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Abstract. A test was designed that apparently examined a student’s knowledge of assignment
and sequence before a first course in programming but in fact was designed to capture their rea-
soning strategies. An experiment found two distinct populations of students: one could build and
consistently apply a mental model of program execution; the other appeared either unable to build
a model or to apply one consistently. The first group performed very much better in their end-of-
course examination than the second in terms of success or failure. The test does not very accurately
predict levels of performance, but by combining the result of six replications of the experiment,
five in UK and one in Australia. we show that consistency does have a strong effect on success in
early learning to program but background programming experience, on the other hand, has little
or no effect.

1 Introduction

Programming is hard to learn. The search for predictors of programming ability has produced
no significant results. The problem is international and longstanding.

It is a commonplace that some students find programming extremely easy to learn whilst
others find it almost impossible. Dehnadi observed that some novices confronted by simple
programming exercises gave rational but incorrect answers. Their answers were mechanically
plausible: for example, assigning (in Java) the value of a variable from left to right rather than
right to left, or moving a value in an assignment rather than copying.

This suggested to us that some novices may have been equipped with some abilities before
the course started. In an experiment [7] Dehnadi administered a test made up of questions
about assignment and sequence programs. The test was administered before the first week of an
introductory programming course, without giving any explanation of what the questions were
about. Almost all participants gave a full response. About half used a rational model which
they applied consistently to answer most or all of the questions. The other half did not seem to
use a recognisable model or appeared to use several models. The consistent subgroup had an
85% pass rate in the course examination, and the rest a 36% pass rate.

There were some deficiencies in Dehnadi’s experiment, and most of the psychology of pro-
gramming community were sceptical of his result, particularly when two experiments [5,36]
appeared to refute it, and a review of three others [4] concluded that the test does not predict
very much of the variance in levels of performance in the course examination. Those ‘refuta-
tions’, however, showed only that his test was not psychometric, in that it is ineffective in a
population of programmers, and it is important to distinguish between evidence for the presence
of an effect and measurements of its strength. This paper provides evidence for the claim that
consistency affects performance, by a meta-analysis of six replications of an improved version
of Dehnadi’s experiment. The evidence shows that consistency is not simply the result of back-
ground programming experience, and that by contrast such experience has little or no effect on
success.

2 Previous Work

The search for predictors of success in learning to program has turned up very little. Cross [6],
Mayer and Stalnaker [15] and Wolfe [35] tried to use occupational aptitude tests to predict



successful candidates for software industry’s employment. McCoy and Burton [18] said good
mathematical ability was a success factor in beginners’ programming. Wilson and Shrock [33]
found three predictive factors: comfort level, mathematical skill, and attribution to luck for
success or failure. Beise et al. [3] found that neither sex nor age is a good predictor of success in
the first programming class. Rountree et al. [23] reveal that the students most likely to succeed
are those who are expecting to get an ‘A’ grade and are willing to say so. Lister et al. [14,11,22]
opined, in a multi-national project, that incapability of students in entry-level programming is
due to lack of general problem-solving ability. Simon et al. [26,31,27] followed up the project
and came to similar conclusions.

Johnson-Laird’s notion of ’mental model’ [32] lies behind this study, and much other re-
search on programming learning. Kessler and Anderson [13] and Mayer [17] all stressed the
significance of mental models. Du Boulay [9] catalogued the difficulties that novices experi-
enced. Fix et al. [12] differentiated mental models of novices and experts. Perkins and Sim-
mons [19] described novice learners’ according to their problem-solving strategies as “stoppers”,
and “movers”. Mayer [16] described existing knowledge as a “cognitive framework” and how
new information is connected to existing knowledge. Dyck and Mayer [10] emphasised the ne-
cessity for a clear under-standing of the underlying virtual machine in novice’s learning process.
Putnam et al. [21] studied the impact of novices’ misconceptions of the capabilities of comput-
ers. Someren and Maarten [29] found that mechanical understanding of the way the language
implementations is the key to success.

