure 1. A proposed approach to characterising systems failure symptoms

7. Finding a means of preventing or solving software system failure a look
at some existing methods.

The foregoing discussion outlines measures currently being researched to accurately assess
exactly what is going on in a particular situation, by looking at the raw symptoms and then
logically distilling them into characteristics. A method for addressing how to rectify the
implications of the results has to be sought.

The literature indicates many ways of handling software management that are both quantitative
and qualitative Initially a study should be made of existing software quality maintenance and
improvement technigues such as (e.g.) GOM [22] and CMM [23], which are methods designed to
ensure success through good custom and practice within project management. These and other
approaches will be considered, taking into account both qualitative and quantitative approaches.
With systems failure in mind, the following points are noted:

Goal-Question-Metrics (GQM)

Many software metrics programmes have failed because they had poorly defined, or even non-
existent objectives. The basic idea of GQM is simple and intuitive, with project management
proceeding according to three stages:

1. Setting specific goals in terms of purpose, perspective and environment.
2. Refining these goals into quantifiable questions that are easy to understand.

3. Deriving the metrics and data to be collected, together with the means for collecting
them, in order to answer the questions.

The Capability Maturity Model (CMM)

It will also be useful to consider the implications of CMM which describes the principles and
practices underlying software process maturity. It is intended to help software organisations
improve the maturity of their software processes in terms of an evolutionary path from ad hoc,
chaotic processes to mature, disciplined software processes. It is organised into five maturity
levels: Initial, Repeatable, Defined, Managed and Optimising.

Predictability, effectiveness, and control of an organisation’s software processes are intended
to improve as the organisation moves up these five levels. For Level 1, the software process is
largely ad hoc. However, except for Level 1, each maturity level is decomposed into several
key process areas that indicate the subjects that an organisation should focus on, to improve its
software process.

SPICE

The SPICE project [24] was devoted to being able to provide an international standard that
provides a framework for assessing the software process. Within a process improvement
context, process assessment provides the means of characterizing the current practice within
an organizational unit in terms of the capability of the selected processes. Analysis of the
results in the light of the organization's business needs identifies strengths, weakness and risks
inherent in the processes. This in turn leads to the ability to determine whether the processes
are effective in achieving their goals, and to identify significant causes of poor quality, or over
runs in time or cost. These provide the drivers for prioritizing improvements to processes.

Process capability determination is concerned with analysing the proposed capability of
selected processes against a target process capability profile in order to identify the risks

Page 7



European Software Day - Middlesex University submission 05/06/02

involved in undertaking a project using the selected processes. The proposed capability may
be based on the results of relevant previous process assessments, or may be based on an
assessment carried out for the purpose of establishing the proposed capability.

7.2 Newer methods

A number of other approaches are being developed, which address how to assure system success.
Three of these are briefly described below, as they are highly relevant to this project:

The Experience Factory

The principle of the Experience Factory approach by Basili [25], is to learn from past
experiences in order to improve software processes and products. An organisational structure
is designed to support and encourage the effective reuse of software experiences. It consists of
two organisations which separate project development concerns from organisational concerns
of experience packaging and learning. The experience factory provides the processes and
support for analysing, packaging and improving the organisation's fund of experience. The
project organisation is structured to reuse this stored experience in its development efforts.

Project De-escalation

Failing systems and runaways often attract additional effort and Project De-escalation [26]
addresses this phenomenon. When de-escalation occurs, there is reduced commitment to a
failing course of action, with the result that troubled projects may be successfully turned
around or sensibly abandoned. It is essentially a business-oriented solution which appeals to
the hard economics of the situation and the nature of the management involved. Some
examples of its key actions are:

« Changes to top management Reducing managerial threat® External shocks
e Going public on the probleme New goals confirmed at high level
e Change of project champions Not punishing whistle blowing

Risk handling

In the rapidly changing field of software engineering, new ground is continually being covered
or previously untried directions have to be contemplated. Software Risk Management, such as
proposed by Boehm [27], takes a pragmatic approach to what is going on in an existing system
or in a project. Its principles cover considerations such as: unrealistic schedules and budgets;
shortfalls in performance; technical capability; and changes to requirements.

Focussing on the organisation

Another approach [28] involves strictly examining the implications of the managerial
infrastructure in place and in examining the relationships between the various entities
involved. The next task is to match up software engineering practices to that revised structure.
Current practices in most organisations today is the opposite, where those involved seek to
achieve best practices within an existing organisational set-up.