This study is based on the notion of mental models of rational misconceptions. Spohrer and
Soloway [30] found that just a few types of bug cover almost all those that occur in novices’
programs, and in [28] they studied novice’s background knowledge and their misconceptions.
Schneiderman [25] blamed the different uses of variables. Samurcay [24] looked at different ways
variables are assigned values through assignment statements and describes how how internal
variables like initialisation and updating is harder for novice programmers. Du Boulay [9] iden-
tified misconceptions about variables based upon the analogies used in class, misconception
of linking variables by assigning them to each other, misunderstanding of temporal scope of
variables, forgetting about initialisations. Perkins et al. [20] identified misconceptions about the
names of variables.

3 Dehnadi’s initial experiment

Dehnadi’s experience of teaching led him to believe that novices bring patterns of reasoning to
the study of programming: some of them appear to use rational mechanisms, distinct from those
taught in the course, to explain program behaviour. He designed a test [7] to see what would
happen when students were confronted with programming problems before they had been given
any explanation of the mechanisms actually involved in program execution. His questions each
gave a program fragment in Java, declaring two or three variables and executing one, two or

1.  Read the following statements and 

tick the box next to the correct answer 

in the next column.   

   
int a = 10; 

int b = 20; 

 
a = b; 

The new values of a and b are: 

 

! a = 30    b = 0 

! a = 30    b = 20 

! a = 20    b = 0 

! a = 20    b = 20 

! a = 10    b = 10 

! a = 0     b = 10 

Any other values for a and b: 

 

           a  =                     b =                        

Use this column for your 

rough notes please   

 

Fig. 1. The first question in the test, a single assignment



three variable-to-variable assignment instructions, as illustrated in figure 1. The student was
asked to predict the effect of the program on its variables and to choose their answer/s from
a multiple-choice list of the alternative answers. There was no explanation of the meaning of
the questions or the equality “=” sign that Java uses to indicate assignment. Except for the
word “int” and the semicolons in the first column, the formulae employed would have looked
like school algebra, but when the question asked about the “new values” of variables it hinted
that the program produces a change.

Dehnadi had a prior notion of the ways that a novice might understand the programs,
and prepared a list of mental models accordingly. The eight mental models of assignment that
he expected subjects to use were M1-M8 and M11 from table 2. Questions with more than
one assignment required a model of composition of assignment as well as a model of single
assignments. Dehnadi recognised the three models of sequential composition shown in table 3.

The test was administered to 30 students on a further-education programming course at
Barnet College and 31 students in the first-year programming course at Middlesex University.
No information was recorded about earlier education, programming experience, age or sex. It
was believed that few had any previous contact with programming and that all had enough
school mathematics to make the equality sign familiar.

Despite the lack of explanation of the questions, most students gave a more or less full
response. About half gave answers which corresponded to a single mental model of assignment
in most or all questions; the other half gave answers which corresponded to different models in
different questions, or didn’t use recognisable models.

Table 1. T1 and second quiz binary result

T1 Pass Fail Total

C 22 4 26

I 8 15 23

B 4 6 10

Total 34 25 59

χ2 = 13.944, df = 2, p < 0.001
highly significant

When the result of the test was correlated with the result of in-course examinations it was
found that, especially in the later examination which examined technical skill more thoroughly,
the consistent (C) group had an 85% pass rate, but the others (I and B together) only 36%.
This was a large effect, compared to earlier research on predictors, and a χ2 test showed that it
was significant. The result was over-hyped by Dehnadi and Bornat [8], and perhaps as a result
attracted a good deal of hostile attention.

3.1 Two apparent refutations

An experiment at the University of Århus (Denmark) by Caspersen et al. [5] used Dehnadi’s
test but found no effect of consistency on success. Wray [36] at the Royal School of Signals
(UK) used Dehnadi’s test but found no effect of consistency on success and, by contrast, found
a strong effect of Baron-Cohen’s SQ and EQ measures [2,1].

In the Århus experiment 124 subjects (87%) were assessed as C, 18 (13%) as notC, and the
average failure rate in the course was 4%. The high proportion of consistent subjects and the
extremely low failure rate makes this experiment different from all but one of the experiments
included in our meta-analysis below. There is some reason to believe, as discussed below, that
lenient examinations reduce the effect of consistency on success; a 96% pass rate can be seen as
lenient for the population being examined. The statistical mechanism used in this experiment



was unable to correlate the test with success/failure statistics, and their decision to look for
correlations with graded data would in any case have weakened the effect of consistency. Despite
the difficulties of dealing with such a population, our meta-analysis includes an experiment at
the University of York which on the face of it has an intake similar to that in the Århus
experiment.

Wray’s experiment refutes the regrettable claim in [8] that Dehnadi’s test divides novices
into programming sheep and non-programming goats. The test should not be considered psy-
chometric since a normal programming course attempts to train novices to pass it. Wray used
Dehnadi’s test five months after the course ended. It could not be expected to deliver a mean-
ingful result in those circumstances.

4 Improved experimental protocol

In response to criticism of the initial experiment some improvements were made to the test.
Most importantly, the judgement of consistency was made explicit and repeatable. The number
of models of assignment recognised was expanded to the eleven shown in table 2. Answers still
correspond to a single tick in most cases, but the new model M10 allows a student to tick each
answer which makes a and b equal. The models of composition were made explicit as shown
in table 3. Answer sheets were produced, illustrated in figure 4, which identified the mental
models apparently used in particular answers or patterns of answers; in particular this exposed
the ambiguous nature of some answers caused by models of composition, and requiring multiple
ticks.

Questions about background were added to the questionnaire. We asked about age and
sex, about previous programming experience (yes/no and if yes, what languages used) and
previous programming course attendance (yes/no). A mark sheet was produced, shown in figure
3, which exposed the assessment of consistency. A marking protocol was developed to resolve
the ambiguities introduced by use of model S3: essentially, we mark ambiguous responses across
each row and look for the column which maximises the number of marks. We note that this
makes consistency easier to achieve and, if anything, may dilute its effect on success.

These improved materials were used in all of the experiments analysed below.

5 New experiments

In the hope of dispelling scepticism that consistency has a noticeable effect on success in learning
to program, the improved experiment was repeated several times by collaborating experimenters:
at the University of Newcastle (Australia); twice at Middlesex University (UK); at the University
of Sheffield (UK); at the University of York (UK); at the University of Westminster (UK); at

Table 2. Anticipated mental models of a=b

Model Description Effect

M1 right to left move a←b ; b←0

M2 right to left copy a←b

M3 left to right move a→b ; 0→a

M4 left to right copy a→b

M5 right to left move and add a←a+b ; b←0

M6 right to left copy and add a←a+b

M7 left to right move and add a+b→b ; 0→a

M8 left to right copy and add a+b→b

M9 no change

M10 equality a=b

M11 swap a�b



Table 3. Anticipated mental models of a=b; b=a

Model Description

S1 a=b; b=a

Conventional sequential execution

S2 a=b || b=a
Independent assignments, independently reported

S3 a,b=b,a

Simultaneous multiple assignment, ignoring effect upon source

Question Answers/s Model/s

a = 10 b = 0 M1+S1
a = 20 b = 10 (M1+S3)/(M2+S3)/(M3+S3)/

5. (M4+S3)
a = 10 b = 10 M2+S1

int a = 10; a = 0 b = 20 M3+S1
int b = 20; a = 20 b = 20 M4+S1

a = 40 b = 30 M5+S1
a = b; a = 30 b = 30 (M5+S3)/(M6+S3)/(M7+S3)/
b = a; (M8+S3)

a = 30 b = 0 M6+S1
a = 30 b = 50 M7+S1
a = 0 b = 30 M8+S1
a = 10 b = 20 (M9+S1)/(M11+S1)/