Business Process Re-engineering

Page 8



European Software Day - Middlesex University submission 05/06/02

Conclusion

This project has taken the experiences from a previous Esprit software engineering projects
(MutliSpace and Space-UFO) forward. These projects focused on software quality issues and
then related them to the factors affecting software issues. Current work is examining real-life
instances in industry and a methodology is being developed for coping with the results that are
emerging. This multi-pronged attack on the subject means that the groundwork has been created
for formally handling statistical data together with more esoteric data through the application of
techniques such as Grounded Theory. Existing approaches are at the same time being examined
to see how they may be harnessed in such a way that the most appropriate approach may be
adopted as and when it is required.

Page 9



European Software Day - Middlesex University submission 05/06/02

References

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]

g
1]

12
13
[4

[
g

17
[g
9

N R

2

Helga Drummond, “Escalation in Decision-Making : The Tragedy of Taurus”, Oxford University Press,
ISBN 0 198289 537, 1997

NIC Series - NIRS2 & Pensions Professionals Update,
http://www.inlandrevenue.gov.uk/nic/coeg-nirs2/coeg-nirs2.htm

J. Carey, N Gross, O. Port and M.Stepanek, “Software Hell”, Busidesk, Dec. 61999

Robert L. Glass, Software Runaways: “Lessons learned from massive software project failures”, Prentice
Hall, ISBN 0-13-673443-X , 1998

A.Doyle, “Moving Target: Software problems are destroying the worlds most advanced Air-Traffic Control
Centre”, Flight International, May 1997.

Robert L. Glass, Software Runaways: Lessons learned from massive software project failures, Prentice Hall,
ISBN 0-13-673443-X (1998)

I. Stokes “The Soul of a Project”, Project Manager Today, February 1995
B. Boehm, “Anchoring the Software Process”, IEEE Software, July 1996

ESA/CNES “ARIANE 501 - Presentation of Inquiry Board report, ESA Press Release Nr 33-96 — Paris, 23
July 1996.

R. Hackathorn, “A data warehouse does more than collect data. It reflects a valid and consistent image of the
business”, Byte Magazine; August 1997;

NIC Series — NIRS2 & Pensions Professionals Update,
Http://www.inlandrevenue.gov.uk/nic/coeg-nirs2/coeg-nirs2.htm

Social Security Contributions Bill, Hansard (House of Lords), Debate 25 Jan 1999
Social Security-Pensions (Computer Changéadansard -Commons Written Answer 18 Jan 1999.

J. Bach, “S.E. — Coming of age or reaching too far?”, Pr8tCénference on Software Engineering &
Training, IEEE Computer Society Press, ISBN 0-7695-0423-X, 2000

Geoffrey James, “IT Fiascoes and How To Avoid Them”, Datamation Magazine, November 1997

Jensen K., “Coloured Petri Nets: A high-level language for system design and analysis”, in K. Jensen and G.
Rozenberg, (eds.) High-Level Petri Nets. Theory and Application, Springer-Verlag, 1991,

I. Graham, B. Henderson-Sellers and Houman Younessi, “The OPEN Process Specification"1st Edition,
ACM Press, ISBN 0-201-33133-0, 1997

Galal, G. H., & McDonnell, J. T. (1997). Knowledge-Based Systems in Context: A Methodological
Approach to the Qualitative Issues. Al and Societyl ), 104-121.

Corbin, J., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria
Qualitative Sociology, 13, 3-21.

Booch G., Rumbaugh J. and Jacobson 1., “The Unified Modelling Language User Guide” Addison-Wesley,
1998

S. Killich et al., “Task Modelling for Co-operative Work”, Behaviour & Information Technology, Vol.
18(5), 1999

R. van Solingen and E. Berghout, “The Goal/Question/Metric Method: a Practical Guide for Quality
Improvement of Software Development” Graw Hill, ISBN 007 709553 7, 1999

M.C.Paulk, W. Curtis, M.B. Chrissis, and C. V. Weber, "Capability Maturity Model, Version 1.1," IEEE
Software, Vol. 10(4), July 1993.

[23] SPICE ISO/IEC Software Process assessment

Page 10



European Software Day - Middlesex University submission 05/06/02

V. R. Basili, “The Experience Factory and Its Relationship to Other Quality Approaches”, Advances in
Computers, Vol 41, Academic Press, Inc., 1995.

M. Keil and D. Robey, “Turning around troubled software projects”, Journal of Management Information
Systems, Vol 15(4), 1999

B.W. Boehm, “Software risk management: Principles and practices”, IEEE Software, Vol 8(1) 1991.

BN B B

Doherty, N. F. & King, M., (1998) “The consideration of organizational issues during the systems
development process: an empirical analysis”, Behaviour & Information Techn®olgyi7, No. 1, pp. 41-
51.

Page 11