(M11+S3)
a = 20 b = 20 (M10+S1)/(M2+S2)/(M4+S2)
a = 10 b = 10
a = 0 b = 10 (M1+S2)/M3+S2)
a = 20 b = 0
a = 30 b = 20 (M5+S2)/(M7+S2)
a = 10 b = 30
a = 0 b = 30 (M6+S2)/(M8+S2)
a = 30 b = 0
a = 10 b = 20 (M11+S2)
a = 10 b = 20

Fig. 2. Sample answer sheet

Participant 

code 

Age Sex Time to do 

test 

Prior programming A-Level/s  Prior programming 

courses 

Course result 

 

 

 

       

 

Assignment 
No 

effect 

Equal 

sign 

Swap 

values 

Assign-to-left Assign-to-right 
Add-Assign-to-

left 

Add-Assign-to-

right 
Questions 

Lose-

value 

(M1) 

/Ss / I 

Keep-

value 

(M2) 

/Ss / I 

Lose-

value 

(M3) 

/Ss / I 

Keep-

value 

(M4) 

/Ss / I 

Keep-

value 

(M5) 

/Ss / I 

Lose-

value 

(M6) 

/Ss / I 

Keep-

value 

(M7) 

/Ss / I 

Lose-

value 

(M8) 

/Ss / I 

Values 

don't 

change     

(M9) 

/ S  

Assign 

means 

equal 

(M10) 

/ S  

 

Swap 

values 

(M11) 

/Ss / I 

Remarks (including participants’ 

working notes) 

1             

2             

3             

4             

5             

6             

7             

8             

9             

10             

11             

12             

C0            

C1     

C2   

C3  

 

 

 

Additional notes: 

 

s.dehnadi@mdx.ac.uk    r.bornat@mdx.ac.uk     Simon@newcastle.edu.au 

Fig. 3. The marksheet



Banff and Buchan college (UK) and at OSZ TIEM Berlin (Germany). The data for the first six
of these experiments has been provided to us and is analysed here.

We divide the population according to whether they reported prior programming experience,
and alternatively according to reported prior programming course attendance. In addition, based
on reports of programming languages used, we classify programming experience as relevant
to the test or not (essentially, whether or not subjects had been exposed to mechanisms of
assignment and sequence similar to those used in the course they were about to take). Table 4
shows the effects of these background factors on success, shown as the percentage who answered
yes and succeeded / the percentage who answered no and succeeded (the small number who
did not reply in each case are ignored). There were no strong differences in the figures in any
experiment: note, however, the extremely high success rates in the York experiment, and the
slightly lower rates in Sheffield. The Westminster success rates are also fairly high. Some of
these results were more significant than others: we don’t comment on that at this point, but
rely on meta-analysis.

Table 4. Effect of programming background on success in separate experiments

NewC Mdx1 Mdx2 Shef West York

Prior experience 63%/68% 55%/70% 51%/44% 93%/75% 75%/61% 92%/71%

Relevant experience 61%/66% 84%/55% 62%/42% 85%/78% 71%/69% 95%/88%

Prior course 63%/69% 69%/62% 44%/51% 72%/81% 74%/70% 90%/88%

To begin to look at the effect of consistency measured in the test on success in the course
examination, we looked at the success rates of consistent subjects against the rest. As part of
the improved experimental protocol, we were able to recognise levels of consistency: subjects
who use a single model throughout are consistent; those who use two related models are also
consistent but less so. We identified consistency levels C0, C1, C2 and C3, but in practice C0
was large and the others very small. Nevertheless we analyse the effect of consistency in two
ways: C0/notC0 and C0-C3/notC. Table 5 gives the results.

Table 5. Effect of consistency on success in separate experiments

NewC Mdx1 Mdx2 Shef West York

C0/notC0 80%/44% 77%/54% 79%/27% 91%/47% 77%/60% 92%/50%

C0-C3/notC 79%/32% 70%/53% 64%/23% 91%/38% 75%/57% 90%/50%

In each experiment we found the same thing: consistent subjects did better than the rest.
At York, as at Århus, most subjects scored consistently in the test (99 out of 105 in York, 124
out of 142 in Århus). There were so few non-consistent subjects at York that we could put
little weight on that particular result, but we can, as we should, include it in a meta-analysis.
In other experiments, apart from Mdx1 and Westminster, we find that consistent subjects do
about twice as well as the rest. This discrepancy, and perhaps the York result as well, may
be the effect of lenient examination. At Middlesex, where we have access to the examination
materials, we know that Mdx1 was a weak first in-course quiz whereas Mdx2 was a stronger
more technical second quiz: the second quiz separated students more radically and showed a
stronger effect of consistency. The Westminster results were weaker even than Mdx1 and we
wonder whether the examination was perhaps correspondingly lenient. At York the pass rate
was 90%: lenient for that particular course population.



Table 6. Effect of consistency on success in subgroups, separate experiments

NewC Mdx1 Mdx2 Shef West York

CM2/notCM2 87%/56% 100%/58% 89%/41% 73%/81% 75%/70% 92%/78%

C0 (CM2 excluded)/notC0 74%/44% 67%/54% 74%/27% 97%/47% 77%/60% 92%/50%

Prior experience 79%/23% 75%/48% 88%/18% 93%/ 82%/62% 92%/100%

No prior experience 85%/33% 78%/62% 66%/33% 90%/47% 62%/60% 91%/0%

Relevant experience 79%/11% 93%/67% 100%/25% 86%/ 80%/50% 95%/100%

No relevant experience 80%/53% 63%/51% 70%/26% 92%/47% 84%/63% 88%/40%

Prior course 73%/33% 75%/55% 77%/31% 80%/0% 77%/70% 94%/50%

No prior course 93%/47% 81%/58% 86%/20% 94%/50% 93%/50% 88%/

Table 7. Overall effect of programming background on success

success yes/no χ2 df p Significance

Prior experience 74%/64% 21.02392 12 0.05 < p < 0.10 weak

Relevant experience 78%/68% 18.2602 12 0.10 < p < 0.20 very weak

Prior course 69%/73% 4.67478 12 0.95 < p < 0.98 none

Because the mark sheet identified not only consistency but also the particular model(s)
used, we can recognise those subjects who apparently have already learned, before the course
begins, the mechanisms of assignment and sequence that are used in the forthcoming course.
In Java these models are M2 for assignment and S1 for sequence, and we called the group
that consistently used these models in the test the CM2 group. Most, but not all of them
reported prior programming experience. It would seem that most of the York intake could
already program: 80 out of 105 were CM2. To see whether the effect of consistency was simply the
effect of prior learning of programming, we looked at the population divided by CM2/notCM2,
and we looked again at consistent subjects outside the CM2 group (C0 without CM2) against
the rest. Then we looked at each of the subgroups defined by the background questions analysed
in table 4. This gives eight population divisions, shown in table 6.

In almost every cell of this table the consistent group does better than the rest. Even in
the lenient examination of Mdx1, at Westminster where a high proportion of non-consistent
subjects passed, and at York where there were hardly any non-consistent subjects to consider,
we see the same trend. The only cell which doesn’t fit the picture is Sheffield CM2/notCM2
where the CM2 group (which was unusually small in that experiment) did worse than the rest,
though it still did very well.

It is hard to grasp the overall message of this analysis by looking at individual results, which
is why we turn to meta-analysis.

6 Meta-analysis

The Winer [34] procedure of meta-analysis was used to examine the overall effect of consistency
and/or programming background on success. Winer’s procedure combines p values from χ2

analysis of separate experiments – the probability of obtaining the effect by accident – to
give an overall p value. Because this is a meta-analysis of several experiments, our threshold
significance value is set at a conservative 0.01 (1%).

Table 7 summarises the overall effects of programming background on success, showing the
size of the effect, the χ2 value and significance. None of the programming background factors
had a large or a significant effect. The weak effect of prior programming experience and prior
relevant experience was driven by 60% of candidates with prior programming experience overall,
especially from the York experiment, an extreme case with 83% programming-skilful population.



Table 8. Overall effect of consistency on success

success χ2 df p Significance

C0/notC0 84%/48% 49.84 12 p < 0.001 very high

C/notC 80%/42% 44.51 10 p < 0.001 very high

Table 9. Overall effect of consistency on success in filtered subgroups

success χ2 df p Significance

CM2/notCM2 89%/62% 34.7474 12 p < 0.001 very high

C0 (CM2 excluded)/notC0 80%/48% 40.27092 12 p < 0.001 very high

Prior experience 84%/44% 31.64786 10 p < 0.001 very high

No prior experience 80%/47% 35.45406 12 p < 0.001 very high

Relevant experience 90%/35% 31.59638 10 p < 0.001 very high

No relevant experience 80%/50% 35.82052 12 p < 0.001 very high

Prior course 84%/50% 35.97697 12 p < 0.001 very high

No prior course 90%/46% 38.3514 10 p < 0.001 very high

Attending a programming course was shown to have no significant effect on success, both overall
and in each individual experiment.

On the other hand, meta-analysis shows in table 8 a large and highly significant effect of
consistency on success in both the C0/notC0 and C/notC group arrangements. Despite the weak
effect in the first quiz at Middlesex and the Westminster experiment, especially in C/notC, none
of the experiments is driving the result: if we eliminate any one of them there is still strong
significance.

Table 9 summarises the overall effect of consistency on success in eight population divisions
characterised by programming background factors. The overall result confirms the result of the
initial experiment by demonstrating a highly significant effect of consistency on success in every
slice. None of the experiments is driving the overall result: if we eliminate any one we still find
significance.

This analysis shows that consistency is not simply the effect of learning to program. The
CM2 group does do better than any other, as might be expected. But there are almost as many
individuals who are C0-consistent but not CM2, their success rate is almost as good, and they
are almost twice as likely to pass as those who are not consistent. Consistency is not simply the
effect of learning to program.

The size of the effect varies according to the population division but it is significant every-
where and it is never small. Programming background, or its absence, doesn’t eliminate the
effect of consistency.

7 Conclusion and future work

The test characterises two populations in introductory programming courses which perform
significantly differently. About half of novices spontaneously build and consistently apply a
mental model of program execution; the other half are either unable to build a model or to apply
one consistently. The first group perform very much better in their end-of-course examination
than the second: an overall 84% success rate in the first group, 48% in the second (in C0/notC0
group arrangement). Despite the tendency of institutions to rely on students’ prior programming
background as a positive predictor factor for success, programming background has only a weak
and insignificant effect on novices’ success at best.

This study shows that students in the consistent subgroup have the ability to build a mental
model, a drive to construct a system, something that follows rules like a mechanical construct,



and this is what more or less what Baron-Cohen’s systematizers do. We speculate that we might
be measuring a similar trait by different instruments, and Wray’s results tend to support this.

Simon [27] stated “We do not pretend that there is a linear relationship between program-
ming aptitude and mark in a first programming course, or that different first programming
courses are assessed comparably; but we have succumbed to the need for an easily measured
quantity.” Although the test introduced by this study measures the ability to learn program-
ming with some accuracy, without a solid method of measuring programming skill an optimum
result cannot be achieved. Now we have a test which begins to measure programming aptitude,
we need a standardised mechanism to measure programming achievement.
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